1
|
Zwingelberg SB, Karabiyik G, Gehle P, von Brandenstein M, Eibichova S, Lotz C, Groeber-Becker F, Kampik D, Jurkunas U, Geerling G, Lang G. Advancements in bioengineering for descemet membrane endothelial keratoplasty (DMEK). NPJ Regen Med 2025; 10:10. [PMID: 39952985 PMCID: PMC11828897 DOI: 10.1038/s41536-025-00396-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 01/27/2025] [Indexed: 02/17/2025] Open
Abstract
Corneal diseases are the third leading cause of blindness worldwide. Descemet's Membrane Endothelial Keratoplasty (DMEK) is the preferred surgical technique for treating corneal endothelial disorders, relying heavily on high-quality donor tissue. However, the scarcity of suitable donor tissue and the sensitivity of endothelial cells remain significant challenges. This review explores the current state of DMEK, focusing on advancements in tissue engineering as a promising solution to improve outcomes and address donor limitations.
Collapse
Affiliation(s)
| | - Gizem Karabiyik
- Department of Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Würzburg, Germany
| | - Paul Gehle
- Department of Urology, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Melanie von Brandenstein
- Department of Urology, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Sabina Eibichova
- University Hospital Würzburg, Department of Tissue Engineering and Regenerative Medicine, Würzburg, Germany
| | - Christian Lotz
- University Hospital Würzburg, Department of Tissue Engineering and Regenerative Medicine, Würzburg, Germany
- Fraunhofer Institute for Silicate Research ISC Translational Center Regenerative Therapies, Würzburg, Germany
| | - Florian Groeber-Becker
- Department of Ophthalmology, University Hospital of Duesseldorf, Duesseldorf, Germany
- Fraunhofer Institute for Silicate Research ISC Translational Center Regenerative Therapies, Würzburg, Germany
| | - Daniel Kampik
- Department of Ophthalmology, University Hospital Würzburg, Würzburg, Germany
| | - Ula Jurkunas
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Institute, Boston, MA, USA
| | - Gerd Geerling
- Department of Ophthalmology, University Hospital of Duesseldorf, Duesseldorf, Germany
| | - Gregor Lang
- Department of Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Würzburg, Germany.
| |
Collapse
|
2
|
Yan H, Li J, Wang C, Mei CQ. The predictive value of anterior segment optical coherence tomography for postoperative corneal edema in cataract patients. Int Ophthalmol 2024; 44:350. [PMID: 39150472 DOI: 10.1007/s10792-024-03255-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/28/2024] [Indexed: 08/17/2024]
Abstract
OBJECTIVE To evaluate the predictive value of anterior segment optical coherence tomography (AS-OCT) for postoperative corneal edema in cataract patients. METHODS A retrospective cohort study of 144 cataract patients from December 2020 to December 2021 was conducted. Patients were divided into edema eyes (84 cases) and observation (60 cases) group based on postoperative corneal edema occurrence. Relevant indicators were compared between groups. Logistic regression identified risk factors for postoperative corneal edema. Receiver operating characteristic curves evaluated the predictive value. RESULTS The edema eyes group had significantly higher postoperative central corneal thickness (CCT) and lower postoperative endothelial cell density (ECD) than the observation group (P < 0.05). The edema eyes group also had significantly lower preoperative ECD, anterior chamber depth (ACD), anterior chamber angle (ACA), and preoperative lens position (LP) than the observation group (P < 0.05). Logistic regression analysis showed that preoperative ECD, ACD, ACA, and LP were independent risk factors for postoperative corneal edema (P < 0.05), all of which also showed good predictive value for postoperative corneal edema, with areas under the curve (AUCs) of 0.854, 0.812, 0.791, and 0.778, respectively, under the ROC curve analysis. CONCLUSION AS-OCT can provide useful information for predicting postoperative corneal edema in cataract patients. Preoperative ECD, preoperative ACD, preoperative ACA, and preoperative LP are important parameters that can be measured by AS-OCT and used as risk factors for postoperative corneal edema.
Collapse
Affiliation(s)
- Hui Yan
- Department of Ophthalmology, Ya'an People's Hospital, No.9, Ankang Road, Yucheng District, Ya'an City, 625000, Sichuan Province, China
| | - Jie Li
- Department of Ophthalmology, Chengdu Wodi Ophthalmology Hospital, Chengdu, China
| | - Cheng Wang
- Department of Ophthalmology, Chengdu Wodi Ophthalmology Hospital, Chengdu, China
| | - Cai-Qiu Mei
- Department of Ophthalmology, Ya'an People's Hospital, No.9, Ankang Road, Yucheng District, Ya'an City, 625000, Sichuan Province, China.
| |
Collapse
|
3
|
Koo EH. Current state of endothelial cell therapy. Curr Opin Ophthalmol 2024; 35:304-308. [PMID: 38602486 DOI: 10.1097/icu.0000000000001050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
PURPOSE OF REVIEW Currently, there is heightened interest surrounding endothelial cell therapy for the treatment of corneal edema. The purpose of this review article is to describe and summarize the background information as well as the research surrounding the emerging treatment modalities for endothelial cell therapy. RECENT FINDINGS Marked advancements have been made in the translational research in this area, and increasing refinements have been demonstrated in the treatment protocols for cell therapy. Human clinical trials in this field are ongoing, specifically, in the area of injected human corneal endothelial cells (HCECs), with early results showing favorable safety and efficacy profiles. SUMMARY Efficient and effective delivery of HCECs to patients with corneal edema and dysfunction now appears feasible, and the results from ongoing human clinical trials are much anticipated. Adjunct therapeutics-in the form of pharmacological agents and/or surgical techniques, such as descemetorhexis-will likely continue to play an important role in defining the future of endothelial cell therapy.
Collapse
Affiliation(s)
- Ellen H Koo
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
4
|
Honda T, Nakagawa T, Yuasa T, Tokuda Y, Nakano M, Tashiro K, Tourtas T, Schlötzer-Schrehardt U, Kruse F, Yamamoto K, Koizumi N, Okumura N. Dysregulation of the TCF4 Isoform in Corneal Endothelial Cells of Patients With Fuchs Endothelial Corneal Dystrophy. Invest Ophthalmol Vis Sci 2024; 65:27. [PMID: 38884552 PMCID: PMC11185267 DOI: 10.1167/iovs.65.6.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/03/2024] [Indexed: 06/18/2024] Open
Abstract
Purpose This study evaluated the dysregulation of TCF4 isoforms and differential exon usage (DEU) in corneal endothelial cells (CECs) of Fuchs endothelial corneal dystrophy (FECD) with or without trinucleotide repeat (TNR) expansion in the intron region of the TCF4 gene. Methods Three RNA-Seq datasets of CECs (our own and two other previously published datasets) derived from non-FECD control and FECD subjects were analyzed to identify TCF4 isoforms and DEU events dysregulated in FECD by comparing control subjects to those with FECD with TNR expansion and FECD without TNR expansion. Results Our RNA-Seq data demonstrated upregulation of three TCF4 isoforms and downregulation of two isoforms in FECD without TNR expansion compared to the controls. In FECD with TNR expansion, one isoform was upregulated and one isoform was downregulated compared to the control. Additional analysis using two other datasets identified that the TCF4-277 isoform was upregulated in common in all three datasets in FECD with TNR expansion, whereas no isoform was dysregulated in FECD without TNR expansion. DEU analysis showed that one exon (E174) upstream of the TNR, which only encompassed TCF4-277, was upregulated in common in all three datasets, whereas eight exons downstream of the TNR were downregulated in common in all three datasets in FECD with TNR expansion. Conclusions This study identified TCF4-277 as a dysregulated isoform in FECD with TNR expansion, suggesting a potential contribution of TCF4-277 to FECD pathophysiology.
Collapse
Affiliation(s)
- Tetsuro Honda
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Tatsuya Nakagawa
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Taichi Yuasa
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Yuichi Tokuda
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masakazu Nakano
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kei Tashiro
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Theofilos Tourtas
- Department of Ophthalmology, University of Erlangen-Nürnberg, Erlangen, Germany
| | | | - Friedrich Kruse
- Department of Ophthalmology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Koji Yamamoto
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Noriko Koizumi
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Naoki Okumura
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| |
Collapse
|
5
|
Vercammen H, Ondra M, Kotulova J, De La Hoz EC, Witters C, Jecmenova K, Le Compte M, Deben C, Ní Dhubhghaill S, Koppen C, Hajdúch M, Van den Bogerd B. "Keep on ROCKIn": Repurposed ROCK inhibitors to boost corneal endothelial regeneration. Biomed Pharmacother 2024; 174:116435. [PMID: 38513591 DOI: 10.1016/j.biopha.2024.116435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/06/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024] Open
Abstract
The global shortage of corneal endothelial graft tissue necessitates the exploration of alternative therapeutic strategies. Rho-associated protein kinase inhibitors (ROCKi), recognized for their regenerative potential in cardiology, oncology, and neurology, have shown promise in corneal endothelial regeneration. This study investigates the repurposing potential of additional ROCKi compounds. Through screening a self-assembled library of ROCKi on B4G12 corneal endothelial cells, we evaluated their dose-dependent effects on proliferation, migration, and toxicity using live-cell imaging. Nine ROCKi candidates significantly enhanced B4G12 proliferation compared to the basal growth rate. These candidates were further assessed for their potential to accelerate wound closure as another indicator for tissue regeneration capacity, with most demonstrating notable efficacy. To assess the potential impact of candidate ROCKi on key corneal endothelial cell markers related to cell proliferation, leaky tight junctions and ion efflux capacity, we analyzed the protein expression of cyclin E1, CDK2, p16, ZO-1 and Na+/K+-ATPase, respectively. Immunocytochemistry and western blot analysis confirmed the preservation of corneal endothelial markers post-treatment with ROCKi hits. However, notable cytoplasm enlargement and nuclear fragmentation were detected after the treatment with SR-3677 and Thiazovivin, indicating possible cellular stress. In compared parameters, Chroman-1 at a concentration of 10 nM outperformed other ROCKi, requiring significantly 1000-fold lower effective concentration than established ROCKi Y-27632 and Fasudil. Altogether, this study underscores the potential of repurposing ROCKi for treating corneal endothelial dysfunctions, offering a viable alternative to conventional grafting methods, and highlights Chroman-1 as a promising candidate structure for hit-to-lead development.
Collapse
Affiliation(s)
- Hendrik Vercammen
- Antwerp Research Group for Ocular Science (ARGOS), Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium; Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium; DrugVision Lab, University of Antwerp, Wilrijk, Belgium.
| | - Martin Ondra
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic; Czech Advanced Technology and Research Institute (CATRIN), Palacky University Olomouc, Olomouc, Czech Republic
| | - Jana Kotulova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | | | - Charissa Witters
- Antwerp Research Group for Ocular Science (ARGOS), Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium; Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium; DrugVision Lab, University of Antwerp, Wilrijk, Belgium
| | - Katerina Jecmenova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | | | | | | | - Carina Koppen
- Antwerp Research Group for Ocular Science (ARGOS), Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium; Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic; Czech Advanced Technology and Research Institute (CATRIN), Palacky University Olomouc, Olomouc, Czech Republic
| | - Bert Van den Bogerd
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic; Czech Advanced Technology and Research Institute (CATRIN), Palacky University Olomouc, Olomouc, Czech Republic.
| |
Collapse
|
6
|
Rahimiyan K, Nasr Esfahani MH, Karamali F. The proliferative effects of stem cells from apical papilla-conditioned medium on rat corneal endothelial cells. Wound Repair Regen 2024; 32:292-300. [PMID: 38415387 DOI: 10.1111/wrr.13161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/19/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024]
Abstract
The cornea, positioned at the forefront of the eye, refracts the light for focusing images on the retina. Damage to this transparent structure can lead to various visual disorders. The corneal endothelial cells (CECs) are crucial for transparency and homeostasis, but lack the ability to reproduce. Significant damage results in structure destruction and vision impairment. While extensive research has aimed at the restoring the corneal endothelial layer, including endothelial proliferation for functional monolayers remains challenging. Our previous studies confirmed the proliferative activity of stem cells from apical papilla-conditioned medium (SCAP-CM) on the retinal pigmented epithelium as a single cell layer. This study investigates how SCAP-CM influences the proliferation and migration of CECs. Our results introduced Matrigel, as a new matrix component for in vitro culture of CECs. Moreover, 60% of SCAP-CM was able to stimulate CEC proliferation as well as migrate to repair wound healing during 24 h. Confluent CECs also expressed specific markers, ATP1a1, ZO-1 and CD56, indicative of CEC characteristics, aligning with the recapitulation of differentiation when forming a homogenous monolayer at the same level of isolated CECs without in vitro culture. These findings suggested that SCAP-CM administration could be useful for future preclinical and clinical applications.
Collapse
Affiliation(s)
- Kimia Rahimiyan
- ACECR Institute of Higher Education, Isfahan Branch, Isfahan, Iran
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Fereshteh Karamali
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
7
|
Okumura N, Nishikawa T, Imafuku C, Matsuoka Y, Miyawaki Y, Kadowaki S, Nakahara M, Matsuoka Y, Koizumi N. U-Net Convolutional Neural Network for Real-Time Prediction of the Number of Cultured Corneal Endothelial Cells for Cellular Therapy. Bioengineering (Basel) 2024; 11:71. [PMID: 38247948 PMCID: PMC10813389 DOI: 10.3390/bioengineering11010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
Corneal endothelial decompensation is treated by the corneal transplantation of donor corneas, but donor shortages and other problems associated with corneal transplantation have prompted investigations into tissue engineering therapies. For clinical use, cells used in tissue engineering must undergo strict quality control to ensure their safety and efficacy. In addition, efficient cell manufacturing processes are needed to make cell therapy a sustainable standard procedure with an acceptable economic burden. In this study, we obtained 3098 phase contrast images of cultured human corneal endothelial cells (HCECs). We labeled the images using semi-supervised learning and then trained a model that predicted the cell centers with a precision of 95.1%, a recall of 92.3%, and an F-value of 93.4%. The cell density calculated by the model showed a very strong correlation with the ground truth (Pearson's correlation coefficient = 0.97, p value = 8.10 × 10-52). The total cell numbers calculated by our model based on phase contrast images were close to the numbers calculated using a hemocytometer through passages 1 to 4. Our findings confirm the feasibility of using artificial intelligence-assisted quality control assessments in the field of regenerative medicine.
Collapse
Affiliation(s)
- Naoki Okumura
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe-City 610-0394, Kyoto, Japan; (T.N.); (Y.M.); (Y.M.); (S.K.); (N.K.)
| | - Takeru Nishikawa
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe-City 610-0394, Kyoto, Japan; (T.N.); (Y.M.); (Y.M.); (S.K.); (N.K.)
| | - Chiaki Imafuku
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe-City 610-0394, Kyoto, Japan; (T.N.); (Y.M.); (Y.M.); (S.K.); (N.K.)
| | - Yuki Matsuoka
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe-City 610-0394, Kyoto, Japan; (T.N.); (Y.M.); (Y.M.); (S.K.); (N.K.)
| | - Yuna Miyawaki
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe-City 610-0394, Kyoto, Japan; (T.N.); (Y.M.); (Y.M.); (S.K.); (N.K.)
| | - Shinichi Kadowaki
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe-City 610-0394, Kyoto, Japan; (T.N.); (Y.M.); (Y.M.); (S.K.); (N.K.)
| | - Makiko Nakahara
- ActualEyes Inc., D-egg, 1 Jizodani, Koudo, Kyotanabe-City 610-0332, Kyoto, Japan; (M.N.); (Y.M.)
| | - Yasushi Matsuoka
- ActualEyes Inc., D-egg, 1 Jizodani, Koudo, Kyotanabe-City 610-0332, Kyoto, Japan; (M.N.); (Y.M.)
| | - Noriko Koizumi
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe-City 610-0394, Kyoto, Japan; (T.N.); (Y.M.); (Y.M.); (S.K.); (N.K.)
| |
Collapse
|
8
|
Sali F, Aykut V, Kunbaz A, Durmus E, Hepokur M, Oguz H, Esen F. Endothelial loss following postoperative intracameral triamcinolone acetonide and subconjunctival dexamethasone injections. Cutan Ocul Toxicol 2023; 42:237-242. [PMID: 37486313 DOI: 10.1080/15569527.2023.2239897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023]
Abstract
OBJECTIVES To compare endothelial toxicity and efficacy of two local steroid injections (intracameral triamcinolone acetonide and subconjunctival dexamethasone) in controlling postoperative inflammation following pars plana vitrectomy (PPV) combined with phacoemulsification cataract surgery. METHODS This cohort included 54 patients that underwent combined surgery and received either intracameral triamcinolone acetonide injections (n = 27, IC-TA group) or subconjunctival dexamethasone (n = 27, Sc-Dex group) injections at the end of the surgery. All participants had at least 4 months or longer follow-up. A detailed ophthalmologic examination including intraocular pressure (IOP) measurement and specular microscopy was performed at every visit. RESULTS Endothelial cell density (ECD) reduced significantly in IC-TA group postoperatively (2418 vs. 2249, p = 0.019), while it did not change significantly in Sc-Dex group (2541 vs. 2492, p = 0.247). Postoperative ECD was also significantly lower in IC-TA group compared to Sc-Dex group (p = 0.011). Preoperative and postoperative IOP values remained unchanged both in IC-TA and Sc-Dex groups (p = 0.424 and p = 0.523, respectively). However, 4 patients in IC-TA group and 5 patients in the Sc-Dex group needed glaucoma medications. The postoperative need for glaucoma medications was similar between the groups (p = 0.347). Postoperative inflammation was well controlled in both groups and none of the patients developed fibrin membrane or synechiae postoperatively. CONCLUSION Both treatments were effective in controlling postoperative inflammation, but patients in IC-TA group experienced significantly higher endothelial loss. Sc-Dex injections are safer in terms of endothelial loss and preferable to control postoperative inflammation following complex intraocular surgeries.
Collapse
Affiliation(s)
- Fatma Sali
- Department of Ophthalmology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Veysel Aykut
- Department of Ophthalmology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Ahmad Kunbaz
- Department of Ophthalmology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Ebubekir Durmus
- Department of Ophthalmology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Mustafa Hepokur
- Department of Ophthalmology, Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Halit Oguz
- Department of Ophthalmology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Fehim Esen
- Department of Ophthalmology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| |
Collapse
|
9
|
Aloy-Reverté C, Bandeira F, Otero N, Rebollo-Morell A, Nieto-Nicolau N, Álvaro P. Gomes J, Güell JL, Casaroli-Marano RP. Corneal Endothelial Cell Cultures from Organotypic Preservation of Older Donor Corneas Are Suitable for Advanced Cell Therapy. Ophthalmic Res 2023; 66:1254-1265. [PMID: 37722372 PMCID: PMC10614447 DOI: 10.1159/000533701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 08/09/2023] [Indexed: 09/20/2023]
Abstract
INTRODUCTION The purpose of this work was to evaluate the in vitro growth capacity and functionality of human corneal endothelial cells (hCEC) expanded from corneas of elderly (>60 years) donors that were preserved using an organotypic culture method (>15 days, 31°C) and did not meet the clinical criteria for keratoplasty. METHODS Cell cultures were obtained from prior descemetorhexis (≥10 mm) and a controlled incubation with collagenase type I followed by recombinant trypsin. Cells were seeded on coated plates (fibronectin-albumin-collagen I) and cultures were expanded using the dual supplemented medium approach (maintenance medium and growth medium), in the presence of a 10 μm Rho-associated protein kinase inhibitor (Y-27632). Cell passages were obtained at culture confluency (∼2 weeks). A quantitative colorimetric WST-1 cell growth assay was performed at different time points of the culture. Morphometric analysis (area assessment and circularity), immunocytochemistry (ZO-1, Na+/K+-ATPase α, Ki67), and transendothelial electrical resistance (TEER) were performed on confluent monolayers. RESULTS There was no difference between the cell growth profiles of hCEC cultures obtained from corneas older than 60 years, whether preserved cold or cultivated organotypic corneas. Primary cultures were able to maintain a certain cell circularity index (around 0.8) and morphology (hexagonal) similar to corneal endothelial mosaic. The ZO-1 and Na+/K+-ATPase pump markers were highly positive in confluent cell monolayers at 21 days after isolation (passage 0; P0), but significantly decreased in confluent monolayers after the first passage (P1). A weak expression of Ki67 was observed in both P0 and P1 monolayers. The P0 monolayers showed a progressive increase in TEER values between days 6 and 11 and remained stable until day 18 of culture, indicating a state of controlled permeability in monolayers. The P1 monolayers also showed some functional ability but with decreased TEER values compared to monolayers at P0. CONCLUSIONS Our results indicate that it is possible to obtain functional hCEC cultures in eye banks, using simplified and standardized protocols, from older donor corneas (>60 years of age), previously preserved under organotypic culture conditions. This tissue is more readily available in our setting, due to the profile of the donor population or due to the low endothelial count (<2,000 cells/mm2) of the donated cornea.
Collapse
Affiliation(s)
| | - Francisco Bandeira
- Department of Ophthalmology and Visual Sciences, Escola Paulista de Medicina (EPM), Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - Nausica Otero
- Barcelona Tissue Bank (BTB), Banc de Sang i Teixits (BST), Barcelona, Spain
| | | | | | - José Álvaro P. Gomes
- Department of Ophthalmology and Visual Sciences, Escola Paulista de Medicina (EPM), Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - José L. Güell
- Instituto de Microcirugía Ocular (IMO), IMO Foundation, Barcelona, Spain
| | - Ricardo P. Casaroli-Marano
- Barcelona Tissue Bank (BTB), Banc de Sang i Teixits (BST), Barcelona, Spain
- Department of Ophthalmology and Visual Sciences, Escola Paulista de Medicina (EPM), Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, Brazil
- Department of Surgery, School of Medicine and Health Sciences and Hospital Clinic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
10
|
Kumar R, Sinha NR, Mohan RR. Corneal gene therapy: Structural and mechanistic understanding. Ocul Surf 2023; 29:279-297. [PMID: 37244594 PMCID: PMC11926995 DOI: 10.1016/j.jtos.2023.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Cornea, a dome-shaped and transparent front part of the eye, affords 2/3rd refraction and barrier functions. Globally, corneal diseases are the leading cause of vision impairment. Loss of corneal function including opacification involve the complex crosstalk and perturbation between a variety of cytokines, chemokines and growth factors generated by corneal keratocytes, epithelial cells, lacrimal tissues, nerves, and immune cells. Conventional small-molecule drugs can treat mild-to-moderate traumatic corneal pathology but requires frequent application and often fails to treat severe pathologies. The corneal transplant surgery is a standard of care to restore vision in patients. However, declining availability and rising demand of donor corneas are major concerns to maintain ophthalmic care. Thus, the development of efficient and safe nonsurgical methods to cure corneal disorders and restore vision in vivo is highly desired. Gene-based therapy has huge potential to cure corneal blindness. To achieve a nonimmunogenic, safe and sustained therapeutic response, the selection of a relevant genes, gene editing methods and suitable delivery vectors are vital. This article describes corneal structural and functional features, mechanistic understanding of gene therapy vectors, gene editing methods, gene delivery tools, and status of gene therapy for treating corneal disorders, diseases, and genetic dystrophies.
Collapse
Affiliation(s)
- Rajnish Kumar
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; One-health One-medicine Vision Research Program, Departments of Veterinary Medicine and Surgery & Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA; Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow campus, UP, 226028, India
| | - Nishant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; One-health One-medicine Vision Research Program, Departments of Veterinary Medicine and Surgery & Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; One-health One-medicine Vision Research Program, Departments of Veterinary Medicine and Surgery & Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, 65212, USA.
| |
Collapse
|
11
|
Wang H, Chen X, Xu J, Yao K. Comparison of femtosecond laser-assisted cataract surgery and conventional phacoemulsification on corneal impact: A meta-analysis and systematic review. PLoS One 2023; 18:e0284181. [PMID: 37058458 PMCID: PMC10104330 DOI: 10.1371/journal.pone.0284181] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/26/2023] [Indexed: 04/15/2023] Open
Abstract
This meta-analysis aims to compare corneal injuries and function after femtosecond laser-assisted cataract surgery (FLACS) and conventional phacoemulsification surgery (CPS). A comprehensive literature search of PubMed, EMBASE, and the Cochrane Controlled Trials Register was conducted to identify randomized controlled trials (RCT) and high-quality prospective comparative cohort studies comparing FLACS with CPS. Endothelial cell loss percentage (ECL%), central corneal thickness (CCT), endothelial cell density (ECD), endothelial cell loss (ECL), percentage of the hexagonal cell (6A), and coefficient of variance (CoV) were used as an indicator of corneal injury and function. Totally 42 trials (23 RCTs and 19 prospective cohort studies), including 3916 eyes, underwent FLACS, and a total of 3736 eyes underwent CPS. ECL% is significantly lower in the FLACS group at 1-3 days (P = 0.005), 1 week (P = 0.004), 1 month (P<0.0001), 3 months (P = 0.001), and 6 months (P = 0.004) after surgery compared to CPS. ECD and ECL appeared no statistically significant difference between the two groups, except for the significant reduction of ECD at 3 months in the CPS group (P = 0.002). CCT was significantly lower in the FLACS group at 1 week (P = 0.05) and 1 month (P = 0.002) early postoperatively. While at 1-3 days (P = 0.50), 3 months (P = 0.18), and 6 months (P = 0.11), there was no difference between the FLACS group and the CPS group. No significant difference was found in the percentage of hexagonal cells and the coefficient of variance. FLACS, compared with CPS, reduces corneal injury in the early postoperative period. Corneal edema recovered faster in the FLACS group in the early postoperative period. In addition, FLACS may be a better option for patients with corneal dysfunction.
Collapse
Affiliation(s)
- Hanle Wang
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, China
| | - Xinyi Chen
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, China
| | - Jingjie Xu
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, China
| | - Ke Yao
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Ye EA, Chung HS, Park Y, Sunwoo JH, Lee W, Kim J, Tchah H, Lee H, Kim JY. Induction of Corneal Endothelial-like Cells from Mesenchymal Stem Cells of the Umbilical Cord. Int J Mol Sci 2022; 23:ijms232315408. [PMID: 36499735 PMCID: PMC9739507 DOI: 10.3390/ijms232315408] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/22/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Because of the limited differentiation capacity of human corneal endothelial cells (CECs), stem cells have emerged as a potential remedy for corneal endothelial dysfunction (CED). This study aimed to demonstrate the differentiation of human umbilical cord-derived mesenchymal stem cells (UC-MSCs) into CECs and to investigate the efficacy of MSC-induced CEC injection into the anterior chamber in a rabbit model of CED. Human UC-MSCs were differentiated into CECs using medium containing glycogen synthase kinase 3β inhibitor and two types of Rho-associated protein kinase inhibitors. In the MSC-induced CECs, CEC-specific proteins were identified through immunohistochemistry and changes in CEC-specific gene expressions over time were confirmed through quantitative RT-PCR. When MSC-induced CECs were injected into a rabbit model of CED, corneal opacity and neovascularization were improved compared with the non-transplanted control or MSC injection group. We also confirmed that MSC-induced CECs were well engrafted as evidenced by human mitochondrial DNA in the central cornea of an animal model. Therefore, we demonstrated the differentiation of UC-MSCs into CECs in vitro and demonstrated the clinical efficacy of MSC-induced CEC injection, providing in vivo evidence that MSC-induced CECs have potential as a treatment option for CED.
Collapse
Affiliation(s)
- Eun Ah Ye
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Ho Seok Chung
- Department of Ophthalmology, Dankook University Hospital, Dankook University College of Medicine, Cheonan 31116, Republic of Korea
| | - Yoonkyung Park
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Jeong Hye Sunwoo
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Whanseo Lee
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Jin Kim
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Hungwon Tchah
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Hun Lee
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
- Correspondence: (H.L.); (J.Y.K.); Tel.: +82-2-3010-5931 (H.L.); +82-2-3010-3680 (J.Y.K.); Fax: +82-2-470-6640 (H.L.); +82-2-470-6440 (J.Y.K.)
| | - Jae Yong Kim
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
- Correspondence: (H.L.); (J.Y.K.); Tel.: +82-2-3010-5931 (H.L.); +82-2-3010-3680 (J.Y.K.); Fax: +82-2-470-6640 (H.L.); +82-2-470-6440 (J.Y.K.)
| |
Collapse
|
13
|
Santra M, Liu YC, Jhanji V, Yam GHF. Human SMILE-Derived Stromal Lenticule Scaffold for Regenerative Therapy: Review and Perspectives. Int J Mol Sci 2022; 23:ijms23147967. [PMID: 35887309 PMCID: PMC9315730 DOI: 10.3390/ijms23147967] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/10/2022] [Accepted: 07/18/2022] [Indexed: 12/13/2022] Open
Abstract
A transparent cornea is paramount for vision. Corneal opacity is one of the leading causes of blindness. Although conventional corneal transplantation has been successful in recovering patients’ vision, the outcomes are challenged by a global lack of donor tissue availability. Bioengineered corneal tissues are gaining momentum as a new source for corneal wound healing and scar management. Extracellular matrix (ECM)-scaffold-based engineering offers a new perspective on corneal regenerative medicine. Ultrathin stromal laminar tissues obtained from lenticule-based refractive correction procedures, such as SMall Incision Lenticule Extraction (SMILE), are an accessible and novel source of collagen-rich ECM scaffolds with high mechanical strength, biocompatibility, and transparency. After customization (including decellularization), these lenticules can serve as an acellular scaffold niche to repopulate cells, including stromal keratocytes and stem cells, with functional phenotypes. The intrastromal transplantation of these cell/tissue composites can regenerate native-like corneal stromal tissue and restore corneal transparency. This review highlights the current status of ECM-scaffold-based engineering with cells, along with the development of drug and growth factor delivery systems, and elucidates the potential uses of stromal lenticule scaffolds in regenerative therapeutics.
Collapse
Affiliation(s)
- Mithun Santra
- Corneal Regeneration Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (M.S.); (V.J.)
| | - Yu-Chi Liu
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore;
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Vishal Jhanji
- Corneal Regeneration Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (M.S.); (V.J.)
| | - Gary Hin-Fai Yam
- Corneal Regeneration Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (M.S.); (V.J.)
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore;
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Correspondence:
| |
Collapse
|
14
|
Thaung C, Davidson AE. Fuchs endothelial corneal dystrophy: current perspectives on diagnostic pathology and genetics-Bowman Club Lecture. BMJ Open Ophthalmol 2022; 7:bmjophth-2022-001103. [PMID: 36161831 PMCID: PMC9341215 DOI: 10.1136/bmjophth-2022-001103] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 11/18/2022] Open
Abstract
Fuchs endothelial corneal dystrophy (FECD) was first described over a century ago. Since then, we have learnt much about its clinical manifestations, surgical and non-surgical treatment, microscopic appearance and pathogenesis. Over the past decade, significant advances have been made with respect to our understanding of FECD genetics. This progress now enables us to appreciate that FECD in fact describes multiple entities with distinct underlying genetic causes. For example, an early-onset and rare form of the disease has been attributed to missense mutations in the COL8A2 gene, whereas the vast majority of late-onset cases can be attributed to a non-coding repeat expansion within the TCF4 gene.FECD is one of the most common indications for corneal transplantation. In recent years, attention has turned to alternative treatment techniques that do not depend on donor tissue supply. The design and development of these non-surgical treatment approaches have benefited from increased knowledge of pathogenesis.This review will cover our current knowledge about the histology and genetics of FECD, and how combining these interdisciplinary approaches might may improve diagnostic accuracy and aid the development of therapeutics for this common and visually disabling disease.
Collapse
Affiliation(s)
- Caroline Thaung
- Moorfields Eye Hospital, London, UK .,Department of Eye Pathology, University College London Institute of Ophthalmology, London, UK
| | - Alice E Davidson
- University College London Institute of Ophthalmology, London, UK
| |
Collapse
|
15
|
Yu FSX, Lee PSY, Yang L, Gao N, Zhang Y, Ljubimov AV, Yang E, Zhou Q, Xie L. The impact of sensory neuropathy and inflammation on epithelial wound healing in diabetic corneas. Prog Retin Eye Res 2022; 89:101039. [PMID: 34991965 PMCID: PMC9250553 DOI: 10.1016/j.preteyeres.2021.101039] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 02/08/2023]
Abstract
Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes, with several underlying pathophysiological mechanisms, some of which are still uncertain. The cornea is an avascular tissue and sensitive to hyperglycemia, resulting in several diabetic corneal complications including delayed epithelial wound healing, recurrent erosions, neuropathy, loss of sensitivity, and tear film changes. The manifestation of DPN in the cornea is referred to as diabetic neurotrophic keratopathy (DNK). Recent studies have revealed that disturbed epithelial-neural-immune cell interactions are a major cause of DNK. The epithelium is supplied by a dense network of sensory nerve endings and dendritic cell processes, and it secretes growth/neurotrophic factors and cytokines to nourish these neighboring cells. In turn, sensory nerve endings release neuropeptides to suppress inflammation and promote epithelial wound healing, while resident immune cells provide neurotrophic and growth factors to support neuronal and epithelial cells, respectively. Diabetes greatly perturbs these interdependencies, resulting in suppressed epithelial proliferation, sensory neuropathy, and a decreased density of dendritic cells. Clinically, this results in a markedly delayed wound healing and impaired sensory nerve regeneration in response to insult and injury. Current treatments for DPN and DNK largely focus on managing the severe complications of the disease. Cell-based therapies hold promise for providing more effective treatment for diabetic keratopathy and corneal ulcers.
Collapse
Affiliation(s)
- Fu-Shin X Yu
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| | - Patrick S Y Lee
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Lingling Yang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Nan Gao
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Yangyang Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Alexander V Ljubimov
- Departments of Biomedical Sciences and Neurosurgery, Cedars-Sinai Medical Center, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ellen Yang
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Lixin Xie
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.
| |
Collapse
|
16
|
Dong Q, Wu D, Li M, Dong W. Polysaccharides, as biological macromolecule-based scaffolding biomaterials in cornea tissue engineering: A review. Tissue Cell 2022; 76:101782. [PMID: 35339801 DOI: 10.1016/j.tice.2022.101782] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022]
Abstract
Corneal-related diseases and injuries are the leading causes of vision loss, estimated to affect over 10 million people worldwide. Currently, cadaveric corneal grafts are considered the gold standard of treatment to restore cornea-related vision. However, this treatment modality faces different challenges such as donor shortage and graft failure. Therefore, the need for alternative solutions continues to grow. Tissue engineering has dramatically progressed to produce artificial cornea implants in order to repair, regenerate, or replace the damaged cornea. In this regard, a variety of polysaccharides such as cellulose, chitosan, alginate, agarose, and hyaluronic acid have been widely explored as scaffolding biomaterials for the production of tissue-engineered cornea. These polymers are known for their excellent biocompatibility, versatile properties, and processability. Recent progress and future perspectives of polysaccharide-based biomaterials in cornea tissue engineering is reviewed here.
Collapse
Affiliation(s)
- Qiwei Dong
- School of medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Dingkun Wu
- Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian, Liaoning, China, 116024
| | - Moqiu Li
- Center for Cancer Prevention Research, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Wei Dong
- School of Mathematics Sciences, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
17
|
Abstract
Corneal endothelial cells (CECs) facilitate the function of maintaining the transparency of the cornea. Damage or dysfunction of CECs can lead to blindness, and the primary treatment is corneal transplantation. However, the shortage of cornea donors is a significant problem worldwide. Thus, cultured CEC therapy has been proposed and found to be a promising approach to overcome the lack of tissue supply. Unfortunately, CECs in humans rarely proliferate in vivo and, therefore, can be extremely challenging to culture in vitro. Several promising cell isolation and culture techniques have been proposed. Multiple factors affecting the success of cell expansion including donor characteristics, preservation and isolation methods, plating density, media preparation, transdifferentiation and biomarkers have been evaluated. However, there is no consensus on standard technique for CEC culture. This review aimed to determine the challenges and investigate potential options that would facilitate the standardization of CEC culture for research and therapeutic application.
Collapse
Affiliation(s)
- Rintra Wongvisavavit
- Institute of Ophthalmology, University College London, London, UK.,Faculty of Medicine & Public Health, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Mohit Parekh
- Institute of Ophthalmology, University College London, London, UK
| | - Sajjad Ahmad
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Julie T Daniels
- Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
18
|
Park S, Leonard BC, Raghunathan VK, Kim S, Li JY, Mannis MJ, Murphy CJ, Thomasy SM. Animal models of corneal endothelial dysfunction to facilitate development of novel therapies. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1271. [PMID: 34532408 PMCID: PMC8421955 DOI: 10.21037/atm-20-4389] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022]
Abstract
Progressive corneal endothelial disease eventually leads to corneal edema and vision loss due to the limited regenerative capacity of the corneal endothelium in vivo and is a major indication for corneal transplantation. Despite the relatively high success rate of corneal transplantation, there remains a pressing global clinical need to identify improved therapeutic strategies to address this debilitating condition. To evaluate the safety and efficacy of novel therapeutics, there is a growing demand for pre-clinical animal models of corneal endothelial dysfunction. In this review, experimentally induced, spontaneously occurring and genetically modified animal models of corneal endothelial dysfunction are described to assist researchers in making informed decisions regarding the selection of the most appropriate animal models to meet their research goals.
Collapse
Affiliation(s)
- Sangwan Park
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Brian C. Leonard
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Vijay Krishna Raghunathan
- The Ocular Surface Institute, College of Optometry, University of Houston, Houston, TX, USA
- Department of Basic Sciences, University of Houston, Houston, TX, USA
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX, USA
| | - Soohyun Kim
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Jennifer Y. Li
- Department of Ophthalmology & Vision Science, School of Medicine, University of California Davis, Davis, CA, USA
| | - Mark J. Mannis
- Department of Ophthalmology & Vision Science, School of Medicine, University of California Davis, Davis, CA, USA
| | - Christopher J. Murphy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
- Department of Ophthalmology & Vision Science, School of Medicine, University of California Davis, Davis, CA, USA
| | - Sara M. Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
- Department of Ophthalmology & Vision Science, School of Medicine, University of California Davis, Davis, CA, USA
| |
Collapse
|
19
|
Li R, Qu Y, Li X, Tao Y, Yang Q, Wang J, Diao Y, Li Q, Fang Y, Huang Y, Wang L. Molecular Hydrogen Attenuated N-methyl-N-Nitrosourea Induced Corneal Endothelial Injury by Upregulating Anti-Apoptotic Pathway. Invest Ophthalmol Vis Sci 2021; 62:2. [PMID: 34196654 PMCID: PMC8267183 DOI: 10.1167/iovs.62.9.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Previous work by our group has demonstrated the value of N-methyl-N-nitrosourea (MNU)-induced corneal endothelial decompensation in animal models. The aim of this study was to investigate the effect of molecular hydrogen (H2) on MNU-induced corneal endothelial cell (CEC) injury and the underlying mechanism. Methods MNU-induced animal models of CEC injury were washed with hydrogen-rich saline (HRS) for 14 days. Immunofluorescence staining, immunohistochemical staining, and corneal endothelial assessment were applied to determine architectural and cellular changes on the corneal endothelium following HRS treatment. MNU-induced cell models of CEC injury were co-cultured with H2. The effect of H2 was examined using morphological and functional assays. Results It was shown that MNU could inhibit the proliferation and specific physiological functions of CECs by increasing apoptosis and decreasing the expression of ZO-1 and Na+/K+-ATPase, whereas H2 improved the proliferation and physiological function of CECs by anti-apoptosis. Cell experiments further confirmed that H2 could reverse MNU damage to CECs by decreasing oxidative stress injury, interfering with the NF-κB/NLRP3 pathway and the FOXO3a/p53/p21 pathway. Conclusions This study suggests that topical application of H2 could protect CECs against corneal damage factors through anti-apoptotic effect, reduce the incidence and severity of corneal endothelial decompensation, and maintain corneal transparency.
Collapse
Affiliation(s)
- Runpu Li
- Medical School of Chinese PLA, Beijing, China.,Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yingxin Qu
- Department of Ophthalmology, Chinese Aerospace 731 Hospital, Beijing, China
| | - Xiaoqi Li
- Medical School of Chinese PLA, Beijing, China.,Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ye Tao
- Department of Ophthalmology, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, China
| | - Qinghua Yang
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Junyi Wang
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yumei Diao
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qian Li
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yifan Fang
- Medical School of Chinese PLA, Beijing, China.,Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yifei Huang
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Liqiang Wang
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
20
|
Fujimoto H, Setoguchi Y, Kiryu J. The ROCK Inhibitor Ripasudil Shows an Endothelial Protective Effect in Patients With Low Corneal Endothelial Cell Density After Cataract Surgery. Transl Vis Sci Technol 2021; 10:18. [PMID: 34003995 PMCID: PMC8083109 DOI: 10.1167/tvst.10.4.18] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose In the field of regenerative medicine, Rho kinase inhibitors (ROCK inhibitors) show a protective effect on the corneal endothelium and promote effective healing in acute surgical wounds. In this study, we investigated the effectiveness of eyedrops containing ripasudil, a ROCK inhibitor approved in Japan for therapeutic use for glaucoma. Methods In this retrospective observational study, 13 glaucoma patients (16 eyes) were treated with 0.4% ripasudil eyedrops twice a day after cataract surgery. The control group comprised 13 patients (17 eyes). The averaged corneal endothelial cell density from one central and four paracentral points was <1500/mm2 (range, 527 to 1439/mm2). Results The mean rate of increase in the thinnest corneal thickness one week after surgery was 1.25% in the ripasudil group, which was significantly lower than the 5.97% increase observed in the control group (P = 0.0037). The mean endothelial cell density loss 90 to 120 days after surgery, excluding bullous keratopathy patients for whom measurements were not possible was -4.5% in the ripasudil group, which was significantly lower than in control group (14.1%; P = 0.0003). Conclusions The results suggest that ripasudil may help maintain corneal endothelial functional integrity and reduce cell loss after cataract surgery in patients with low corneal endothelial cell density, suggesting that it may be more broadly useful for protection of the corneal endothelium after intraocular surgery. Translational Relevance The clinically approved ROCK inhibitor ripasudil formulated as an eye drop for glaucoma has a corneal endothelial protective effect in cataract surgery for patients with low corneal endothelial cell density.
Collapse
Affiliation(s)
- Hisataka Fujimoto
- Department of Ophthalmology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Yoshinao Setoguchi
- Department of Ophthalmology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Junichi Kiryu
- Department of Ophthalmology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| |
Collapse
|
21
|
Shen L, Sun P, Du L, Zhu J, Ju C, Guo H, Wu X. Long-Term Observation and Sequencing Analysis of SKPs-Derived Corneal Endothelial Cell-Like Cells for Treating Corneal Endothelial Dysfunction. Cell Transplant 2021; 30:9636897211017830. [PMID: 34053246 PMCID: PMC8182626 DOI: 10.1177/09636897211017830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Corneal endothelial dysfunction is a principal cause of visual deficiency. Corneal transplantation is the most effective treatment for corneal endothelial dysfunction. However, a severe shortage of available donor corneas or human corneal endothelial cells (HCECs) remains a global challenge. Previously, we acquired corneal endothelial cell-like cells (CEC-like cells) derived from human skin-derived precursors (SKPs). CEC-like cells were injected into rabbit and monkey corneal endothelial dysfunction models and exerted excellent therapeutic effect. In this study, we prolonged the clinical observation in the monkey experiment for 2 years. Polymerase chain reaction (PCR) and DNA sequencing were carried out to confirm the existence of CEC-like cells. Histological examinations were carried out to show the corneal morphology. Further transcriptome sequencing was also carried out on HCEC, CEC-like cells before transplantation and after transplantation. We found that the monkeys cornea remained transparent and normal thickness. The total endothelial cell density decreased gradually, but tended to be stable and remained in a normal range during 2-year observation. The CEC-like cells persist during observation and could adapt to the microenvironment after transplantation. The gene expression pattern of CEC-like cells was similar to HCEC and changed slightly after transplantation. In conclusion, this study presented a brand-new insight into CEC-like cells and further provided a promising prospect of cell-based therapy for corneal endothelial dysfunction. The renewable cell source, novel derivation method and simple treatment strategy may be clinically applied in regenerative medicine in the future.
Collapse
Affiliation(s)
- Lin Shen
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Peng Sun
- Department of Ophthalmology, The affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Liqun Du
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jing Zhu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Chengqun Ju
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Hui Guo
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xinyi Wu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
22
|
He Z, Okumura N, Sato M, Komori Y, Nakahara M, Gain P, Koizumi N, Thuret G. Corneal endothelial cell therapy: feasibility of cell culture from corneas stored in organ culture. Cell Tissue Bank 2021; 22:551-562. [PMID: 33860873 DOI: 10.1007/s10561-021-09918-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/23/2021] [Indexed: 12/13/2022]
Abstract
In 2013, a clinical trial was initiated to investigate cell therapy for the treatment of corneal endothelial decompensation. Cultivating human corneal endothelial cells (CECs) while maintaining their functional phenotype is challenging; therefore, establishment of a confirmed protocol is pivotal for obtaining approval from regulatory authorities for use of cellular therapy products. In this study, we evaluated organ culture (OC) as a storage method for donor corneas used as a raw material for establishing CEC cultures. OC allows storage of corneal tissue for conventional corneal transplantation at 31-37 °C for up to 5 weeks, whereas storage at 4 °C is limited to 2 weeks. We investigated 20 pairs of corneas: one cornea of each pair was stored in OC and the other in cold storage for one week before CEC culture. In 15/20 cases, the CECs assumed a hexagonal sheet-like monolayer structure and expressed endothelial function-related markers. CECs were also obtained from OC corneas that had been stored for 1 (n = 19) and 2 (n = 7) months. As a further test, CECs were cultivated from 5 OC corneas that had been transported from France to Japan. In all cases, these corneas, even after international transport, generated CECs that formed hexagonal monolayers with clinically applicable and sufficiently high cell densities. In conclusion, the CEC cultures required for endothelial cell therapy can be obtained from OC corneas without changing the standard storage operating procedures of the eye banks.
Collapse
Affiliation(s)
- Zhiguo He
- Corneal Graft Biology, Engineering and Imaging Laboratory, BiiGC, EA2521, Faculty of Medicine, Jean Monnet University, 10 rue de la Marandière, Saint-Priest en Jarez, 42270, Saint-Etienne, France
| | - Naoki Okumura
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe-city, Kyoto, 610-0394, Japan
| | - Masakazu Sato
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe-city, Kyoto, 610-0394, Japan
| | - Yuya Komori
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe-city, Kyoto, 610-0394, Japan
| | - Makiko Nakahara
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe-city, Kyoto, 610-0394, Japan
| | - Philippe Gain
- Corneal Graft Biology, Engineering and Imaging Laboratory, BiiGC, EA2521, Faculty of Medicine, Jean Monnet University, 10 rue de la Marandière, Saint-Priest en Jarez, 42270, Saint-Etienne, France.,Ophthalmology Department, University Hospital, Saint-Etienne, France
| | - Noriko Koizumi
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe-city, Kyoto, 610-0394, Japan
| | - Gilles Thuret
- Corneal Graft Biology, Engineering and Imaging Laboratory, BiiGC, EA2521, Faculty of Medicine, Jean Monnet University, 10 rue de la Marandière, Saint-Priest en Jarez, 42270, Saint-Etienne, France. .,Ophthalmology Department, University Hospital, Saint-Etienne, France.
| |
Collapse
|
23
|
Transcriptome dataset of human corneal endothelium based on ribosomal RNA-depleted RNA-Seq data. Sci Data 2020; 7:407. [PMID: 33219220 PMCID: PMC7680133 DOI: 10.1038/s41597-020-00754-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
The corneal endothelium maintains corneal transparency; consequently, damage to this endothelium by a number of pathological conditions results in severe vision loss. Publicly available expression databases of human tissues are useful for investigating the pathogenesis of diseases and for developing new therapeutic modalities; however, databases for ocular tissues, and especially the corneal endothelium, are poor. Here, we have generated a transcriptome dataset from the ribosomal RNA-depleted total RNA from the corneal endothelium of eyes from seven Caucasians without ocular diseases. The results of principal component analysis and correlation coefficients (ranged from 0.87 to 0.96) suggested high homogeneity of our RNA-Seq dataset among the samples, as well as sufficient amount and quality. The expression profile of tissue-specific marker genes indicated only limited, if any, contamination by other layers of the cornea, while the Smirnov-Grubbs test confirmed the absence of outlier samples. The dataset presented here should be useful for investigating the function/dysfunction of the cornea, as well as for extended transcriptome analyses integrated with expression data for non-coding RNAs. Measurement(s) | RNA | Technology Type(s) | RNA sequencing | Factor Type(s) | sex | Sample Characteristic - Organism | Homo sapiens |
Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.13186868
Collapse
|
24
|
Yu F, Zhang W, Yan C, Yan D, Zhou M, Chen J, Zhao X, Zhu A, Zhou J, Liu H, Sun H, Fu Y. PAX6, modified by SUMOylation, plays a protective role in corneal endothelial injury. Cell Death Dis 2020; 11:683. [PMID: 32826860 PMCID: PMC7442823 DOI: 10.1038/s41419-020-02848-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 11/21/2022]
Abstract
Treating corneal endothelial diseases tends to be challenging as human corneal endothelial cells (CECs) do not proliferate in vivo. The pathogenesis or mechanisms underlying injured CECs need further studies. The abnormal expression of PAX6, which is an essential transcription factor for corneal homeostasis, exhibits corneal endothelial defects. However, the effects of PAX6 protein involved in corneal endothelial wound process are still unknown. Here, we found the upregulated protein levels of PAX6 in human corneal endothelial monolayer after injury; the expression of PAX6 also increased in murine and rat corneal endothelium injury models. Enforced PAX6 expression could alleviate the damages to CECs via regulating permeability by prompting cellular tight junction. In addition, SUMOylation mainly happened on both K53 and K89 residues of 48-kD PAX6 (the longest and main isoform expressed in cornea), and de-SUMOylation promoted the stability of PAX6 protein in vitro. In CECs of SENP1+/− mice, increased SUMOylation levels leading to instability and low expression of PAX6, delayed the repair of CECs after injury. Furthermore, overexpression of PAX6 accelerated the rate of corneal endothelial repair of SENP1+/− mice. Our findings indicate that SENP1-mediated de-SUMOylation improving the stability of PAX6, amplifies the protective effects of PAX6 on corneal endothelial injuries, highlighting potentials of PAX6 and/or SUMOylation to be used as a treatment target for corneal endothelial disorders.
Collapse
Affiliation(s)
- Fei Yu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Weijie Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Chenxi Yan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Dan Yan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Meng Zhou
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Junzhao Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Xiangteng Zhao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Aoxue Zhu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jie Zhou
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Huiqing Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Department of Pediatric Neurosurgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Hao Sun
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China.
| | - Yao Fu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China.
| |
Collapse
|
25
|
Fautsch MP, Wieben ED, Baratz KH, Bhattacharyya N, Sadan AN, Hafford-Tear NJ, Tuft SJ, Davidson AE. TCF4-mediated Fuchs endothelial corneal dystrophy: Insights into a common trinucleotide repeat-associated disease. Prog Retin Eye Res 2020; 81:100883. [PMID: 32735996 PMCID: PMC7988464 DOI: 10.1016/j.preteyeres.2020.100883] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/24/2020] [Accepted: 07/04/2020] [Indexed: 12/13/2022]
Abstract
Fuchs endothelial corneal dystrophy (FECD) is a common cause for heritable visual loss in the elderly. Since the first description of an association between FECD and common polymorphisms situated within the transcription factor 4 (TCF4) gene, genetic and molecular studies have implicated an intronic CTG trinucleotide repeat (CTG18.1) expansion as a causal variant in the majority of FECD patients. To date, several non-mutually exclusive mechanisms have been proposed that drive and/or exacerbate the onset of disease. These mechanisms include (i) TCF4 dysregulation; (ii) toxic gain-of-function from TCF4 repeat-containing RNA; (iii) toxic gain-of-function from repeat-associated non-AUG dependent (RAN) translation; and (iv) somatic instability of CTG18.1. However, the relative contribution of these proposed mechanisms in disease pathogenesis is currently unknown. In this review, we summarise research implicating the repeat expansion in disease pathogenesis, define the phenotype-genotype correlations between FECD and CTG18.1 expansion, and provide an update on research tools that are available to study FECD as a trinucleotide repeat expansion disease. Furthermore, ongoing international research efforts to develop novel CTG18.1 expansion-mediated FECD therapeutics are highlighted and we provide a forward-thinking perspective on key unanswered questions that remain in the field. FECD is a common, age-related corneal dystrophy. The majority of cases are associated with expansion of a CTG repeat (CTG18.1). FECD is the most common trinucleotide repeat expansion disease in humans. Evidence supports multiple molecular mechanisms underlying the pathophysiology. Novel CTG18.1-targeted therapeutics are in development.
Collapse
Affiliation(s)
- Michael P Fautsch
- Department of Ophthalmology, 200 1st St SW, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Eric D Wieben
- Department of Biochemistry and Molecular Biology, 200 1st St SW, Mayo Clinic, Rochester, MN, USA.
| | - Keith H Baratz
- Department of Ophthalmology, 200 1st St SW, Mayo Clinic, Rochester, MN, 55905, USA.
| | | | - Amanda N Sadan
- University College London Institute of Ophthalmology, London, ECIV 9EL, UK.
| | | | - Stephen J Tuft
- University College London Institute of Ophthalmology, London, ECIV 9EL, UK; Moorfields Eye Hospital, London, EC1V 2PD, UK.
| | - Alice E Davidson
- University College London Institute of Ophthalmology, London, ECIV 9EL, UK.
| |
Collapse
|
26
|
Revisiting Existing Evidence of Corneal Endothelial Progenitors and Their Potential Therapeutic Applications in Corneal Endothelial Dysfunction. Adv Ther 2020; 37:1034-1048. [PMID: 32002810 DOI: 10.1007/s12325-020-01237-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE A recent successful clinical trial demonstrated that a less invasive cell-injection procedure is a viable medical modality for treating corneal endothelial dystrophy. This medical advance still relies on human corneal endothelial cell (HCEC) sources derived from rare cornea donations. The progenitor of the corneal endothelium, which has the characteristics of active proliferation and lineage restriction, will be an ideal cell source for expansion ex vivo. However, the distribution of progenitor-like cells in the corneal endothelial sheet has been under debate for more than a decade. METHODS This paper re-examines the scientific evidence of the existence of human corneal endothelial progenitors (HCEPs) from the aspects of (1) the origin of cornea formation during ocular development, (2) manifestations from clinical studies, and (3) the distinctive properties of ex vivo-cultured subpopulations. RESULTS The discrepancies regarding different types of progenitor-like cells in various locations of the cornea are based on the fact that the corneal endothelium is derived from different cell types with multiple origins during corneal formation. CONCLUSIONS Resolving this long-standing issue in corneal biology will enable various types of progenitors to be isolated and their potencies regarding the formation of functional endothelial cells to be examined. Additionally, an effective niche system for quantitatively producing therapeutic cells can be formulated to satisfy the burning need associated with corneal endothelial dystrophy in the future.
Collapse
|