1
|
Amutha V, Deepak P, Tamilselvan C, Tamilselvan L, Selvaraj R, Guru A, Balasubramanian B, Thiyagaraulu N, Aiswarya D, Vellingiri MM, Prasannakumar C, Shaik MR, Hussain SA. Green Synthesis of Cymodocea serrulata Zinc Oxide Nanoparticles for Sustainable Antibacterial, and Mosquito Control and their Toxicity to non-target Organisms. 3 Biotech 2025; 15:159. [PMID: 40352769 PMCID: PMC12064551 DOI: 10.1007/s13205-025-04312-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 04/05/2025] [Indexed: 05/14/2025] Open
Abstract
Mosquito-borne diseases such as dengue, malaria, and filariasis have become serious global health concerns due to their contagious nature and widespread prevalence. In this study, ZnO NPs biosynthesized using the seagrass extract of Cymodocea serrulata (CS-ZnO NPs) were prepared from the leaf part and evaluated for their toxicity potential against the larvae, pupae, and adults of various mosquito species, including Aedes aegypti, Culex quinquefasciatus, and Anopheles stephensi. The CS-ZnO NPs were characterized using UV-Vis spectroscopy, XRD, FTIR, FE-SEM, EDX, and zeta potential analyses. The CS-ZnO NPs demonstrated significant antibacterial activity against tested bacterial strains: Pseudomonas otitidis (22 ± 0.81 mm), Enterococcus faecalis (18.66 ± 0.47 mm), Bacillus subtilis (14 ± 0.81 mm), and Serratia marcescens (9.66 ± 0.47 mm). Among the mosquito species tested, A. stephensi exhibited the most effective toxicity response. The ovicidal activity of CS-ZnO NPs against A. stephensi showed 12% egg hatchability at a concentration of 100 µg/mL. Furthermore, the larvicidal efficacy of CS-ZnO NPs against A. stephensi displayed strong lethal effects, with LC50 and LC90 values (in µg/mL) recorded as follows: 2.79 and 72.86 for the first instar, 5.89 and 209.93 for the second instar, 7.38 and 328.43 for the third instar, 9.56 and 435.36 for the fourth instar larvae; 8.18 and 357.68 for pupae; and 4.51 and 238.96 for adults. Biosafety assessments were conducted on Danio rerio embryos and Artemia salina nauplii to confirm the non-toxic nature of CS-ZnO NPs. Overall, C. serrulata-synthesized CS-ZnO NPs present a promising, eco-friendly alternative for controlling mosquitoes and eradicating deadly mosquito-borne diseases such as filariasis, dengue, and malaria.
Collapse
Affiliation(s)
- Vadivel Amutha
- Department of Entomology, Bioscience Research Foundation, Sengadu, Kanchipuram, Tamil Nadu 602 002 India
| | - Paramasivam Deepak
- Department of Life Sciences, Kristu Jayanti College (Autonomous), Bengaluru, Karnataka 560077 India
| | - Chidambaram Tamilselvan
- Department of Entomology, Bioscience Research Foundation, Sengadu, Kanchipuram, Tamil Nadu 602 002 India
- Animal House Facility, Bioscience Research Foundation, Sengadu, Kanchipuram, Tamil Nadu 602 002 India
| | - Latha Tamilselvan
- Department of Information Technology, B.S. Abdur Rahman Crescent Institute of Science & Technology, (Formerly Crescent Engineering College), Vandalur, Chennai, Tamil Nadu 600048 India
| | - Ramasamy Selvaraj
- Animal House Facility, Bioscience Research Foundation, Sengadu, Kanchipuram, Tamil Nadu 602 002 India
| | - Ajay Guru
- Chitkara University Institute of Engineering and Technology, Chitkara University, Chennai, Punjab India
| | | | - Nathiya Thiyagaraulu
- Department of Life Sciences, Kristu Jayanti College (Autonomous), Bengaluru, Karnataka 560077 India
| | - Dilipkumar Aiswarya
- Department of Biotechnology, AVS College of Arts and Science, Omalur, Chikkanampatty, Salem, 636309 India
| | - Manon Mani Vellingiri
- Department of Life Sciences, Kristu Jayanti College (Autonomous), Bengaluru, Karnataka 560077 India
| | - Chinnamani Prasannakumar
- Department of Life Sciences, Kristu Jayanti College (Autonomous), Bengaluru, Karnataka 560077 India
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, 11451 Riyadh, Saudi Arabia
| | - Shaik Althaf Hussain
- Department of Zoology, College of Science, King Saud University, P.O. Box - 2454, 11451 Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Lokole PB, Byamungu GG, Mutwale PK, Ngombe NK, Mudogo CN, Krause RWM, Nkanga CI. Plant-based nanoparticles targeting malaria management. Front Pharmacol 2024; 15:1440116. [PMID: 39185312 PMCID: PMC11341498 DOI: 10.3389/fphar.2024.1440116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/18/2024] [Indexed: 08/27/2024] Open
Abstract
Malaria is one of the most devastating diseases across the globe, particularly in low-income countries in Sub-Saharan Africa. The increasing incidence of malaria morbidity is mainly due to the shortcomings of preventative measures such as the lack of vaccines and inappropriate control over the parasite vector. Additionally, high mortality rates arise from therapeutic failures due to poor patient adherence and drug resistance development. Although the causative pathogen (Plasmodium spp.) is an intracellular parasite, the recommended antimalarial drugs show large volumes of distribution and low-to no-specificity towards the host cell. This leads to severe side effects that hamper patient compliance and promote the emergence of drug-resistant strains. Recent research efforts are promising to enable the discovery of new antimalarial agents; however, the lack of efficient means to achieve targeted delivery remains a concern, given the risk of further resistance development. New strategies based on green nanotechnologies are a promising avenue for malaria management due to their potential to eliminate malaria vectors (Anopheles sp.) and to encapsulate existing and emerging antimalarial agents and deliver them to different target sites. In this review we summarized studies on the use of plant-derived nanoparticles as cost-effective preventative measures against malaria parasites, starting from the vector stage. We also reviewed plant-based nanoengineering strategies to target malaria parasites, and further discussed the site-specific delivery of natural products using ligand-decorated nanoparticles that act through receptors on the host cells or malaria parasites. The exploration of traditionally established plant medicines, surface-engineered nanoparticles and the molecular targets of parasite/host cells may provide valuable insights for future discovery of antimalarial drugs and open new avenues for advancing science toward the goal of malaria eradication.
Collapse
Affiliation(s)
- Pathy B. Lokole
- Centre de Recherche en Nanotechnologies Appliquées aux Produits Naturels (CReNAPN), Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
- Centre d’Etudes des Substances Naturelles d’Origine Végétale (CESNOV), Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
- Center for Chemico- and Bio-Medicinal Research (CCBR), Department of Chemistry, Faculty of Sciences, Rhodes University, Grahamstown, Eastern Cape, South Africa
| | - Galilée G. Byamungu
- Centre de Recherche en Nanotechnologies Appliquées aux Produits Naturels (CReNAPN), Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
- Center for Chemico- and Bio-Medicinal Research (CCBR), Department of Chemistry, Faculty of Sciences, Rhodes University, Grahamstown, Eastern Cape, South Africa
- Department of Chemistry, Faculty of Sciences and Technology, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Paulin K. Mutwale
- Centre de Recherche en Nanotechnologies Appliquées aux Produits Naturels (CReNAPN), Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
- Centre d’Etudes des Substances Naturelles d’Origine Végétale (CESNOV), Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Nadège K. Ngombe
- Centre de Recherche en Nanotechnologies Appliquées aux Produits Naturels (CReNAPN), Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
- Centre d’Etudes des Substances Naturelles d’Origine Végétale (CESNOV), Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Celestin N. Mudogo
- Unit of Molecular Biology, Department of Basic Sciences, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Rui W. M. Krause
- Center for Chemico- and Bio-Medicinal Research (CCBR), Department of Chemistry, Faculty of Sciences, Rhodes University, Grahamstown, Eastern Cape, South Africa
| | - Christian I. Nkanga
- Centre de Recherche en Nanotechnologies Appliquées aux Produits Naturels (CReNAPN), Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| |
Collapse
|
3
|
Tufan-Cetin O, Cetin H. Use of micro and macroalgae extracts for the control of vector mosquitoes. PeerJ 2023; 11:e16187. [PMID: 37842039 PMCID: PMC10569164 DOI: 10.7717/peerj.16187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/06/2023] [Indexed: 10/17/2023] Open
Abstract
Mosquitoes are one of the most dangerous vectors of human diseases such as malaria, dengue, chikungunya, and Zika virus. Controlling these vectors is a challenging responsibility for public health authorities worldwide. In recent years, the use of products derived from living organisms has emerged as a promising approach for mosquito control. Among these living organisms, algae are of great interest due to their larvicidal properties. Some algal species provide nutritious food for larvae, while others produce allelochemicals that are toxic to mosquito larvae. In this article, we reviewed the existing literature on the larvicidal potential of extracts of micro- and macroalgae, transgenic microalgae, and nanoparticles of algae on mosquitoes and their underlying mechanisms. The results of many publications show that the toxic effects of micro- and macroalgae on mosquitoes vary according to the type of extraction, solvents, mosquito species, exposure time, larval stage, and algal components. A few studies suggest that the components of algae that have toxic effects on mosquitoes show through synergistic interaction between components, inhibition of feeding, damage to gut membrane cells, and inhibition of digestive and detoxification enzymes. In conclusion, algae extracts, transgenic microalgae, and nanoparticles of algae have shown significant larvicidal activity against mosquitoes, making them potential candidates for the development of new mosquito control products.
Collapse
Affiliation(s)
- Ozge Tufan-Cetin
- Department of Environmental Protection Technology, Vocational School of Technical Sciences, Akdeniz University, Antalya, Türkiye
| | - Huseyin Cetin
- Department of Biology, Faculty of Science, Akdeniz University, Antalya, Türkiye
| |
Collapse
|
4
|
Mathivanan D, Kamaraj C, Suseem SR, Gandhi PR, Malafaia G. Seaweed Sargassum wightii mediated preparation of TiO 2 nanoparticles, larvicidal activity against malaria and filariasis vectors, and its effect on non-target organisms. ENVIRONMENTAL RESEARCH 2023; 225:115569. [PMID: 36848976 DOI: 10.1016/j.envres.2023.115569] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/20/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Malaria and Lymphatic filariasis are considered significant public health concerns in several countries. As a researcher, controlling those mosquitos using safe and eco-friendly insecticides is essential. Thus, we aimed to explore the potential use of seaweed Sargassum wightii for the biosynthesis of TiO2 NPs and evaluate its efficiency in controlling disease-transmitting mosquito larvae (using Anopheles subpictus and Culex quinquefasciatus larvae as model systems (in vivo)) as well as its potential effect on non-target organisms (using Poecilia reticulata fish as an experimental model). XRD, FT-IR, SEM-EDAX, and TEM carried out the characterization of TiO2 NPs. It evaluated the larvicidal activity against the fourth instar larvae of A. subpictus and C. quinquefasciatus. The larvicidal mortality was observed after 24 h of exposure to S. wightii extract and TiO2 NPs. S. wightii synthesized TiO2 NPs show excellent activity against A. subpictus and C. quinquefasciatus (LC50 = 4.37 and 4.68; LC90 = 8.33 and 8.97; χ2 = 5.741 and 4.531) mg/L respectively. The GC-MS results indicate the presence of some important long-chain phytoconstituents like linoleic acid, palmitic acid, oleic acid methyl ester, and stearic acid, among others. Furthermore, when testing the possible toxicity of biosynthesized NPs in a non-target organism, no adverse effects were observed in Poecilia reticulata fish exposed for 24 h, considering the evaluated biomarkers. Thus, overall, our study results reveal that biosynthesized TiO2 NPs are an effective and exciting eco-friendly approach to controlling the A. subpictus and C. quinquefasciatus.
Collapse
Affiliation(s)
- D Mathivanan
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research and Virtual Education, SRM Institute of Science and Technology (SRMIST), Kattankulathur, 603203, Tamil Nadu, India.
| | - S R Suseem
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Pachiyappan Rajiv Gandhi
- Division of Nano-biotechnology, Department of Zoology, Auxilium College (Autonomous), Gandhi Nagar, 632 006, Vellore District, Tamil Nadu, India
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
5
|
Govindaraj M, Suresh M, Palaniyandi T, Viswanathan S, Wahab MRA, Baskar G, Surendran H, Ravi M, Sivaji A. Bio-fabrication of gold nanoparticles from brown seaweeds for anticancer activity against glioblastoma through invitro and molecular docking approaches. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
6
|
Kamaraj C, Karthi S, Reegan AD, Balasubramani G, Ramkumar G, Kalaivani K, Zahir AA, Deepak P, Senthil-Nathan S, Rahman MM, Md Towfiqul Islam AR, Malafaia G. Green synthesis of gold nanoparticles using Gracilaria crassa leaf extract and their ecotoxicological potential: Issues to be considered. ENVIRONMENTAL RESEARCH 2022; 213:113711. [PMID: 35728640 DOI: 10.1016/j.envres.2022.113711] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/02/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
The use of vegetal species for gold nanoparticles (AuNPs) biosynthesis can constitute an alternative to replacing the extensive use of several hazardous chemicals commonly used during NPs synthesis and, therefore, can reduce biological impacts induced by the release of these products into the natural environment. However, the "green nanoparticles" and/or "eco-friendly nanoparticles" label does not ensure that biosynthesized NPs are harmless to non-target organisms. Thus, we aimed to synthesize AuNPs from seaweed Gracilaria crassa aqueous extract through an eco-friendly, fast, one-pot synthetic route. The formation of spherical, stable, polycrystalline NPs with a diameter of 32.0 nm ± 4.0 nm (mean ±SEM) was demonstrated by UV-vis spectroscopy, field emission scanning electron microscopy, and high-resolution transmission electron microscopy, energy-dispersive X-ray and X-ray diffraction measurement, and Fourier-transform infrared spectroscopy analysis. In addition, different phytocomponents were identified in the biosynthesized AuNPs, using Gas Chromatography-Mass Spectrometry (GC-MS). However, both G. crassa aqueous extract and the biosynthesized AuNPs showed high ecotoxicity in Anopheles stephensi larvae exposed to different concentrations. Therefore, our study supports the potential of seaweed G. crassa as a raw material source for AuNPs biosynthesis while also shedding light on its ecotoxicological potential, which necessitates consideration of its risk to aquatic biota.
Collapse
Affiliation(s)
- Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research and Virtual Education, SRM Institute of Science and Technology (SRMIST), Kattankulathur, 603203, Tamil Nadu, India.
| | - Sengodan Karthi
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627 412, Tirunelveli, Tamil Nadu, India.
| | - Appadurai Daniel Reegan
- National Center for Disease Control, Bengaluru Branch, No:08, NTI Campus, Bellary Road, Bengaluru, 560 003, Karnataka, India.
| | - Govindasamy Balasubramani
- Division of Research & Innovation, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India.
| | - Govindaraju Ramkumar
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627 412, Tirunelveli, Tamil Nadu, India.
| | - Kandaswamy Kalaivani
- Post Graduate and Research Centre, Department of Zoology, Sri Parasakthi College for Women, Courtrallam, 627 802, Tirunelveli, Tamil Nadu, India.
| | - A Abduz Zahir
- Unit of Nanotechnology and Bioactive Natural Products, Post Graduate and Research Department of Zoology, C. Abdul Hakeem College (Autonomous), Melvisharam, 632 509, Vellore District, Tamil Nadu, India.
| | - Paramasivam Deepak
- Department of Biotechnology, Dr. N.G.P. Arts and Science College, Dr.N.G.P. - Kalapatti Road, Coimbatore, 641048, Tamil Nadu, India.
| | - Sengottayan Senthil-Nathan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627 412, Tirunelveli, Tamil Nadu, India.
| | - Md Mostafizur Rahman
- Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh; Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | | | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Programa in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
7
|
Manuahe C, Semuel MY, Adil EH, Naharia O. Mosquito Larvicides of Partial and Combinations Extract of Ethnobotanical Plant from North Sulawesi, Indonesia. Pak J Biol Sci 2022; 25:911-921. [PMID: 36404745 DOI: 10.3923/pjbs.2022.911.921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
<b>Background and Objective:</b> Diseases caused by microbes vectored by mosquitoes are still a health problem in tropical countries today. DHF and Malaria are the two primary diseases vectored by mosquitoes, the morbidity and mortality rates have increased in low countries until now. However, the best way to control these two diseases is to control vectors, namely mosquitoes. Research has been conducted to determine the bioactive content and larvicidal activity of local plant extracts of North Sulawesi. <b>Materials and Methods:</b> The clove and trumpet flower samples were obtained from Minahasa, while the nutmeg samples were obtained from Sitaro Regency. Empirically, people use plant parts to repel mosquitoes. Extraction of plant simplicia was carried out by the maceration method. Qualitative and quantitative methods carried out the phytochemical content analysis. Qualitative analysis uses Harborne's (1996) method while qualitative analysis uses the UV Vis Spectrophotometer method. Toxicity tests were carried out on mosquito larvae developed in the laboratory. <b>Results:</b> The results showed that combining clove leaf extract, nutmeg flesh extract and trumpet flower synergistically increased the bioactive content. Flavonoids increased in the combination of extracts compared to partial extracts. The combination of extracts showed the highest toxicity to mosquito larvae (LC<sub>50</sub>: 22.541 mg L<sup>1</sup>), while the lowest was the partial extract of clove leaves with LC<sub>50</sub> (54.965 mg L<sup>1</sup>). <b>Conclusion:</b> The combination of extracts showed the best toxicity activity on mosquito larvae. Research on bioactive characteristics and toxicity in adult mosquitoes needs to be carried out in the future.
Collapse
|
8
|
Viswanathan S, Palaniyandi T, Kannaki P, Shanmugam R, Baskar G, Rahaman AM, Paul LTD, Rajendran BK, Sivaji A. Biogenic synthesis of gold nanoparticles using red seaweed Champia parvula and its anti-oxidant and anticarcinogenic activity on lung cancer. PARTICULATE SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1080/02726351.2022.2074926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Sandhiya Viswanathan
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Deemed to be University, Chennai, India
| | - Thirunavukkarasu Palaniyandi
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Deemed to be University, Chennai, India
| | - P. Kannaki
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Deemed to be University, Chennai, India
| | - Rajeshkumar Shanmugam
- Department of Pharmacology, Saveetha Dental College and Hospital, SIMATS, Chennai, India
| | - Gomathy Baskar
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Deemed to be University, Chennai, India
| | - A. Mugip Rahaman
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Deemed to be University, Chennai, India
| | - L. Tharrun Daniel Paul
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Deemed to be University, Chennai, India
| | | | - Asha Sivaji
- Department of Biochemistry, DKM College for Women, Vellore, India
| |
Collapse
|
9
|
Martínez Rodríguez EJ, Evans P, Kalsi M, Rosenblatt N, Stanley M, Piermarini PM. Larvicidal Activity of Carbon Black against the Yellow Fever Mosquito Aedes aegypti. INSECTS 2022; 13:insects13030307. [PMID: 35323605 PMCID: PMC8954748 DOI: 10.3390/insects13030307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 12/04/2022]
Abstract
Simple Summary Nanoparticles have previously shown potential to control mosquito vectors. The present study examined whether carbon black, an industrial source of carbon-based nanoparticles (CNPs), was toxic to larvae of the yellow fever mosquito (Aedes aegypti). We found that exposing the first developmental stages of mosquito larvae to a modified form of carbon black EMPEROR® 1800 (E1800), caused concentration-dependent mortality within 48 h of exposure; however, the development of larvae exposed to sub-lethal concentrations of E1800 was not disrupted. Analyses of E1800 suspensions suggest this carbon black forms CNPs that coalesce into larger aggregations. Microscopic observations of dead larvae showed the presence of CNP aggregations in the digestive tract and on external structures associated with swimming, breathing, and food uptake. Our results suggest carbon black is a source of CNPs that may have potential use for treating sources of standing water that mosquitoes use as breeding sites. Abstract The yellow fever mosquito Aedes aegypti is one of the deadliest animals on the planet because it transmits several medically important arboviruses, including Zika, chikungunya, dengue, and yellow fever. Carbon-based nanoparticles (CNPs) derived from natural sources have previously been shown to have toxic effects on mosquito larvae and offer a potential alternative to chemical insecticides such as pyrethroids, for which mosquitoes have evolved resistance. However, CNPs derived from industrial sources, such as carbon black, have not previously been evaluated as larvicides. Here, we evaluate the effects of a commercially-available carbon black, EMPEROR® 1800 (E1800), on mortality and development of pyrethroid-susceptible (PS) and pyrethroid-resistant (PR) strains of Ae. aegypti. We found that E1800 exhibited concentration-dependent mortality against 1st instar larvae of both strains within the first 120 h after exposure, but after this period, surviving larvae did not show delays in their development to adults. Physical characterization of E1800 suspensions suggests that they form primary particles of ~30 nm in diameter that fuse into fundamental aggregates of ~170 nm in diameter. Notably, larvae treated with E1800 showed internal accumulation of E1800 in the gut and external accumulation on the respiratory siphon, anal papillae, and setae, suggesting a physical mode of toxic action. Taken together, our results suggest that E1800 has potential use as a larvicide with a novel mode of action for controlling PS and PR mosquitoes.
Collapse
Affiliation(s)
- Erick J. Martínez Rodríguez
- Ohio Agricultural Research and Development Center, Department of Entomology, The Ohio State University, Wooster, OH 44691, USA;
| | - Parker Evans
- Indiana Center for Regenerative Medicine & Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | | | | | | | - Peter M. Piermarini
- Ohio Agricultural Research and Development Center, Department of Entomology, The Ohio State University, Wooster, OH 44691, USA;
- Correspondence: ; Tel.: +1-330-263-3641
| |
Collapse
|
10
|
Ramalingam V. Multifunctionality of gold nanoparticles: Plausible and convincing properties. Adv Colloid Interface Sci 2019; 271:101989. [PMID: 31330396 DOI: 10.1016/j.cis.2019.101989] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/17/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022]
Abstract
In a couple of decades, nanotechnology has become a trending area in science due to it covers all subject that combines diverse range of fields including but not limited to chemistry, physics and medicine. Various metal and metal oxide nanomaterials have been developed for wide range applications. However, the application of gold nanostructures and nanoparticles has been received more attention in various biomedical applications. The unique property of gold nanoparticles (AuNPs) is surface plasmon resonance (SPR) that determine the size, shape and stability. The wide surface area of AuNPs eases the proteins, peptides, oligonucleotides, and many other compounds to tether and enhance the biological activity of AuNPs. AuNPs have multifunctionality including antimicrobial, anticancer, drug and gene delivery, sensing applications and imaging. This state-of-the-art review is focused on the role of unique properties of AuNPs in multifunctionality and its various applications.
Collapse
|
11
|
López-Miranda JL, Esparza R, Rosas G, Pérez R, Estévez-González M. Catalytic and antibacterial properties of gold nanoparticles synthesized by a green approach for bioremediation applications. 3 Biotech 2019; 9:135. [PMID: 30863714 PMCID: PMC6409132 DOI: 10.1007/s13205-019-1666-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 03/01/2019] [Indexed: 12/27/2022] Open
Abstract
In this work, we are proposing the green synthesis of gold nanoparticles (AuNPs) using aqueous extracts of A. triphylla and evaluating their antibacterial and catalytic properties. Characterization was performed by UV-Vis and FT-IR spectroscopies, X-ray diffraction, and transmission electron microscopy (TEM). Antibacterial activity of AuNPs was analyzed using E. coli and S. Aureus and catalytic activity was determined by the degradation of methylene blue and congo red. UV-Vis analysis showed an increase in AuNPs concentration by increasing the extract concentration, volume extract, and precursor salt concentration. The crystalline nature of AuNPs was corroborated by X-ray diffraction. TEM analysis showed nanoparticles with spherical morphology (mostly) and size between 40 and 60 nm. These results are novel because they showed a homogeneous morphology and a narrow size distribution which is difficult to obtain in green synthesis processes. Results of antibacterial activity showed inhibition zones of 11.3 mm and 10.6 mm for S. Aureus and E. coli, respectively, indicating the bactericidal capacity of the nanoparticles. The degradation periods for methylene blue and congo red were 5 and 11 min, respectively, which are very short compared with previous reports. These results are of great significance for catalytic applications. Therefore, A. triphylla extracts made possible AuNPs synthesis and the nanoparticles obtained can be used as catalytic and antibacterial materials for water remediation.
Collapse
Affiliation(s)
- J. Luis López-Miranda
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, 76230 Santiago de Querétaro, Querétaro Mexico
| | - R. Esparza
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, 76230 Santiago de Querétaro, Querétaro Mexico
| | - G. Rosas
- Instituto de Investigaciones Metalúrgicas, UMSNH, edificio U, ciudad universitaria, 58060 Morelia Michoacán, Mexico
| | - R. Pérez
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, P.O. Box 48-3, 62251 Cuernavaca Morelos, Mexico
| | - M. Estévez-González
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, 76230 Santiago de Querétaro, Querétaro Mexico
| |
Collapse
|