1
|
Dutczak R, Pietrucha-Dutczak M. Effects of Selected Antioxidants on Electroretinography in Rodent Diabetic Retinopathy. Antioxidants (Basel) 2024; 14:21. [PMID: 39857355 PMCID: PMC11762402 DOI: 10.3390/antiox14010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Electroretinography (ERG) is a non-invasive technique for evaluating the retinal function in various ocular diseases. Its results are useful for diagnosing ocular disorders and assessing disease progression or treatment effectiveness. Since numerous studies are based on animal models, validating the ERG results from animals is pivotal. The first part of this paper presents basic information on the types of ERG tests used on rodents, and the second part describes the recorded functional changes in rodents' retinas when various antioxidant treatments for diabetic retinopathy were used. Our study showed that among the tests for diabetic retinopathy diagnosis in rodents, full-field ERG is accurate and the most commonly used, and pattern ERG and the photopic negative response of the flash ERG tests are rarely chosen. Furthermore, antioxidants generally protect retinas from functional losses. Their beneficial influence is expressed in the preserved amplitudes of the a- and b-waves and the oscillatory potentials. However, prolonging the drug exposure showed that the antioxidants could delay the onset of adverse changes but did not stop them. Future studies should concentrate on how long-term antioxidant supplementation affects the retinal function.
Collapse
Affiliation(s)
| | - Marita Pietrucha-Dutczak
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland;
| |
Collapse
|
2
|
García-Ayuso D, Pierdomenico JD, Martínez-Vacas A, Vidal-Sanz M, Picaud S, Villegas-Pérez MP. Taurine: a promising nutraceutic in the prevention of retinal degeneration. Neural Regen Res 2024; 19:606-610. [PMID: 37721291 PMCID: PMC10581579 DOI: 10.4103/1673-5374.380820] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/13/2023] [Accepted: 05/27/2023] [Indexed: 09/19/2023] Open
Abstract
Taurine is considered a non-essential amino acid because it is synthesized by most mammals. However, dietary intake of taurine may be necessary to achieve the physiological levels required for the development, maintenance, and function of certain tissues. Taurine may be especially important for the retina. The concentration of taurine in the retina is higher than that in any other tissue in the body and taurine deficiency causes retinal oxidative stress, apoptosis, and degeneration of photoreceptors and retinal ganglion cells. Low plasma taurine levels may also underlie retinal degeneration in humans and therefore, taurine administration could exert retinal neuroprotective effects. Taurine has antioxidant, anti-apoptotic, immunomodulatory, and calcium homeostasis-regulatory properties. This review summarizes the role of taurine in retinal health and disease, where it appears that taurine may be a promising nutraceutical.
Collapse
Affiliation(s)
- Diego García-Ayuso
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, Murcia, España
| | - Johnny Di Pierdomenico
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, Murcia, España
| | - Ana Martínez-Vacas
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, Murcia, España
| | - Manuel Vidal-Sanz
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, Murcia, España
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - María P. Villegas-Pérez
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, Murcia, España
| |
Collapse
|
3
|
Duan H, Song W, Guo J, Yan W. Taurine: A Source and Application for the Relief of Visual Fatigue. Nutrients 2023; 15:nu15081843. [PMID: 37111062 PMCID: PMC10142897 DOI: 10.3390/nu15081843] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/03/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
According to reports, supplementation with appropriate doses of taurine may help to reduce visual fatigue. Presently, some progress has been made in research related to taurine in eye health, but the lack of systematic summaries has led to the neglect of its application in the relief of visual fatigue. This paper, therefore, provides a systematic review of the sources of taurine, including the endogenous metabolic and exogenous dietary pathways, as well as a detailed review of the distribution and production of exogenous taurine. The physiological mechanisms underlying the production of visual fatigue are summarized and the research progress of taurine in relieving visual fatigue is reviewed, including the safety of consumption and the mechanism of action in relieving visual fatigue, in order to provide some reference basis and inspiration for the development and application of taurine in functional foods for relieving visual fatigue.
Collapse
Affiliation(s)
- Hao Duan
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
| | - Wei Song
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
| | - Jinhong Guo
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
| |
Collapse
|
4
|
Wu Y, Zou H. Research Progress on Mitochondrial Dysfunction in Diabetic Retinopathy. Antioxidants (Basel) 2022; 11:2250. [PMID: 36421435 PMCID: PMC9686704 DOI: 10.3390/antiox11112250] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 09/07/2023] Open
Abstract
Diabetic Retinopathy (DR) is one of the most important microvascular complications of diabetes mellitus, which can lead to blindness in severe cases. Mitochondria are energy-producing organelles in eukaryotic cells, which participate in metabolism and signal transduction, and regulate cell growth, differentiation, aging, and death. Metabolic changes of retinal cells and epigenetic changes of mitochondria-related genes under high glucose can lead to mitochondrial dysfunction and induce mitochondrial pathway apoptosis. In addition, mitophagy and mitochondrial dynamics also change adaptively. These mechanisms may be related to the occurrence and progression of DR, and also provide valuable clues for the prevention and treatment of DR. This article reviews the mechanism of DR induced by mitochondrial dysfunction, and the prospects for related treatment.
Collapse
Affiliation(s)
- Yiwei Wu
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Haidong Zou
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
5
|
Martínez-Vacas A, Di Pierdomenico J, Gallego-Ortega A, Valiente-Soriano FJ, Vidal-Sanz M, Picaud S, Villegas-Pérez MP, García-Ayuso D. Systemic taurine treatment affords functional and morphological neuroprotection of photoreceptors and restores retinal pigment epithelium function in RCS rats. Redox Biol 2022; 57:102506. [PMID: 36270186 PMCID: PMC9583577 DOI: 10.1016/j.redox.2022.102506] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/21/2022] [Accepted: 10/09/2022] [Indexed: 11/23/2022] Open
Abstract
The aim of our work was to study whether taurine administration has neuroprotective effects in dystrophic Royal College of Surgeons (RCS) rats, suffering retinal degeneration secondary to impaired retinal pigment epithelium phagocytosis caused by a MERTK mutation. Dystrophic RCS-p + female rats (n = 36) were divided into a non-treated group (n = 16) and a treated group (n = 20) that received taurine (0.2 M) in drinking water from postnatal day (P)21 to P45, when they were processed. Retinal function was assessed with electroretinogram. Retinal morphology was assessed in cross-sections using immunohistochemical techniques to label photoreceptors, retinal microglial and macroglial cells, active zones of conventional and ribbon synaptic connections, and oxidative stress. Retinal pigment epithelium function was examined using intraocular fluorogold injections. Our results document that taurine treatment increases taurine plasma levels and photoreceptor survival in dystrophic rats. The number of photoreceptor nuclei rows at P45 was 3-5 and 6-11 in untreated and treated animals, respectively. Electroretinograms showed increases of 70% in the rod response, 400% in the a-wave amplitude, 30% in the b-wave amplitude and 75% in the photopic b-wave response in treated animals. Treated animals also showed decreased numbers of microglial cells in the outer retinal layers, decreased glial fibrillary acidic protein (GFAP) expression in Müller cells, decreased oxidative stress in the outer and inner nuclear layers and improved maintenance of synaptic connections. Treated animals showed increased FG phagocytosis in the retinal pigment epithelium cells. In conclusion, systemic taurine treatment decreases photoreceptor degeneration and increases electroretinographic responses in dystrophic RCS rats and these effects may be mediated through various neuroprotective mechanisms.
Collapse
Affiliation(s)
- Ana Martínez-Vacas
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain
| | - Johnny Di Pierdomenico
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain
| | - Alejandro Gallego-Ortega
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain
| | - Francisco J Valiente-Soriano
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain
| | - Serge Picaud
- Sorbonne Universités, INSERM, CNRS, Institut de la Vision, Paris, France
| | - María Paz Villegas-Pérez
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain
| | - Diego García-Ayuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain.
| |
Collapse
|
6
|
Palazzo E, Boccella S, Marabese I, Perrone M, Belardo C, Iannotta M, Scuteri D, De Dominicis E, Pagano M, Infantino R, Bagetta G, Maione S. Homo-AMPA in the periaqueductal grey modulates pain and rostral ventromedial medulla activity in diabetic neuropathic mice. Neuropharmacology 2022; 212:109047. [DOI: 10.1016/j.neuropharm.2022.109047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/22/2022] [Accepted: 03/26/2022] [Indexed: 12/21/2022]
|
7
|
Martínez-Vacas A, Di Pierdomenico J, Valiente-Soriano FJ, Vidal-Sanz M, Picaud S, Villegas-Pérez MP, García-Ayuso D. Glial Cell Activation and Oxidative Stress in Retinal Degeneration Induced by β-Alanine Caused Taurine Depletion and Light Exposure. Int J Mol Sci 2021; 23:346. [PMID: 35008772 PMCID: PMC8745531 DOI: 10.3390/ijms23010346] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 12/14/2022] Open
Abstract
We investigate glial cell activation and oxidative stress induced by taurine deficiency secondary to β-alanine administration and light exposure. Two months old Sprague-Dawley rats were divided into a control group and three experimental groups that were treated with 3% β-alanine in drinking water (taurine depleted) for two months, light exposed or both. Retinal and external thickness were measured in vivo at baseline and pre-processing with Spectral-Domain Optical Coherence Tomography (SD-OCT). Retinal cryostat cross sections were immunodetected with antibodies against various antigens to investigate microglial and macroglial cell reaction, photoreceptor outer segments, synaptic connections and oxidative stress. Taurine depletion caused a decrease in retinal thickness, shortening of photoreceptor outer segments, microglial cell activation, oxidative stress in the outer and inner nuclear layers and the ganglion cell layer and synaptic loss. These events were also observed in light exposed animals, which in addition showed photoreceptor death and macroglial cell reactivity. Light exposure under taurine depletion further increased glial cell reaction and oxidative stress. Finally, the retinal pigment epithelial cells were Fluorogold labeled and whole mounted, and we document that taurine depletion impairs their phagocytic capacity. We conclude that taurine depletion causes cell damage to various retinal layers including retinal pigment epithelial cells, photoreceptors and retinal ganglion cells, and increases the susceptibility of the photoreceptor outer segments to light damage. Thus, beta-alanine supplements should be used with caution.
Collapse
Affiliation(s)
- Ana Martínez-Vacas
- Departamento de Oftalmología, Facultad de Medicina, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Universidad de Murcia, 30120 Murcia, Spain; (A.M.-V.); (J.D.P.); (F.J.V.-S.); (M.V.-S.)
| | - Johnny Di Pierdomenico
- Departamento de Oftalmología, Facultad de Medicina, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Universidad de Murcia, 30120 Murcia, Spain; (A.M.-V.); (J.D.P.); (F.J.V.-S.); (M.V.-S.)
| | - Francisco J. Valiente-Soriano
- Departamento de Oftalmología, Facultad de Medicina, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Universidad de Murcia, 30120 Murcia, Spain; (A.M.-V.); (J.D.P.); (F.J.V.-S.); (M.V.-S.)
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Facultad de Medicina, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Universidad de Murcia, 30120 Murcia, Spain; (A.M.-V.); (J.D.P.); (F.J.V.-S.); (M.V.-S.)
| | - Serge Picaud
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, 75012 Paris, France;
| | - María Paz Villegas-Pérez
- Departamento de Oftalmología, Facultad de Medicina, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Universidad de Murcia, 30120 Murcia, Spain; (A.M.-V.); (J.D.P.); (F.J.V.-S.); (M.V.-S.)
| | - Diego García-Ayuso
- Departamento de Oftalmología, Facultad de Medicina, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Universidad de Murcia, 30120 Murcia, Spain; (A.M.-V.); (J.D.P.); (F.J.V.-S.); (M.V.-S.)
| |
Collapse
|
8
|
Simó R, Simó-Servat O, Bogdanov P, Hernández C. Neurovascular Unit: A New Target for Treating Early Stages of Diabetic Retinopathy. Pharmaceutics 2021; 13:pharmaceutics13081320. [PMID: 34452281 PMCID: PMC8399715 DOI: 10.3390/pharmaceutics13081320] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 01/02/2023] Open
Abstract
The concept of diabetic retinopathy as a microvascular disease has evolved and is now considered a more complex diabetic complication in which neurovascular unit impairment plays an essential role and, therefore, can be considered as a main therapeutic target in the early stages of the disease. However, neurodegeneration is not always the apparent primary event in the natural story of diabetic retinopathy, and a phenotyping characterization is recommendable to identify those patients in whom neuroprotective treatment might be of benefit. In recent years, a myriad of treatments based on neuroprotection have been tested in experimental models, but more interestingly, there are drugs with a dual activity (neuroprotective and vasculotropic). In this review, the recent evidence concerning the therapeutic approaches targeting neurovascular unit impairment will be presented, along with a critical review of the scientific gaps and problems which remain to be overcome before our knowledge can be transferred to clinical practice.
Collapse
Affiliation(s)
- Rafael Simó
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain; (O.S.-S.); (P.B.); (C.H.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), 28029 Madrid, Spain
- Correspondence:
| | - Olga Simó-Servat
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain; (O.S.-S.); (P.B.); (C.H.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), 28029 Madrid, Spain
| | - Patricia Bogdanov
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain; (O.S.-S.); (P.B.); (C.H.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), 28029 Madrid, Spain
| | - Cristina Hernández
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain; (O.S.-S.); (P.B.); (C.H.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), 28029 Madrid, Spain
| |
Collapse
|
9
|
The Pathogenesis and Therapeutic Approaches of Diabetic Neuropathy in the Retina. Int J Mol Sci 2021; 22:ijms22169050. [PMID: 34445756 PMCID: PMC8396448 DOI: 10.3390/ijms22169050] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023] Open
Abstract
Diabetic retinopathy is a major retinal disease and a leading cause of blindness in the world. Diabetic retinopathy is a neurovascular disease that is associated with disturbances of the interdependent relationship of cells composed of the neurovascular units, i.e., neurons, glial cells, and vascular cells. An impairment of these neurovascular units causes both neuronal and vascular abnormalities in diabetic retinopathy. More specifically, neuronal abnormalities including neuronal cell death and axon degeneration are irreversible changes that are directly related to the vision reduction in diabetic patients. Thus, establishment of neuroprotective and regenerative therapies for diabetic neuropathy in the retina is an emergent task for preventing the blindness of patients with diabetic retinopathy. This review focuses on the pathogenesis of the neuronal abnormalities in diabetic retina including glial abnormalities, neuronal cell death, and axon degeneration. The possible molecular cell death pathways and intrinsic survival and regenerative pathways are also described. In addition, therapeutic approaches for diabetic neuropathy in the retina both in vitro and in vivo are presented. This review should be helpful for providing clues to overcome the barriers for establishing neuroprotection and regeneration of diabetic neuropathy in the retina.
Collapse
|
10
|
Castelli V, Paladini A, d'Angelo M, Allegretti M, Mantelli F, Brandolini L, Cocchiaro P, Cimini A, Varrassi G. Taurine and oxidative stress in retinal health and disease. CNS Neurosci Ther 2021; 27:403-412. [PMID: 33621439 PMCID: PMC7941169 DOI: 10.1111/cns.13610] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Retinal disorders are leading causes of blindness and are due to an imbalance between reactive oxygen species and antioxidant scavenger (in favor of pro‐oxidant species) or a disruption of redox signaling and control. Indeed, it is well known that oxidative stress is one of the leading causes of retinal degenerative diseases. Different approaches using nutraceuticals resulted in protective effects in these disorders. This review will discuss the impact of oxidative stress in retinal neurodegenerative diseases and the potential strategies for avoiding or counteracting oxidative damage in retinal tissues, with a specific focus on taurine. Increasing data indicate that taurine may be effective in slowing down the progression of degenerative retinal diseases, thus suggesting that taurine can be a promising candidate for the prevention or as adjuvant treatment of these diseases. The mechanism by which taurine supplementation acts is mainly related to the reduction of oxidative stress. In particular, it has been demonstrated to improve retinal reduced glutathione, malondialdehyde, superoxide dismutase, and catalase activities. Antiapoptotic effects are also involved; however, the protective mechanisms exerted by taurine against retinal damage remain to be further investigated.
Collapse
Affiliation(s)
- Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Antonella Paladini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Michele d'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | | | | | | | | | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA, USA
| | | |
Collapse
|
11
|
Güngel H, Erdenen F, Pasaoglu I, Sak D, Ogreden T, Kilic Muftuoglu I. New Insights into Diabetic and Vision-Threatening Retinopathy: Importance of Plasma Long Pentraxine 3 and Taurine Levels. Curr Eye Res 2020; 46:818-823. [PMID: 33044093 DOI: 10.1080/02713683.2020.1836228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE To investigate diabetic retinopathy (DR), plasma long pentraxin-3 (PTX-3) and taurine levels, and systemic factors in patients with type 2 diabetes mellitus (DM). MATERIALS AND METHODS Patients with type 2 DM were categorized based on the presence of DR and maculopathy. Retinal findings (retinopathy, maculopathy, flame-shaped hemorrhage, intraretinal microvascular abnormalities, neovascularization of the optic disc, neovascularization elsewhere, and soft exudate); laboratory findings (fasting blood glucose, glycosylated hemoglobin [HbA1c], Taurine, PTX-3); systolic blood pressure (SBP) and diastolic blood pressure (DBP) were analyzed. RESULTS In this study, 39 patients with a mean age of 59.5 ± 8.1 years were included. The mean taurine level was significantly lower (p = .025) and HbA1c values were significantly higher (p = .0001) in patients with and without DR, respectively. In patients with varying severity of DR, a significant difference in the plasma taurine level was found (p = .0001). The mean PTX-3 level decreased with the severity of retinopathy; however, there was no significant difference in levels among the grading groups (p = .732). Taurine and PTX-3 levels were significantly lower in patients with maculopathy (p = .001 and p = .022, respectively) and significantly higher in patients with grade 0 maculopathy than in those with grade 1, 2, or 3 maculopathy (p = .023, p = .01, and p = .01, respectively). Patients with flame-shaped hemorrhage had significantly lower PTX-3 levels (p = .009) and higher SBP and DBP levels (p = .003, p = .023) than those without the hemorrhage. CONCLUSIONS No significant relation between PTX-3 level and severity of DR was found. HbA1c, taurine, and PTX-3 levels in patients with vision-threatening DR symptoms were significantly different from those without these symptoms. Management of systemic blood pressure and glycemic control is mandatory in the follow-up of DR, and increasing the plasma taurine levels can prevent vision loss.
Collapse
Affiliation(s)
- Hülya Güngel
- Department of Ophthalmology, University of Health Sciences, Istanbul Training and Research Hospital, Istanbul, Turkey
| | - Füsun Erdenen
- Department of Internal Medicine, University of Health Sciences, Istanbul Training and Research Hospital, Istanbul, Turkey
| | - Isil Pasaoglu
- Department of Ophthalmology, University of Health Sciences, Beyoglu Eye Training and Research Hospital, Istanbul, Turkey
| | - Duygu Sak
- Department of Internal Medicine, University of Health Sciences, Istanbul Training and Research Hospital, Istanbul, Turkey
| | - Tülin Ogreden
- Department of Ophthalmology, University of Health Sciences, Istanbul Training and Research Hospital, Istanbul, Turkey
| | - Ilkay Kilic Muftuoglu
- Department of Ophthalmology, University of Health Sciences, Istanbul Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
12
|
Diabetic Retinopathy: The Role of Mitochondria in the Neural Retina and Microvascular Disease. Antioxidants (Basel) 2020; 9:antiox9100905. [PMID: 32977483 PMCID: PMC7598160 DOI: 10.3390/antiox9100905] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Diabetic retinopathy (DR), a common chronic complication of diabetes mellitus and the leading cause of vision loss in the working-age population, is clinically defined as a microvascular disease that involves damage of the retinal capillaries with secondary visual impairment. While its clinical diagnosis is based on vascular pathology, DR is associated with early abnormalities in the electroretinogram, indicating alterations of the neural retina and impaired visual signaling. The pathogenesis of DR is complex and likely involves the simultaneous dysregulation of multiple metabolic and signaling pathways through the retinal neurovascular unit. There is evidence that microvascular disease in DR is caused in part by altered energetic metabolism in the neural retina and specifically from signals originating in the photoreceptors. In this review, we discuss the main pathogenic mechanisms that link alterations in neural retina bioenergetics with vascular regression in DR. We focus specifically on the recent developments related to alterations in mitochondrial metabolism including energetic substrate selection, mitochondrial function, oxidation-reduction (redox) imbalance, and oxidative stress, and critically discuss the mechanisms of these changes and their consequences on retinal function. We also acknowledge implications for emerging therapeutic approaches and future research directions to find novel mitochondria-targeted therapeutic strategies to correct bioenergetics in diabetes. We conclude that retinal bioenergetics is affected in the early stages of diabetes with consequences beyond changes in ATP content, and that maintaining mitochondrial integrity may alleviate retinal disease.
Collapse
|
13
|
Yu M, Wang Y, Li P, Li M, Gao X. Taurine attenuates gossypol-induced apoptosis of C2C12 mouse myoblasts via the GPR87-AMPK/AKT signaling. Amino Acids 2020; 52:1285-1298. [PMID: 32918616 DOI: 10.1007/s00726-020-02888-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 09/05/2020] [Indexed: 12/24/2022]
Abstract
Gossypol, a toxic polyphenol extracted from cotton seeds, is hazardous to human and animal health. Taurine is considered as an essential or semi-essential amino acid and has diverse cytoprotective effects. This study was aimed to investigate the protective effect and molecular mechanism of taurine against apoptosis of C2C12 mouse myoblasts induced by gossypol. C2C12 mouse myoblasts were exposed to gossypol (0, 1 nM, 10 nM, 100 nM, 1 μM, and 10 μM). Cell numbers were rapidly decreased with increasing concentrations of gossypol. Gossypol significantly induced apoptosis, decreased Bcl2 expression, and increased the protein levels of Bax and the cleaved caspase 3. Taurine (0.24 mM) treatment largely rescued the cell number decreased by gossypol, attenuated gossypol-induced cell apoptosis. GPR87 knockdown abolished the inhibition by taurine of cell apoptosis. Furthermore, GPR87 overexpression attenuated cell apoptosis induced by gossypol. Both taurine treatment and GPR87 overexpression stimulated AKT phosphorylation but inhibited AMPK phosphorylation, whereas gossypol had the opposite effects. Taurine treatment promoted GPR87 expression and subcellular localization and partially rescued the inhibition of gossypol on this expression. In summary, these data reveal that taurine attenuates gossypol-induced apoptosis of C2C12 mouse myoblasts via the GPR87-AMPK/AKT signaling.
Collapse
Affiliation(s)
- Mengmeng Yu
- College of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Yang Wang
- College of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Ping Li
- College of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Meng Li
- College of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Xuejun Gao
- College of Animal Science, Yangtze University, Jingzhou, 434020, China.
| |
Collapse
|
14
|
Asare-Bediako B, Noothi SK, Li Calzi S, Athmanathan B, Vieira CP, Adu-Agyeiwaah Y, Dupont M, Jones BA, Wang XX, Chakraborty D, Levi M, Nagareddy PR, Grant MB. Characterizing the Retinal Phenotype in the High-Fat Diet and Western Diet Mouse Models of Prediabetes. Cells 2020; 9:cells9020464. [PMID: 32085589 PMCID: PMC7072836 DOI: 10.3390/cells9020464] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/07/2020] [Accepted: 02/13/2020] [Indexed: 02/08/2023] Open
Abstract
We sought to delineate the retinal features associated with the high-fat diet (HFD) mouse, a widely used model of obesity. C57BL/6 mice were fed either a high-fat (60% fat; HFD) or low-fat (10% fat; LFD) diet for up to 12 months. The effect of HFD on body weight and insulin resistance were measured. The retina was assessed by electroretinogram (ERG), fundus photography, permeability studies, and trypsin digests for enumeration of acellular capillaries. The HFD cohort experienced hypercholesterolemia when compared to the LFD cohort, but not hyperglycemia. HFD mice developed a higher body weight (60.33 g vs. 30.17g, p < 0.0001) as well as a reduced insulin sensitivity index (9.418 vs. 62.01, p = 0.0002) compared to LFD controls. At 6 months, retinal functional testing demonstrated a reduction in a-wave and b-wave amplitudes. At 12 months, mice on HFD showed evidence of increased retinal nerve infarcts and vascular leakage, reduced vascular density, but no increase in number of acellular capillaries compared to LFD mice. In conclusion, the HFD mouse is a useful model for examining the effect of prediabetes and hypercholesterolemia on the retina. The HFD-induced changes appear to occur slower than those observed in type 2 diabetes (T2D) models but are consistent with other retinopathy models, showing neural damage prior to vascular changes.
Collapse
Affiliation(s)
- Bright Asare-Bediako
- Vision Science Graduate Program, School of Optometry, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (B.A.-B.); (Y.A.-A.); (M.D.)
| | - Sunil K. Noothi
- Department of Ophthalmology and Visual Sciences, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.K.N.); (S.L.C.); (C.P.V.); (D.C.)
| | - Sergio Li Calzi
- Department of Ophthalmology and Visual Sciences, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.K.N.); (S.L.C.); (C.P.V.); (D.C.)
| | - Baskaran Athmanathan
- Division of Cardiac Surgery, Department of Surgery, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (B.A.); (P.R.N.)
| | - Cristiano P. Vieira
- Department of Ophthalmology and Visual Sciences, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.K.N.); (S.L.C.); (C.P.V.); (D.C.)
| | - Yvonne Adu-Agyeiwaah
- Vision Science Graduate Program, School of Optometry, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (B.A.-B.); (Y.A.-A.); (M.D.)
| | - Mariana Dupont
- Vision Science Graduate Program, School of Optometry, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (B.A.-B.); (Y.A.-A.); (M.D.)
| | - Bryce A. Jones
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC 20057, USA;
| | - Xiaoxin X. Wang
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057, USA; (X.X.W.); (M.L.)
| | - Dibyendu Chakraborty
- Department of Ophthalmology and Visual Sciences, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.K.N.); (S.L.C.); (C.P.V.); (D.C.)
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057, USA; (X.X.W.); (M.L.)
| | - Prabhakara R. Nagareddy
- Division of Cardiac Surgery, Department of Surgery, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (B.A.); (P.R.N.)
| | - Maria B. Grant
- Department of Ophthalmology and Visual Sciences, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.K.N.); (S.L.C.); (C.P.V.); (D.C.)
- Correspondence:
| |
Collapse
|
15
|
Pillar S, Moisseiev E, Sokolovska J, Grzybowski A. Recent Developments in Diabetic Retinal Neurodegeneration: A Literature Review. J Diabetes Res 2020; 2020:5728674. [PMID: 34151902 PMCID: PMC7787838 DOI: 10.1155/2020/5728674] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/11/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023] Open
Abstract
Neurodegeneration plays a significant role in the complex pathology of diabetic retinopathy. Evidence suggests the onset of neurodegeneration occurs early on in the disease, and so a greater understanding of the process is essential for prompt detection and targeted therapies. Neurodegeneration is a common pathway of assorted processes, including activation of inflammatory pathways, reduction of neuroprotective factors, DNA damage, and apoptosis. Oxidative stress and formation of advanced glycation end products amplify these processes and are elevated in the setting of hyperglycemia, hyperlipidemia, and glucose variability. These key pathophysiologic mechanisms are discussed, as well as diagnostic modalities and novel therapeutic avenues, with an emphasis on recent discoveries. The aim of this article is to highlight the crucial role of neurodegeneration in diabetic retinopathy and to review the molecular basis for this neuronal dysfunction, its diagnostic features, and the progress currently made in relevant therapeutic interventions.
Collapse
Affiliation(s)
- Shani Pillar
- Department of Ophthalmology, Meir Medical Center, Kfar Saba, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Elad Moisseiev
- Department of Ophthalmology, Meir Medical Center, Kfar Saba, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Andrzej Grzybowski
- Department of Ophthalmology, University of Warmia and Mazury, Olsztyn, Poland
- Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, Poznan, Poland
| |
Collapse
|