1
|
Baumgartner AJ, Thompson JA, Kern DS, Ojemann SG. Novel targets in deep brain stimulation for movement disorders. Neurosurg Rev 2022; 45:2593-2613. [PMID: 35511309 DOI: 10.1007/s10143-022-01770-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/01/2021] [Accepted: 03/08/2022] [Indexed: 12/26/2022]
Abstract
The neurosurgical treatment of movement disorders, primarily via deep brain stimulation (DBS), is a rapidly expanding and evolving field. Although conventional targets including the subthalamic nucleus (STN) and internal segment of the globus pallidus (GPi) for Parkinson's disease and ventral intermediate nucleus of the thalams (VIM) for tremor provide substantial benefit in terms of both motor symptoms and quality of life, other targets for DBS have been explored in an effort to maximize clinical benefit and also avoid undesired adverse effects associated with stimulation. These novel targets primarily include the rostral zona incerta (rZI), caudal zona incerta (cZI)/posterior subthalamic area (PSA), prelemniscal radiation (Raprl), pedunculopontine nucleus (PPN), substantia nigra pars reticulata (SNr), centromedian/parafascicular (CM/PF) nucleus of the thalamus, nucleus basalis of Meynert (NBM), dentato-rubro-thalamic tract (DRTT), dentate nucleus of the cerebellum, external segment of the globus pallidus (GPe), and ventral oralis (VO) complex of the thalamus. However, reports of outcomes utilizing these targets are scattered and disparate. In order to provide a comprehensive resource for researchers and clinicians alike, we have summarized the existing literature surrounding these novel targets, including rationale for their use, neurosurgical techniques where relevant, outcomes and adverse effects of stimulation, and future directions for research.
Collapse
Affiliation(s)
| | - John A Thompson
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
- University of Colorado Hospital, 12631 East 17th Avenue, PO Box 6511, Aurora, CO, 80045, USA
| | - Drew S Kern
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
- University of Colorado Hospital, 12631 East 17th Avenue, PO Box 6511, Aurora, CO, 80045, USA
| | - Steven G Ojemann
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA.
- University of Colorado Hospital, 12631 East 17th Avenue, PO Box 6511, Aurora, CO, 80045, USA.
| |
Collapse
|
2
|
di Biase L, Tinkhauser G, Martin Moraud E, Caminiti ML, Pecoraro PM, Di Lazzaro V. Adaptive, personalized closed-loop therapy for Parkinson's disease: biochemical, neurophysiological, and wearable sensing systems. Expert Rev Neurother 2021; 21:1371-1388. [PMID: 34736368 DOI: 10.1080/14737175.2021.2000392] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Motor complication management is one of the main unmet needs in Parkinson's disease patients. AREAS COVERED Among the most promising emerging approaches for handling motor complications in Parkinson's disease, adaptive deep brain stimulation strategies operating in closed-loop have emerged as pivotal to deliver sustained, near-to-physiological inputs to dysfunctional basal ganglia-cortical circuits over time. Existing sensing systems that can provide feedback signals to close the loop include biochemical-, neurophysiological- or wearable-sensors. Biochemical sensing allows to directly monitor the pharmacokinetic and pharmacodynamic of antiparkinsonian drugs and metabolites. Neurophysiological sensing relies on neurotechnologies to sense cortical or subcortical brain activity and extract real-time correlates of symptom intensity or symptom control during DBS. A more direct representation of the symptom state, particularly the phenomenological differentiation and quantification of motor symptoms, can be realized via wearable sensor technology. EXPERT OPINION Biochemical, neurophysiologic, and wearable-based biomarkers are promising technological tools that either individually or in combination could guide adaptive therapy for Parkinson's disease motor symptoms in the future.
Collapse
Affiliation(s)
- Lazzaro di Biase
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico Di Roma, Rome, Italy.,Brain Innovations Lab, Università Campus Bio-Medico Di Roma, Rome, Italy
| | - Gerd Tinkhauser
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Eduardo Martin Moraud
- Department of Clinical Neurosciences, Lausanne University Hospital (Chuv) and University of Lausanne (Unil), Lausanne, Switzerland.,Defitech Center for Interventional Neurotherapies (.neurorestore), Lausanne University Hospital and Swiss Federal Institute of Technology (Epfl), Lausanne, Switzerland
| | - Maria Letizia Caminiti
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico Di Roma, Rome, Italy
| | - Pasquale Maria Pecoraro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico Di Roma, Rome, Italy
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico Di Roma, Rome, Italy
| |
Collapse
|
3
|
Insola A, Mazzone P, Scarnati E, Restuccia D, Valeriani M. Contribution of different somatosensory afferent input to subcortical somatosensory evoked potentials in humans. Clin Neurophysiol 2021; 132:2357-2364. [PMID: 34454262 DOI: 10.1016/j.clinph.2021.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/04/2021] [Accepted: 06/23/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES To investigate the subcortical somatosensory evoked potentials (SEPs) to electrical stimulation of either muscle or cutaneous afferents. METHODS SEPs were recorded in 6 patients suffering from Parkinson's disease (PD) who underwent electrode implantation in the pedunculopontine (PPTg) nucleus area. We compared SEPs recorded from the scalp and from the intracranial electrode contacts to electrical stimuli applied to: 1) median nerve at the wrist, 2) abductor pollicis brevis motor point, and 3) distal phalanx of the thumb. Also the high-frequency oscillations (HFOs) were analysed. RESULTS After median nerve and pure cutaneous (distant phalanx of the thumb) stimulation, a P1-N1 complex was recorded by the intracranial lead, while the scalp electrodes recorded the short-latency far-field responses (P14 and N18). On the contrary, motor point stimulation did not evoke any low-frequency component in the PPTg traces, nor the N18 potential on the scalp. HFOs were recorded to stimulation of all modalities by the PPTg electrode contacts. CONCLUSIONS Stimulus processing within the cuneate nucleus depends on modality, since only the cutaneous input activates the complex intranuclear network possibly generating the scalp N18 potential. SIGNIFICANCE Our results shed light on the subcortical processing of the somatosensory input of different modalities.
Collapse
Affiliation(s)
- Angelo Insola
- Unità Operativa di Neurofisiopatologia, CTO, Rome, Italy
| | - Paolo Mazzone
- Unità Operativa di Neurochirurgia funzionale e stereotassica, CTO, Rome, Italy
| | - Eugenio Scarnati
- Dipartimento di Scienze Cliniche e Biotecnologiche Applicate, Università dell'Aquila, Italy
| | - Domenico Restuccia
- Istituto di Neurologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Massimiliano Valeriani
- Divisione di Neurologia, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy; Center for Sensory-Motor Interaction, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
4
|
Doshi PK, Das D. Deep Brain Stimulation for Parkinson's Disease: Currents Status and Emerging Concepts. Neurol India 2021; 68:S179-S186. [PMID: 33318348 DOI: 10.4103/0028-3886.302466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The clinical application of DBS has become manifold and there has been a tremendous growth in DBS technology in the last few decades making it safer and user friendly. The earlier concept of its delayed application in motor fluctuations of Parkinson's disease has been replaced by Class-I evidence of EARLY-STIM trial in 2013, leading to its FDA approval to be used in early-stage despite criticism. Various studies have provided evidence of beneficial effects of bilateral STN-DBS on both motor as well as nonmotor symptoms and different new targets such as the pedunculopontine nucleus, posterior subthalamic area or caudal zona incerta, centromedian-parafascicular complex, and substantia nigra pars reticulata have now become a new area of interest in addition to the subthalamic nucleus and globus pallidus internus for the alleviation of both motor and nonmotor symptoms of Parkinson's disease. New data has confirmed that the DBS is clinically as effective and safe in elderly patients as it is in younger ones. Technological advances like current steering, directional leads, and closed-loop DBS are directed towards reducing the stimulation-induced adverse effects and preservation of the battery life for a longer period. Results of the long-term efficacy of DBS on Parkinson's disease are now available. These have shown that as the motor benefit continues, the clinical progression of Parkinson's disease also continues. We plan to discuss all these in this paper.
Collapse
Affiliation(s)
- Paresh K Doshi
- Jaslok Hospital and Research Center, 15 Dr. G. Deshmukh Marg, Mumbai, Maharashtra, India
| | - Deepak Das
- Jaslok Hospital and Research Center, 15 Dr. G. Deshmukh Marg, Mumbai, Maharashtra, India
| |
Collapse
|
5
|
Garcia-Rill E. Neuroepigenetics of arousal: Gamma oscillations in the pedunculopontine nucleus. J Neurosci Res 2019; 97:1515-1520. [PMID: 30916810 PMCID: PMC6764922 DOI: 10.1002/jnr.24417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/06/2019] [Indexed: 01/20/2023]
Abstract
Four major discoveries on the function of the pedunculopontine nucleus (PPN) have significantly advanced our understanding of the role of arousal in neurodegenerative disorders. The first was the finding that stimulation of the PPN-induced controlled locomotion on a treadmill in decerebrate animals, the second was the revelation of electrical coupling in the PPN and other arousal and sleep-wake control regions, the third was the determination of intrinsic gamma band oscillations in PPN neurons, and the last was the discovery of gene transcription resulting from the manifestation of gamma activity in the PPN. These discoveries have led to novel therapies such as PPN deep brain stimulation (DBS) for Parkinson's disease (PD), identified the mechanism of action of the stimulant modafinil, determined the presence of separate mechanisms underlying gamma activity during waking versus REM sleep, and revealed the presence of gene transcription during the manifestation of gamma band oscillations. These discoveries set the stage for additional major advances in the treatment of a number of disorders.
Collapse
Affiliation(s)
- Edgar Garcia-Rill
- Center for Translational Neuroscience (CTN), University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
6
|
Virmani T, Urbano FJ, Bisagno V, Garcia-Rill E. The pedunculopontine nucleus: From posture and locomotion to neuroepigenetics. AIMS Neurosci 2019; 6:219-230. [PMID: 32341978 PMCID: PMC7179357 DOI: 10.3934/neuroscience.2019.4.219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 09/19/2019] [Indexed: 12/04/2022] Open
Abstract
In this review, we discuss first an example of one of the symptoms of PD, freezing of gait (FOG), then we will turn to the use of deep brain stimulation (DBS) of the pedunculopontine nucleus (PPN) to treat PD, and the original studies that led to identification of the PPN as one source of locomotor control and why stimulation frequency is critical, and then describe the intrinsic properties of PPN neurons that require beta/gamma stimulation in order to fully activate all types of PPN neurons. Finally, we will describe recent findings on the proteomic and molecular consequences of gamma band activity in PPN neurons, with emphasis on the potential neuroepigenetic sequelae. These considerations will provide essential information for the appropriate refining and testing of PPN DBS as a potential therapy for PD, as well as alternative options.
Collapse
Affiliation(s)
- T Virmani
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Slot 847, Little Rock, AR 72205, USA.,Department of Neurology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| | - F J Urbano
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Slot 847, Little Rock, AR 72205, USA.,Instituto Nacional de Investigaciones Farmacologicas, Argentina
| | - V Bisagno
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Slot 847, Little Rock, AR 72205, USA.,Universidad de Buenos Aires, Buenos Aires, Argentina
| | - E Garcia-Rill
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Slot 847, Little Rock, AR 72205, USA
| |
Collapse
|
7
|
Local and Relayed Effects of Deep Brain Stimulation of the Pedunculopontine Nucleus. Brain Sci 2019; 9:brainsci9030064. [PMID: 30889866 PMCID: PMC6468768 DOI: 10.3390/brainsci9030064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/18/2022] Open
Abstract
Our discovery of low-threshold stimulation-induced locomotion in the pedunculopontine nucleus (PPN) led to the clinical use of deep brain stimulation (DBS) for the treatment of disorders such as Parkinson's disease (PD) that manifest gait and postural disorders. Three additional major discoveries on the properties of PPN neurons have opened new areas of research for the treatment of motor and arousal disorders. The description of (a) electrical coupling, (b) intrinsic gamma oscillations, and (c) gene regulation in the PPN has identified a number of novel therapeutic targets and methods for the treatment of a number of neurological and psychiatric disorders. We first delve into the circuit, cellular, intracellular, and molecular organization of the PPN, and then consider the clinical results to date on PPN DBS. This comprehensive review will provide valuable information to explain the network effects of PPN DBS, point to new directions for treatment, and highlight a number of issues related to PPN DBS.
Collapse
|
8
|
Garcia-Rill E, Mahaffey S, Hyde JR, Urbano FJ. Bottom-up gamma maintenance in various disorders. Neurobiol Dis 2018; 128:31-39. [PMID: 29353013 DOI: 10.1016/j.nbd.2018.01.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/02/2018] [Accepted: 01/10/2018] [Indexed: 11/30/2022] Open
Abstract
Maintained gamma band activity is a key element of higher brain function, participating in perception, executive function, and memory. The pedunculopontine nucleus (PPN), as part of the reticular activating system (RAS), is a major source of the "bottom-up" flow of gamma activity to higher regions. However, interruption of gamma band activity is associated with a number of neurological and psychiatric disorders. This review will focus on the role of the PPN in activating higher regions to induce arousal and descending pathways to modulate posture and locomotion. As such, PPN deep brain stimulation (DBS) can not only help regulate arousal and stepping, but continuous application may help maintain necessary levels of gamma band activity for a host of other brain processes. We will explore the potential future applications of PPN DBS for a number of disorders that are characterized by disturbances in gamma band maintenance.
Collapse
Affiliation(s)
- E Garcia-Rill
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - S Mahaffey
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - F J Urbano
- IFIBYNE (CONICET-UBA), DFBMC, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
9
|
Deep Brain Stimulation in Parkinson's Disease: New and Emerging Targets for Refractory Motor and Nonmotor Symptoms. PARKINSONS DISEASE 2017; 2017:5124328. [PMID: 28761773 PMCID: PMC5518514 DOI: 10.1155/2017/5124328] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 05/12/2017] [Accepted: 06/06/2017] [Indexed: 12/30/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative condition characterized by bradykinesia, tremor, rigidity, and postural instability (PI), in addition to numerous nonmotor manifestations. Many pharmacological therapies now exist to successfully treat PD motor symptoms; however, as the disease progresses, it often becomes challenging to treat with medications alone. Deep brain stimulation (DBS) has become a crucial player in PD treatment, particularly for patients who have disabling motor complications from medical treatment. Well-established DBS targets include the subthalamic nucleus (STN), the globus pallidus pars interna (GPi), and to a lesser degree the ventral intermediate nucleus (VIM) of the thalamus. Studies of alternative DBS targets for PD are ongoing, the majority of which have shown some clinical benefit; however, more carefully designed and controlled studies are needed. In the present review, we discuss the role of these new and emerging DBS targets in treating refractory axial motor symptoms and other motor and nonmotor symptoms (NMS).
Collapse
|
10
|
Alho ATDL, Hamani C, Alho EJL, da Silva RE, Santos GAB, Neves RC, Carreira LL, Araújo CMM, Magalhães G, Coelho DB, Alegro MC, Martin MGM, Grinberg LT, Pasqualucci CA, Heinsen H, Fonoff ET, Amaro E. Magnetic resonance diffusion tensor imaging for the pedunculopontine nucleus: proof of concept and histological correlation. Brain Struct Funct 2017; 222:2547-2558. [PMID: 28283747 DOI: 10.1007/s00429-016-1356-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 12/19/2016] [Indexed: 12/18/2022]
Abstract
The pedunculopontine nucleus (PPN) has been proposed as target for deep brain stimulation (DBS) in patients with postural instability and gait disorders due to its involvement in muscle tonus adjustments and control of locomotion. However, it is a deep-seated brainstem nucleus without clear imaging or electrophysiological markers. Some studies suggested that diffusion tensor imaging (DTI) may help guiding electrode placement in the PPN by showing the surrounding fiber bundles, but none have provided a direct histological correlation. We investigated DTI fractional anisotropy (FA) maps from in vivo and in situ post-mortem magnetic resonance images (MRI) compared to histological evaluations for improving PPN targeting in humans. A post-mortem brain was scanned in a clinical 3T MR system in situ. Thereafter, the brain was processed with a special method ideally suited for cytoarchitectonic analyses. Also, nine volunteers had in vivo brain scanning using the same MRI protocol. Images from volunteers were compared to those obtained in the post-mortem study. FA values of the volunteers were obtained from PPN, inferior colliculus, cerebellar crossing fibers and medial lemniscus using histological data and atlas information. FA values in the PPN were significantly lower than in the surrounding white matter region and higher than in areas with predominantly gray matter. In Nissl-stained histologic sections, the PPN extended for more than 10 mm in the rostro-caudal axis being closely attached to the lateral parabrachial nucleus. Our DTI analyses and the spatial correlation with histological findings proposed a location for PPN that matched the position assigned to this nucleus in the literature. Coregistration of neuroimaging and cytoarchitectonic features can add value to help establishing functional architectonics of the PPN and facilitate neurosurgical targeting of this extended nucleus.
Collapse
Affiliation(s)
- A T D L Alho
- Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, Brazil.,Department of Radiology, Faculdade de Medicina da Universidade de São Paulo, Instituto de Radiologia, São Paulo, Brazil.,Grupo de Estudos em Envelhecimento Cerebral e LIM 22, Department of Pathology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - C Hamani
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Centre for Addiction and Mental Health, Toronto, Canada
| | - E J L Alho
- Department of Neurology Faculdade de Medicina da Universidade de São Paulo, Divisão de Neurocirurgia Funcional do, Instituto de Psiquiatria-HCFMUSP, São Paulo, Brazil
| | - R E da Silva
- Department of Radiology, Faculdade de Medicina da Universidade de São Paulo, Instituto de Radiologia, São Paulo, Brazil
| | - G A B Santos
- Department of Radiology, Faculdade de Medicina da Universidade de São Paulo, Instituto de Radiologia, São Paulo, Brazil
| | - R C Neves
- Grupo de Estudos em Envelhecimento Cerebral e LIM 22, Department of Pathology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - L L Carreira
- Department of Radiology, Faculdade de Medicina da Universidade de São Paulo, Instituto de Radiologia, São Paulo, Brazil
| | - C M M Araújo
- Department of Radiology, Faculdade de Medicina da Universidade de São Paulo, Instituto de Radiologia, São Paulo, Brazil.,Grupo de Estudos em Envelhecimento Cerebral e LIM 22, Department of Pathology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - G Magalhães
- Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, Brazil.,Department of Radiology, Faculdade de Medicina da Universidade de São Paulo, Instituto de Radiologia, São Paulo, Brazil.,Grupo de Estudos em Envelhecimento Cerebral e LIM 22, Department of Pathology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - D B Coelho
- Escola de Educação Física e Esporte da Universidade de São Paulo, São Paulo, Brazil
| | - M C Alegro
- Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, Brazil.,Department of Radiology, Faculdade de Medicina da Universidade de São Paulo, Instituto de Radiologia, São Paulo, Brazil.,Memory and Aging Center, Department of Neurology, University of California, San Francisco, USA
| | - M G M Martin
- Department of Radiology, Faculdade de Medicina da Universidade de São Paulo, Instituto de Radiologia, São Paulo, Brazil
| | - L T Grinberg
- Grupo de Estudos em Envelhecimento Cerebral e LIM 22, Department of Pathology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Department of Pathology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Memory and Aging Center, Department of Neurology, University of California, San Francisco, USA
| | - C A Pasqualucci
- Grupo de Estudos em Envelhecimento Cerebral e LIM 22, Department of Pathology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Department of Pathology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - H Heinsen
- Department of Radiology, Faculdade de Medicina da Universidade de São Paulo, Instituto de Radiologia, São Paulo, Brazil.,Grupo de Estudos em Envelhecimento Cerebral e LIM 22, Department of Pathology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Department of Psychiatry, Psychiatric Clinic, Julius-Maximilians-University Würzburg, Universitätsklinikum Würzburg, Würzburg, Germany
| | - E T Fonoff
- Department of Neurology Faculdade de Medicina da Universidade de São Paulo, Divisão de Neurocirurgia Funcional do, Instituto de Psiquiatria-HCFMUSP, São Paulo, Brazil.
| | - E Amaro
- Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, Brazil.,Department of Radiology, Faculdade de Medicina da Universidade de São Paulo, Instituto de Radiologia, São Paulo, Brazil
| |
Collapse
|
11
|
Takakusaki K, Takahashi M, Obara K, Chiba R. Neural substrates involved in the control of posture. Adv Robot 2016. [DOI: 10.1080/01691864.2016.1252690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Kaoru Takakusaki
- The Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Asahikawa, Japan
| | - Mirai Takahashi
- The Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Asahikawa, Japan
| | - Kazuhiro Obara
- The Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Asahikawa, Japan
| | - Ryosuke Chiba
- The Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
12
|
Wichmann T, DeLong MR. Deep Brain Stimulation for Movement Disorders of Basal Ganglia Origin: Restoring Function or Functionality? Neurotherapeutics 2016; 13:264-83. [PMID: 26956115 PMCID: PMC4824026 DOI: 10.1007/s13311-016-0426-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Deep brain stimulation (DBS) is highly effective for both hypo- and hyperkinetic movement disorders of basal ganglia origin. The clinical use of DBS is, in part, empiric, based on the experience with prior surgical ablative therapies for these disorders, and, in part, driven by scientific discoveries made decades ago. In this review, we consider anatomical and functional concepts of the basal ganglia relevant to our understanding of DBS mechanisms, as well as our current understanding of the pathophysiology of two of the most commonly DBS-treated conditions, Parkinson's disease and dystonia. Finally, we discuss the proposed mechanism(s) of action of DBS in restoring function in patients with movement disorders. The signs and symptoms of the various disorders appear to result from signature disordered activity in the basal ganglia output, which disrupts the activity in thalamocortical and brainstem networks. The available evidence suggests that the effects of DBS are strongly dependent on targeting sensorimotor portions of specific nodes of the basal ganglia-thalamocortical motor circuit, that is, the subthalamic nucleus and the internal segment of the globus pallidus. There is little evidence to suggest that DBS in patients with movement disorders restores normal basal ganglia functions (e.g., their role in movement or reinforcement learning). Instead, it appears that high-frequency DBS replaces the abnormal basal ganglia output with a more tolerable pattern, which helps to restore the functionality of downstream networks.
Collapse
Affiliation(s)
- Thomas Wichmann
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.
| | - Mahlon R DeLong
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
13
|
Gut NK, Winn P. The pedunculopontine tegmental nucleus-A functional hypothesis from the comparative literature. Mov Disord 2016; 31:615-24. [PMID: 26880095 PMCID: PMC4949639 DOI: 10.1002/mds.26556] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 12/22/2015] [Accepted: 12/28/2015] [Indexed: 12/21/2022] Open
Abstract
We present data from animal studies showing that the pedunculopontine tegmental nucleus-conserved through evolution, compartmentalized, and with a complex pattern of inputs and outputs-has functions that involve formation and updates of action-outcome associations, attention, and rapid decision making. This is in contrast to previous hypotheses about pedunculopontine function, which has served as a basis for clinical interest in the pedunculopontine in movement disorders. Current animal literature points to it being neither a specifically motor structure nor a master switch for sleep regulation. The pedunculopontine is connected to basal ganglia circuitry but also has primary sensory input across modalities and descending connections to pontomedullary, cerebellar, and spinal motor and autonomic control systems. Functional and anatomical studies in animals suggest strongly that, in addition to the pedunculopontine being an input and output station for the basal ganglia and key regulator of thalamic (and consequently cortical) activity, an additional major function is participation in the generation of actions on the basis of a first-pass analysis of incoming sensory data. Such a function-rapid decision making-has very high adaptive value for any vertebrate. We argue that in developing clinical strategies for treating basal ganglia disorders, it is necessary to take an account of the normal functions of the pedunculopontine. We believe that it is possible to use our hypothesis to explain why pedunculopontine deep brain stimulation used clinically has had variable outcomes in the treatment of parkinsonism motor symptoms and effects on cognitive processing. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Nadine K Gut
- Biozentrum, University of Basel, Basel, Switzerland
| | - Philip Winn
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
14
|
Mazzone P, Vilela Filho O, Viselli F, Insola A, Sposato S, Vitale F, Scarnati E. Our first decade of experience in deep brain stimulation of the brainstem: elucidating the mechanism of action of stimulation of the ventrolateral pontine tegmentum. J Neural Transm (Vienna) 2016; 123:751-767. [DOI: 10.1007/s00702-016-1518-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 01/28/2016] [Indexed: 12/19/2022]
|
15
|
Insola A, Padua L, Mazzone P, Valeriani M. Low- and high-frequency subcortical SEP amplitude reduction during pure passive movement. Clin Neurophysiol 2015; 126:2366-75. [DOI: 10.1016/j.clinph.2015.03.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 03/01/2015] [Accepted: 03/04/2015] [Indexed: 12/15/2022]
|
16
|
Garcia-Rill E, Luster B, D’Onofrio S, Mahaffey S, Bisagno V, Urbano FJ. Pedunculopontine arousal system physiology - Deep brain stimulation (DBS). Sleep Sci 2015; 8:153-61. [PMID: 26779322 PMCID: PMC4688589 DOI: 10.1016/j.slsci.2015.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/03/2015] [Accepted: 09/05/2015] [Indexed: 12/19/2022] Open
Abstract
This review describes the wake/sleep symptoms present in Parkinson׳s disease, and the role of the pedunculopontine nucleus in these symptoms. The physiology of PPN cells is important not only because it is a major element of the reticular activating system, but also because it is a novel target for deep brain stimulation in the treatment of gait and postural deficits in Parkinson׳s disease. A greater understanding of the physiology of the target nuclei within the brainstem and basal ganglia, amassed over the past decades, has enabled increasingly better patient outcomes from deep brain stimulation for movement disorders.
Collapse
Key Words
- Basal forebrain
- Calcium channels
- DBS, deep brain stimulation
- EEG, electroencephalogram
- Gamma band activity
- LC, locus coeruleus
- Lateral hypothalamus
- Orexin
- PD, Parkinson׳s disease
- PGO, ponto-geniculo-occipital
- PPN, pedunculopontine nucleus
- RAS, reticular activating system
- REM, rapid eye movement
- SN, substantia nigra
- STN, subthalamic nucleus
- SubCD, subcoeruleus nucleus dorsalis
- Tuberomammillary
Collapse
Affiliation(s)
- Edgar Garcia-Rill
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Brennon Luster
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Stasia D’Onofrio
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Susan Mahaffey
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Veronica Bisagno
- IFIBYNE-CONICET and ININFA-CONICET, University of Buenos Aires, Argentina
| | | |
Collapse
|
17
|
Takakusaki K, Chiba R, Nozu T, Okumura T. Brainstem control of locomotion and muscle tone with special reference to the role of the mesopontine tegmentum and medullary reticulospinal systems. J Neural Transm (Vienna) 2015; 123:695-729. [PMID: 26497023 PMCID: PMC4919383 DOI: 10.1007/s00702-015-1475-4] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/13/2015] [Indexed: 01/12/2023]
Abstract
The lateral part of the mesopontine tegmentum contains functionally important structures involved in the control of posture and gait. Specifically, the mesencephalic locomotor region, which may consist of the cuneiform nucleus and pedunculopontine tegmental nucleus (PPN), occupies the interest with respect to the pathophysiology of posture-gait disorders. The purpose of this article is to review the mechanisms involved in the control of postural muscle tone and locomotion by the mesopontine tegmentum and the pontomedullary reticulospinal system. To make interpretation and discussion more robust, the above issue is considered largely based on our findings in the experiments using decerebrate cat preparations in addition to the results in animal experimentations and clinical investigations in other laboratories. Our investigations revealed the presence of functional topographical organizations with respect to the regulation of postural muscle tone and locomotion in both the mesopontine tegmentum and the pontomedullary reticulospinal system. These organizations were modified by neurotransmitter systems, particularly the cholinergic PPN projection to the pontine reticular formation. Because efferents from the forebrain structures as well as the cerebellum converge to the mesencephalic and pontomedullary reticular formation, changes in these organizations may be involved in the appropriate regulation of posture-gait synergy depending on the behavioral context. On the other hand, abnormal signals from the higher motor centers may produce dysfunction of the mesencephalic-reticulospinal system. Here we highlight the significance of elucidating the mechanisms of the mesencephalic-reticulospinal control of posture and locomotion so that thorough understanding of the pathophysiological mechanisms of posture-gait disorders can be made.
Collapse
Affiliation(s)
- Kaoru Takakusaki
- Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Midorigaoka-Higashi 2-1, 1-1, Asahikawa, 078-8511, Japan.
| | - Ryosuke Chiba
- Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Midorigaoka-Higashi 2-1, 1-1, Asahikawa, 078-8511, Japan
| | - Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Asahikawa, Japan
| | - Toshikatsu Okumura
- Department of General Medicine, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
18
|
Garcia-Rill E, Hyde J, Kezunovic N, Urbano FJ, Petersen E. The physiology of the pedunculopontine nucleus: implications for deep brain stimulation. J Neural Transm (Vienna) 2015; 122:225-35. [PMID: 24880787 PMCID: PMC4484763 DOI: 10.1007/s00702-014-1243-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/09/2014] [Indexed: 01/07/2023]
Abstract
This brief review resolves a number of persistent conflicts regarding the location and characteristics of the mesencephalic locomotor region, which has in the past been described as not locomotion-specific and is more likely the pedunculopontine nucleus (PPN). The parameters of stimulation used to elicit changes in posture and locomotion we now know are ideally suited to match the intrinsic membrane properties of PPN neurons. The physiology of these cells is important not only because it is a major element of the reticular activating system, but also because it is a novel target for the treatment of gait and postural deficits in Parkinson's disease (PD). The discussion explains many of the effects reported following deep brain stimulation (DBS) of the PPN by different groups and provides guidelines for the determination of long-term assessment and effects of PPN DBS. A greater understanding of the physiology of the target nuclei within the brainstem and basal ganglia, amassed over the past decades, has enabled increasingly better patient outcomes from DBS for movement disorders. Despite these improvements, there remains a great opportunity for further understanding of the mechanisms through which DBS has its effects and for further development of appropriate technology to effect these treatments. We review the scientific basis for one of the newest targets, the PPN, in the treatment of PD and other movement disorders, and address the needs for further investigation.
Collapse
Affiliation(s)
- E Garcia-Rill
- Department of Neurobiology and Developmental Sciences, Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Slot 847, 4301 West Markham St, Little Rock, AR, 72205, USA,
| | | | | | | | | |
Collapse
|
19
|
Insola A, Padua L, Mazzone P, Scarnati E, Valeriani M. Low and high-frequency somatosensory evoked potentials recorded from the human pedunculopontine nucleus. Clin Neurophysiol 2014; 125:1859-69. [DOI: 10.1016/j.clinph.2013.12.112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 12/04/2013] [Accepted: 12/20/2013] [Indexed: 10/25/2022]
|
20
|
Mazzone P, Paoloni M, Mangone M, Santilli V, Insola A, Fini M, Scarnati E. Unilateral deep brain stimulation of the pedunculopontine tegmental nucleus in idiopathic Parkinson's disease: effects on gait initiation and performance. Gait Posture 2014; 40:357-62. [PMID: 24908195 DOI: 10.1016/j.gaitpost.2014.05.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 04/17/2014] [Accepted: 05/02/2014] [Indexed: 02/08/2023]
Abstract
The pedunculopontine tegmental nucleus (PPTg) is a component of the locomotor mesencephalic area. In recent years it has been considered a new surgical site for deep brain stimulation (DBS) in movement disorders. Here, using objective kinematic and spatio-temporal gait analysis, we report the impact of low frequency (40 Hz) unilateral PPTg DBS in ten patients suffering from idiopathic Parkinson's disease with drug-resistant gait and axial disabilities. Patients were studied for gait initiation (GI) and steady-state level walking (LW) under residual drug therapy. In the LW study, a straight walking task was employed. Patients were compared with healthy age-matched controls. The analysis revealed that GI, cadence, stride length and left pelvic tilt range of motion (ROM) improved under stimulation. The duration of the S1 and S2 sub-phases of the anticipatory postural adjustment phase of GI was not affected by stimulation, however a significant improvement was observed in the S1 sub-phase in both the backward shift of centre of pressure and peak velocity. Speed during the swing phase, step width, stance duration, right pelvic tilt ROM phase, right and left hip flexion-extension ROM, and right and left knee ROM were not modified. Overall, the results show that unilateral PPTg DBS may affect GI and specific spatio-temporal and kinematic parameters during unconstrained walking on a straight trajectory, thus providing further support to the importance of the PPTg in the modulation of gait in neurodegenerative disorders.
Collapse
Affiliation(s)
- P Mazzone
- Stereotactic and Functional Neurosurgery, CTO Hospital, ASL RMC, Rome, Italy.
| | - M Paoloni
- Biomechanics and Movement Analysis Laboratory, Physical Medicine and Rehabilitation, University of Rome La Sapienza, Italy
| | - M Mangone
- Biomechanics and Movement Analysis Laboratory, Physical Medicine and Rehabilitation, University of Rome La Sapienza, Italy
| | - V Santilli
- Biomechanics and Movement Analysis Laboratory, Physical Medicine and Rehabilitation, University of Rome La Sapienza, Italy
| | - A Insola
- Clinical Neurophysiology, CTO Hospital, ASL RMC, Rome, Italy
| | - M Fini
- IRCCS San Raffaele Pisana, Rome, Italy
| | - E Scarnati
- Department of Biotechnological and Applied Clinical Sciences (DISCAB),University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
21
|
Capozzo A, Vitale F, Mattei C, Mazzone P, Scarnati E. Continuous stimulation of the pedunculopontine tegmental nucleus at 40 Hz affects preparative and executive control in a delayed sensorimotor task and reduces rotational movements induced by apomorphine in the 6-OHDA parkinsonian rat. Behav Brain Res 2014; 271:333-42. [PMID: 24959863 DOI: 10.1016/j.bbr.2014.06.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/13/2014] [Accepted: 06/16/2014] [Indexed: 12/21/2022]
Abstract
The pedunculopontine tegmental nucleus (PPTg) relays basal ganglia signals to the thalamus, lower brainstem and spinal cord. Using the 6-hydroxydopamine (6-OHDA) rat model of parkinsonism, we investigated whether deep brain stimulation (DBS) of the PPTg (40 Hz, 60 μs, 200-400 μA) may influence the preparative and executive phases in a conditioned behavioural task, and the motor asymmetries induced by apomorphine. In the conditioned task, rats had to press two levers according to a fixed delay paradigm. The 6-OHDA lesion was placed in the right medial forebrain bundle, i.e. contralaterally to the preferred forepaw used by rats to press levers in the adopted task. The stimulating electrode was implanted in the right PPTg, i.e. contralateral to left side, which was expected to be most affected. The lesion significantly reduced correct responses from 63.4% to 16.6%. PPTg-DBS effects were episodic; however, when rats successfully performed in the task (18.9%), reaction time (468.8 ± 36.5 ms) was significantly increased (589.9 ± 45.9 ms), but not improved by PPTg-DBS (646.7 ± 33.8 ms). Movement time was significantly increased following the lesion (649.2 ± 42.6 ms vs. 810.9 ± 53.0 ms), but significantly reduced by PPTg-DBS (820.4 ± 39.4 ms) compared to sham PPTg-DBS (979.8 ± 47.6 ms). In a second group of lesioned rats, rotations induced by apomorphine were significantly reduced by PPTg-DBS compared to sham PPTg-DBS (12.2 ± 0.6 vs. 9.5 ± 0.4 mean turns/min). Thus, it appears that specific aspects of motor deficits in 6-OHDA-lesioned rats may be modulated by PPTg-DBS.
Collapse
Affiliation(s)
- Annamaria Capozzo
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, Via Vetoio, Coppito 2, I-67100 L'Aquila, Italy
| | - Flora Vitale
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, Via Vetoio, Coppito 2, I-67100 L'Aquila, Italy
| | - Claudia Mattei
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, Via Vetoio, Coppito 2, I-67100 L'Aquila, Italy
| | - Paolo Mazzone
- Unit of Functional Neurosurgery, CTO Alesini Hospital ASL Rome C, Via San Nemesio 21, 00145 Rome, Italy
| | - Eugenio Scarnati
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, Via Vetoio, Coppito 2, I-67100 L'Aquila, Italy.
| |
Collapse
|
22
|
Tattersall TL, Stratton PG, Coyne TJ, Cook R, Silberstein P, Silburn PA, Windels F, Sah P. Imagined gait modulates neuronal network dynamics in the human pedunculopontine nucleus. Nat Neurosci 2014; 17:449-54. [DOI: 10.1038/nn.3642] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 01/02/2014] [Indexed: 11/09/2022]
|
23
|
Abstract
The field of functional neurosurgery has developed a number of recent innovative neuromodulatory approaches to treat disease that remains resistant to the best medical therapy. These include novel surgical techniques to intervene in motor and cognitive sequelae of refractory epilepsy, neurodegenerative disease, and certain psychiatric conditions. To a large extent, much of the innovation in our field continues to be driven by a systems-level understanding of the impact of disease on the brain. For example, several groups have exploited findings from neuroimaging work to identify a number of new potential neuromodulatory targets for the treatment of refractory depression. Ongoing discoveries at the cellular and molecular level promise targeted gene or drug delivery aimed at curing disease. Neurosurgeons will certainly remain at the forefront of translating these strategies into practical clinical applications. Several randomized trials are now underway to assess the safety and efficacy of a number of new approaches, and we will continue to acquire better knowledge of optimal patient selection, identification of the most effective neuromodulatory targets, and recognition of adverse effects as these studies progress.
Collapse
|
24
|
Fournier-Gosselin MP, Lipsman N, Saint-Cyr JA, Hamani C, Lozano AM. Regional anatomy of the pedunculopontine nucleus: relevance for deep brain stimulation. Mov Disord 2013; 28:1330-6. [PMID: 23926071 DOI: 10.1002/mds.25620] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/18/2013] [Accepted: 07/01/2013] [Indexed: 12/18/2022] Open
Abstract
The pedunculopontine nucleus (PPN) is currently being investigated as a potential deep brain stimulation target to improve gait and posture in Parkinson's disease. This review examines the complex anatomy of the PPN region and suggests a functional mapping of the surrounding nuclei and fiber tracts that may serve as a guide to a more accurate placement of electrodes while avoiding potentially adverse effects. The relationships of the PPN were examined in different human brain atlases. Schematic representations of those structures in the vicinity of the PPN were generated and correlated with their potential stimulation effects. By providing a functional map and representative schematics of the PPN region, we hope to optimize the placement of deep brain stimulation electrodes, thereby maximizing safety and clinical efficacy.
Collapse
|
25
|
Mazzone P, Sposato S, Insola A, Scarnati E. The Clinical Effects of Deep Brain Stimulation of the Pedunculopontine Tegmental Nucleus in Movement Disorders May Not Be Related to the Anatomical Target, Leads Location, and Setup of Electrical Stimulation. Neurosurgery 2013; 73:894-906; discussion 905-6. [DOI: 10.1227/neu.0000000000000108] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
BACKGROUND:
The pedunculopontine tegmental nucleus (PPTg) is a novel target for deep brain stimulation (DBS) in movement disorders.
OBJECTIVE:
To clarify the relationships between the individual anatomic variations of the brainstem, the site in which the PPTg DBS is applied, and the clinical outcome in a relatively large number of patients affected by Parkinson disease or progressive supranuclear palsy.
METHODS:
Magnetic resonance images have been used to evaluate brainstem anatomy and the relationships between lead position and specific brainstem landmarks. All data were matched on atlas representations of the PPTg and were correlated with Unified Parkinson Disease Rating Scale III (UPDRS III), subitems 27 to 30 of UPDRS III and the Hoehn and Yahr evaluations.
RESULTS:
A high variance of brainstem parameters was evident, affecting the relationships between the position of the nucleus and lead contacts. According to the contacts giving the best clinical outcome, patients could be distinguished between those who required the use of 2 adjacent contacts and those who required stimulation through 2 nonadjacent contacts. Furthermore, in the former group the target coordinates were more lateral and deeper compared with the latter group.
CONCLUSION:
Individual PPTg-DBS planning is required to overcome the inconsistencies linked to the high variability in the brainstem anatomy of patients. The lack of correlations between lead position, contact setup, and clinical outcome indicate that the benefits of PPTg DBS may not be strictly linked to the site of stimulation within the PPTg area, and may not depend upon the neurons still surviving in this region in Parkinson disease or progressive supranuclear palsy.
Collapse
Affiliation(s)
- Paolo Mazzone
- Stereotactic and Functional Neurosurgery, CTO Hospital, ASL RMC, Rome, Italy
| | | | - Angelo Insola
- Neurophysiopathology, CTO Hospital, ASL RMC, Rome, Italy
| | - Eugenio Scarnati
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
26
|
Stefani A, Peppe A, Galati S, Bassi MS, D'Angelo V, Pierantozzi M. The serendipity case of the pedunculopontine nucleus low-frequency brain stimulation: chasing a gait response, finding sleep, and cognition improvement. Front Neurol 2013; 4:68. [PMID: 23761781 PMCID: PMC3672779 DOI: 10.3389/fneur.2013.00068] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 05/22/2013] [Indexed: 11/22/2022] Open
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an efficacious therapy for Parkinson’s disease (PD) but its effects on non-motor facets may be detrimental. The low-frequency stimulation (LFS) of the pedunculopontine nucleus (PPN or the nucleus tegmenti pedunculopontini – PPTg-) opened new perspectives. In our hands, PPTg-LFS revealed a modest influence on gait but increased sleep quality and degree of attentiveness. At odds with potential adverse events following STN-DBS, executive functions, under PPTg-ON, ameliorated. A recent study comparing both targets found that only PPTg-LFS improved night-time sleep and daytime sleepiness. Chances are that different neurosurgical groups influence either the PPN sub-portion identified as pars dissipata (more interconnected with GPi/STN) or the caudal PPN region known as pars compacta, preferentially targeting intralaminar and associative nucleus of the thalamus. Yet, the wide electrical field delivered affects a plethora of en passant circuits, and a fine distinction on the specific pathways involved is elusive. This review explores our angle of vision, by which PPTg-LFS activates cholinergic and glutamatergic ascending fibers, influencing non-motor behaviors.
Collapse
Affiliation(s)
- Alessandro Stefani
- Department of Neuroscience, "Tor Vergata" University , Rome , Italy ; IRCCS, Fondazione Santa Lucia , Rome , Italy
| | | | | | | | | | | |
Collapse
|
27
|
Zitella LM, Mohsenian K, Pahwa M, Gloeckner C, Johnson MD. Computational modeling of pedunculopontine nucleus deep brain stimulation. J Neural Eng 2013; 10:045005. [PMID: 23723145 DOI: 10.1088/1741-2560/10/4/045005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Deep brain stimulation (DBS) near the pedunculopontine nucleus (PPN) has been posited to improve medication-intractable gait and balance problems in patients with Parkinson's disease. However, clinical studies evaluating this DBS target have not demonstrated consistent therapeutic effects, with several studies reporting the emergence of paresthesia and oculomotor side effects. The spatial and pathway-specific extent to which brainstem regions are modulated during PPN-DBS is not well understood. APPROACH Here, we describe two computational models that estimate the direct effects of DBS in the PPN region for human and translational non-human primate (NHP) studies. The three-dimensional models were constructed from segmented histological images from each species, multi-compartment neuron models and inhomogeneous finite element models of the voltage distribution in the brainstem during DBS. MAIN RESULTS The computational models predicted that: (1) the majority of PPN neurons are activated with -3 V monopolar cathodic stimulation; (2) surgical targeting errors of as little as 1 mm in both species decrement activation selectivity; (3) specifically, monopolar stimulation in caudal, medial, or anterior PPN activates a significant proportion of the superior cerebellar peduncle (up to 60% in the human model and 90% in the NHP model at -3 V); (4) monopolar stimulation in rostral, lateral or anterior PPN activates a large percentage of medial lemniscus fibers (up to 33% in the human model and 40% in the NHP model at -3 V) and (5) the current clinical cylindrical electrode design is suboptimal for isolating the modulatory effects to PPN neurons. SIGNIFICANCE We show that a DBS lead design with radially-segmented electrodes may yield improved functional outcome for PPN-DBS.
Collapse
Affiliation(s)
- Laura M Zitella
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | | | | | | | | |
Collapse
|
28
|
Peppe A, Pierantozzi M, Baiamonte V, Moschella V, Caltagirone C, Stanzione P, Stefani A. Deep brain stimulation of pedunculopontine tegmental nucleus: role in sleep modulation in advanced Parkinson disease patients: one-year follow-up. Sleep 2012. [PMID: 23204606 DOI: 10.5665/sleep.2234] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVE Sleep disorders are frequent non-motor symptoms in Parkinson disease (PD), probably due to multifactorial pathogeneses including disease progression, dopaminergic drugs, or concomitant illness. In recent years, the pedunculopontine tegmental (PPTg) nucleus has been considered a surgical target for deep brain stimulation (DBS) in advanced PD patients. As it is involved in controlling the sleep-wake cycle, we investigated the long-lasting effects of PPTg-DBS on the sleep of five PD patients implanted in both the PPTg and the subthalamic nucleus (STN) by rating two subjective clinical scales for sleep: the Parkinson's Disease Sleep Scale (PDSS), and the Epworth Sleepiness Scale (ESS). STUDY DESIGN Sleep scales were administered a week before surgery (T0), three months after DBS (T1), and one year later (T2). In this study, STN-DBS was kept constantly in ON, and three different patterns of PPTg-DBS were investigated: STN-ON (PPTg switched off); PPTg-ON (PPTg stimulated 24 h/day); PPTg-cycle (PPTg stimulated only at night). RESULTS In post-surgery follow-up, PD patients reported a marked improvement of sleep quality in all DBS conditions. In particular, stimulation of the PPTg nucleus produced not only a remarkable long-term improvement of nighttime sleep, but unlike STN-DBS, also produced significant amelioration of daytime sleepiness. CONCLUSION Our study suggests that PPTg-DBS plays an important role in reorganizing regular sleep in PD patients.
Collapse
|
29
|
Mazzone P, Padua L, Falisi G, Insola A, Florio TM, Scarnati E. Unilateral deep brain stimulation of the pedunculopontine tegmental nucleus improves oromotor movements in Parkinson’s disease. Brain Stimul 2012; 5:634-41. [DOI: 10.1016/j.brs.2012.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 11/25/2011] [Accepted: 01/04/2012] [Indexed: 10/28/2022] Open
|
30
|
Abstract
The mesencephalic locomotor region (MLR), which includes the pedunculopontine nucleus (PPN) and the cuneiform nucleus (CN), has been recently identified as a key structure for locomotion and gait control in mammals. However, the function and the precise anatomy of the MLR remain unclear in humans. To study the lateral mesencephalus, we used fMRI in 15 right-handed healthy volunteers performing two tasks: imagine walking in a hallway and imagine an object moving along the same hallway. Both tasks were performed at two different speeds: normal and 30% faster. We identified two distinct networks of cortical activation: one involving motor/premotor cortices and the cerebellum for the walking task and the other involving posterior parietal and dorsolateral prefrontal cortices for the object moving task. In the lateral mesencephalus, we found that two different but anatomically connected parts of the MLR were activated during the fast condition of each task. The CN and the dorsal part of the PPN were activated during the fast imaginary walking task, whereas the ventral part of the PPN and the ventral part of the reticular formation were activated while subjects were imagining the object moving fast. Our data suggest that the lateral mesencephalus participates in different aspects of gait in humans, with the CN and dorsal PPN controlling motor aspects of locomotion and the ventral PPN being involved in integrating sensory information.
Collapse
|
31
|
Mazzone P, Insola A, Valeriani M, Caliandro P, Sposato S, Scarnati E. Uncertainty, misunderstanding and the pedunculopontine nucleus: the exhumation of an already buried dispute. Acta Neurochir (Wien) 2012; 154:1527-9; author reply 1531-3. [PMID: 22588336 DOI: 10.1007/s00701-012-1364-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 04/18/2012] [Indexed: 11/28/2022]
|
32
|
The surgical anatomy of the pedunculopontine nucleus cannot be disputed, buried or exhumed. Acta Neurochir (Wien) 2012. [DOI: 10.1007/s00701-012-1375-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Aviles-Olmos I, Foltynie T, Panicker J, Cowie D, Limousin P, Hariz M, Fowler CJ, Zrinzo L. Uncertainty, misunderstanding and the pedunculopontine nucleus. Acta Neurochir (Wien) 2012. [DOI: 10.1007/s00701-012-1315-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
34
|
Mazzone P, Sposato S, Insola A, Scarnati E. A commentary on the lead positioning for deep brain stimulation in the pedunculopontine tegmental nucleus in a patient affected by multiple system atrophy. Stereotact Funct Neurosurg 2012; 90:130-3. [PMID: 22398838 DOI: 10.1159/000334495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 10/17/2011] [Indexed: 11/19/2022]
|
35
|
Sankar T, Tierney TS, Hamani C. Novel applications of deep brain stimulation. Surg Neurol Int 2012; 3:S26-33. [PMID: 22826807 PMCID: PMC3400483 DOI: 10.4103/2152-7806.91607] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 12/20/2011] [Indexed: 11/11/2022] Open
Abstract
The success of deep brain stimulation (DBS) surgery in treating medically refractory symptoms of some movement disorders has inspired further investigation into a wide variety of other treatment-resistant conditions. These range from disorders of gait, mood, and memory to problems as diverse as obesity, consciousness, and addiction. We review the emerging indications, rationale, and outcomes for some of the most promising new applications of DBS in the treatment of postural instability associated with Parkinson's disease, depression, obsessive–compulsive disorder, obesity, substance abuse, epilepsy, Alzheimer′s-type dementia, and traumatic brain injury. These studies reveal some of the excitement in a field at the edge of a rapidly expanding frontier. Much work still remains to be done on basic mechanism of DBS, optimal target and patient selection, and long-term durability of this technology in treating new indications.
Collapse
Affiliation(s)
- Tejas Sankar
- Department of Neurosurgery, Toronto Western Hospital, Toronto, Ontario, Canada
| | | | | |
Collapse
|
36
|
Insola A, Valeriani M, Mazzone P. Targeting the Pedunculopontine Nucleus. Oper Neurosurg (Hagerstown) 2012; 71:96-103. [DOI: 10.1227/neu.0b013e318249c726] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
BACKGROUND:
Pedunculopontine tegmental nucleus (PPTg) deep brain stimulation (DBS) has been used in patients with Parkinson disease.
OBJECTIVE:
To verify the position of the DBS lead within the pons during PPTg targeting.
METHODS:
In 10 Parkinson disease patients undergoing electrode implantation in the PPTg, somatosensory evoked potentials were recorded after median nerve stimulation from the 4 DBS electrode contacts and from 2 scalp leads placed in the frontal and parietal regions.
RESULTS:
The DBS electrode recorded a P16 potential (latency at contact 0, 16.33 ± 0.76 ms). There was a P16 latency shift of 0.18 ± 0.07 ms from contact 0 (lower) to contact 3 (upper). The scalp electrodes recorded the P14 far-field response (latency, 15.44 ± 0.63 ms) and the cortical N20 potential (latency, 21.58 ± 1.42 ms). The P16 potentials recorded by the intracranial electrode contacts are generated by the volley traveling along the medial lemniscus, whereas the scalp P14 potential represents a far-field response generated at the Obex level. Considering that the distance between the electrode contacts 0 and 3 is 6 mm, the distance of the electrode contact 0 from the Obex (ΔObex) was calculated by the equation: ΔObex = 6 × Δlatency P14- PPTg0/Δlatency PPTg0-PPTg3. The Obex-to-brainstem electrode distance obtained by the neurophysiological method confirmed that the electrode was located within the pons in all patients. Moreover, this distance was very similar to that issued from the individual brain magnetic resonance imaging.
CONCLUSION:
Somatosensory evoked potentials may be a helpful tool for calculating the macroelectrode position within the pons during PPTg targeting.
Collapse
Affiliation(s)
- Angelo Insola
- Unità Operativa di Neurofisiopatologia, CTO, Rome, Italy
| | - Massimiliano Valeriani
- Divisione di Neurologia, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
- Center for Sensory-Motor Interaction, Aalborg University, Aalborg, Denmark
| | - Paolo Mazzone
- Unità Operativa di Neurochirurgia Funzionale e Stereotassica, CTO, Rome, Italy
| |
Collapse
|
37
|
Smith Y, Wichmann T, Factor SA, DeLong MR. Parkinson's disease therapeutics: new developments and challenges since the introduction of levodopa. Neuropsychopharmacology 2012; 37:213-46. [PMID: 21956442 PMCID: PMC3238085 DOI: 10.1038/npp.2011.212] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/28/2011] [Accepted: 07/29/2011] [Indexed: 12/13/2022]
Abstract
The demonstration that dopamine loss is the key pathological feature of Parkinson's disease (PD), and the subsequent introduction of levodopa have revolutionalized the field of PD therapeutics. This review will discuss the significant progress that has been made in the development of new pharmacological and surgical tools to treat PD motor symptoms since this major breakthrough in the 1960s. However, we will also highlight some of the challenges the field of PD therapeutics has been struggling with during the past decades. The lack of neuroprotective therapies and the limited treatment strategies for the nonmotor symptoms of the disease (ie, cognitive impairments, autonomic dysfunctions, psychiatric disorders, etc.) are among the most pressing issues to be addressed in the years to come. It appears that the combination of early PD nonmotor symptoms with imaging of the nigrostriatal dopaminergic system offers a promising path toward the identification of PD biomarkers, which, once characterized, will set the stage for efficient use of neuroprotective agents that could slow down and alter the course of the disease.
Collapse
Affiliation(s)
- Yoland Smith
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
38
|
Mazzone P, Scarnati E, Garcia-Rill E. Commentary: the pedunculopontine nucleus: clinical experience, basic questions and future directions. J Neural Transm (Vienna) 2011; 118:1391-6. [PMID: 21188437 PMCID: PMC3654381 DOI: 10.1007/s00702-010-0530-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 11/03/2010] [Indexed: 12/24/2022]
Abstract
This issue is dedicated to a potential new target for the treatment of movement disorders, the pedunculopontine tegmental nucleus (PPTg), or, more simply, the pedunculopontine nucleus, that some authors abbreviate as PPN. We provide an overview of the field as an introduction to the general reader, beginning with the clinical experience to date of Mazzone and co-workers in Rome, some basic questions that need to be addressed, and potential future directions required in order to ensure that the potential benefits of this work are realized.
Collapse
Affiliation(s)
- P. Mazzone
- Functional and Stereotactic Neurosurgery, CTO Hospital ASL Roma C, Via San Nemesio 21, 00145 Rome, Italy
| | - E. Scarnati
- Department of Biomedical Sciences and Technologies (STB), University of L’Aquila, Via Vetoio Coppito 2, 67100 L’Aquila, Italy
| | - E. Garcia-Rill
- Center for Translational Neuroscience, Department of Neurobiology & Developmental Sciences College of Medicine University of Arkansas for Medical Sciences, 4301 West Markham St. Little Rock, AR 72205, USA
| |
Collapse
|
39
|
Garcia-Rill E, Simon C, Smith K, Kezunovic N, Hyde J. The pedunculopontine tegmental nucleus: from basic neuroscience to neurosurgical applications: arousal from slices to humans: implications for DBS. J Neural Transm (Vienna) 2011; 118:1397-407. [PMID: 20936418 PMCID: PMC3084344 DOI: 10.1007/s00702-010-0500-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 09/24/2010] [Indexed: 12/23/2022]
Abstract
One element of the reticular activating system (RAS) is the pedunculopontine nucleus (PPN), which projects to the thalamus to trigger thalamocortical rhythms and the brainstem to modulate muscle tone and locomotion. The PPN is a posterior midbrain site known to induce locomotion in decerebrate animals when activated at 40-60 Hz, and has become a target for DBS in disorders involving gait deficits. We developed a research program using brainstem slices containing the PPN to study the cellular and molecular organization of this region. We showed that PPN neurons preferentially fire at gamma band frequency (30-60 Hz) when maximally activated, accounting for the effects of electrical stimulation. In addition, we developed the P13 midlatency auditory evoked potential, which is generated by PPN outputs, in freely moving rats. This allows the study of PPN cellular and molecular mechanisms in the whole animal. We also study the P50 midlatency auditory evoked potential, which is the human equivalent of the rodent P13 potential, allowing us to study PPN-related processes detected in vitro, confirmed in the whole animal, and tested in humans. Previous findings on the P50 potential in PD suggest that PPN output in this disorder is overactive. This translational research program led to the discovery of a novel mechanism of sleep-wake control based on electrical coupling, pointing the way to a number of new clinical applications in the development of novel stimulants (e.g., modafinil) and anesthetics. In addition, it provides methods for monitoring therapeutic efficacy of DBS in humans and animal models.
Collapse
Affiliation(s)
- Edgar Garcia-Rill
- Department of Neurobiology and Developmental Science, Center For Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | | | | | | | |
Collapse
|
40
|
Zrinzo L, Zrinzo LV, Massey LA, Thornton J, Parkes HG, White M, Yousry TA, Strand C, Revesz T, Limousin P, Hariz MI, Holton JL. Targeting of the pedunculopontine nucleus by an MRI-guided approach: a cadaver study. J Neural Transm (Vienna) 2011; 118:1487-95. [PMID: 21484277 DOI: 10.1007/s00702-011-0639-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 03/22/2011] [Indexed: 10/18/2022]
Abstract
Laboratory evidence suggests that the pedunculopontine nucleus (PPN) plays a central role in the initiation and maintenance of gait. Translational research has led to reports on deep brain stimulation (DBS) of the rostral brainstem in parkinsonian patients. However, initial clinical results appear to be rather variable. Possible factors include patient selection and the wide variability in anatomical location of implanted electrodes. Clinical studies on PPN DBS efficacy would, therefore, benefit from an accurate and reproducible method of stereotactic localization of the nucleus. The present study evaluates the anatomical accuracy of a specific protocol for MRI-guided stereotactic targeting of the PPN in a human cadaver. Imaging at 1.5 and 9.4 T confirmed electrode location in the intended region as defined anatomically by the surrounding fiber tracts. The spatial relations of each electrode track to the nucleus were explored by subsequent histological examination. This confirmed that the neuropil surrounding each electrode track contained scattered large neurons morphologically consistent with those of the subnucleus dissipatus and compactus of the PPN. The results support the accuracy of the described specific MR imaging protocol.
Collapse
Affiliation(s)
- Ludvic Zrinzo
- Unit of Functional Neurosurgery, Box 146, Institute of Neurology and National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Khan S, Mooney L, Plaha P, Javed S, White P, Whone AL, Gill SS. Outcomes from stimulation of the caudal zona incerta and pedunculopontine nucleus in patients with Parkinson's disease. Br J Neurosurg 2011; 25:273-80. [PMID: 21344974 DOI: 10.3109/02688697.2010.544790] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
INTRODUCTION Axial symptoms including postural instability, falls and failure of gait initiation are some of the most disabling motor symptoms of Parkinson's disease (PD). We performed bilateral deep brain stimulation (DBS) of the pedunculopontine nucleus (PPN) in combination with the caudal zona incerta (cZi) in order to determine their efficacy in alleviating these symptoms. METHODS Seven patients with predominant axial symptoms in both the 'on' and 'off' medication states underwent bilateral cZi and PPN DBS. Motor outcomes were assessed using the motor component of the Unified Parkinson's Disease Rating Scale (UPDRS 3) and a composite axial subscore was derived from items 27, 28, 29 and 30 (arising from chair, posture, gait and postural stability). Quality of life was measured using the PDQ39. Comparisons were made between scores obtained at baseline and those at a mean follow-up of 12 months. RESULTS In both the off and on medication states, a statistically significant improvement in the UPDRS part 3 score was achieved by stimulation of the PPN, cZi and both in combination. In the off medication state, our composite axial subscore of the UPDRS part 3 improved with stimulation of the PPN, cZi and both in combination. The composite axial subscore, in the 'on' medication state, however, only showed a statistically significant improvement when a combination of cZi and PPN stimulation was used. CONCLUSIONS This study provides evidence that a combination of PPN and cZi stimulation can achieve a significant improvement in the hitherto untreatable 'on' medication axial symptoms of PD.
Collapse
Affiliation(s)
- Sadaquate Khan
- Department of Neurosurgery, Institute of Neurosciences, Frenchay Hospital, Bristol, UK
| | | | | | | | | | | | | |
Collapse
|
42
|
Mazzone P, Sposato S, Insola A, Scarnati E. The deep brain stimulation of the pedunculopontine tegmental nucleus: towards a new stereotactic neurosurgery. J Neural Transm (Vienna) 2011; 118:1431-51. [DOI: 10.1007/s00702-011-0593-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 01/24/2011] [Indexed: 10/18/2022]
|
43
|
Tierney TS, Sankar T, Lozano AM. Deep brain stimulation emerging indications. PROGRESS IN BRAIN RESEARCH 2011; 194:83-95. [PMID: 21867796 DOI: 10.1016/b978-0-444-53815-4.00015-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
There are a number of emerging surgical indications for deep brain stimulation. We have shown that modulation of activity within motor, mood, and cognitive circuits has beneficial effects in patients with Parkinson's disease, treatment-resistant depression, and perhaps Alzheimer's type dementia. We review the rationale, safety, and efficacy for each of these indications, focusing on disease mechanisms and relevant data that are necessary to document therapeutic value in each case. The review closes with some thoughts on possible future directions for deep brain stimulation. It is likely that applications for deep brain stimulation will continue to expand as accumulating data establish its safety and efficacy profile in these and other conditions.
Collapse
Affiliation(s)
- Travis S Tierney
- Division of Neurosurgery, Toronto Western Hospital, Toronto, Ontario, Canada
| | | | | |
Collapse
|
44
|
Ceravolo R, Brusa L, Galati S, Volterrani D, Peppe A, Siciliano G, Pierantozzi M, Moschella V, Bonuccelli U, Stanzione P, Stefani A. Low frequency stimulation of the nucleus tegmenti pedunculopontini increases cortical metabolism in Parkinsonian patients. Eur J Neurol 2010; 18:842-9. [DOI: 10.1111/j.1468-1331.2010.03254.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Stefani A, Galati S, Brusa L, Pierantozzi M, Peppe A, Stanzione P. Pathological gambling from dopamine agonist and deep brain stimulation of the nucleus tegmenti pedunculopontine. BMJ Case Rep 2010; 2010:2010/nov17_1/bcr0220102774. [PMID: 22798481 DOI: 10.1136/bcr.02.2010.2774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
In patients with Parkinson's disease, aberrant or excessive dopaminergic stimulation is commonly indicated as the trigger factor in unmasking impulse control disorders (ICDs) such as pathological gambling. We had the opportunity to follow a patient who experienced Parkinson's disease 7 years ago when he was using pramipexole and again, recently, when he was treated with levodopa (L-dopa) and low frequency stimulation of the nucleus of the pedunculopontine tegmentus (PPTg) but no dopamine agonists. The same patient had shown, when studied with fluorodeoxyglucose-positron emission tomography in the condition PPTg-ON, a peculiar increased activity in the left ventral striatum. This case report confirms that, in a predisposed personality, ICD may arise from the perturbation of endogenous pathways, which connect the brainstem to the basal ganglia.
Collapse
|
46
|
Peppe A, Pierantozzi M, Chiavalon C, Marchetti F, Caltagirone C, Musicco M, Stanzione P, Stefani A. Deep brain stimulation of the pedunculopontine tegmentum and subthalamic nucleus: effects on gait in Parkinson's disease. Gait Posture 2010; 32:512-8. [PMID: 20727761 DOI: 10.1016/j.gaitpost.2010.07.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 07/14/2010] [Accepted: 07/16/2010] [Indexed: 02/02/2023]
Abstract
OBJECTIVE This study examines the effects of subthalamic nucleus (STN) deep brain stimulation (DBS) and pedunculopontine tegmentum (PPTg) DBS in advanced Parkinson's disease using gait analysis. METHODS Five people underwent bilateral DBS in both the STN and PPTg. Gait analysis was performed one year after neurosurgery using an optoelectronic system. The effects of DBS (STN, PPTg and STN+PPTg) were studied in two clinical conditions: without (Off) and during (On) antiparkinsonian therapy. RESULTS PPTg and STN DBS were associated with changes in spatio-temporal and kinematics variables. CONCLUSIONS Although experimental data cannot be generalized widely due to the small sample, PPTg DBS appears to affect the neuronal circuits subserving gait.
Collapse
Affiliation(s)
- A Peppe
- IRCCS, Santa Lucia Foundation, Via Ardeatina 309, 00179 Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Rauch F, Schwabe K, Krauss JK. Effect of deep brain stimulation in the pedunculopontine nucleus on motor function in the rat 6-hydroxydopamine Parkinson model. Behav Brain Res 2010; 210:46-53. [DOI: 10.1016/j.bbr.2010.02.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2009] [Revised: 01/27/2010] [Accepted: 02/01/2010] [Indexed: 10/19/2022]
|
48
|
Stefani A, Pierantozzi M, Ceravolo R, Brusa L, Galati S, Stanzione P. Deep brain stimulation of pedunculopontine tegmental nucleus (PPTg) promotes cognitive and metabolic changes: a target-specific effect or response to a low-frequency pattern of stimulation? Clin EEG Neurosci 2010; 41:82-6. [PMID: 20521490 DOI: 10.1177/155005941004100207] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Deep brain stimulation (DBS) is a reliable treatment for advanced Parkinson's disease (PD) patients, but a possible risk of worsening cognitive functions, although modest, may postpone or halt DBS clinical indication. In a small cohort of PD patients we have pioneered the simultaneous implantation of both the subthalamic nucleus (STN) and the pedunculopontine tegmental nucleus (PPTg). Here we describe the cognitive test performance and the corresponding cortical metabolic activity, as assessed through 18-fluorodeoxyglucose (FDG)-positron emission tomography (PET), of these six PD patients tested in PPTg-ON vs- PPTg-OFF condition. PPTg-ON condition (at low frequency, 25 Hz) induced better performance in tests exploring both executive and attentive domains, which were coupled with an increased glucose utilization in prefrontal and frontal bilateral cortical areas, including both lateral (i.e., BA9) and more antero-medial cortices (BA 25-32). Moreover, during PPTg-ON, a surprising increase of FDG consumption was also observed in the left ventral striatum. These data are consistent with the hypothesis of a positive effect of 25 Hz PPTg-DBS on PD patients' cognitive profile, probably due to a facilitatory effect exerted by PPTg on both associative and limbic pathways.
Collapse
Affiliation(s)
- A Stefani
- Dept. Neuroscience, University Tor Vergata, Rome, Italy
| | | | | | | | | | | |
Collapse
|
49
|
Scarnati E. The deep brain stimulation of the pedunculopontine tegmental nucleus: The (un)certainty of the stimulating site. Parkinsonism Relat Disord 2010; 16:148; author reply 149. [DOI: 10.1016/j.parkreldis.2009.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2009] [Revised: 08/05/2009] [Accepted: 08/10/2009] [Indexed: 10/20/2022]
|
50
|
Costa A. Effects of deep brain stimulation of the pedunculopontine area on working memory tasks in patients with Parkinson's. Parkinsonism Relat Disord 2010. [DOI: 10.1016/j.parkreldis.2009.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|