1
|
Kunni K, Langegård U, Ohlsson-Nevo E, Kristensen I, Sjövall K, Fessé P, Åkeflo L, Ahlberg K, Fransson P. Symptom experience and symptom distress in patients with malignant brain tumor treated with proton therapy: A five-year follow-up study. Tech Innov Patient Support Radiat Oncol 2024; 31:100269. [PMID: 39280778 PMCID: PMC11402412 DOI: 10.1016/j.tipsro.2024.100269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/15/2024] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
Background and purpose Since patients with primary brain tumor are expected to become long-term survivors, the prevention of long-term treatment-induced side effects is particularly important. This study aimed to explore whether symptom experience and symptom distress change over five years in adults with primary brain tumors treated with proton therapy. An additional aim was to explore whether symptom experience and symptom distress correlate. Materials and methods The study had a longitudinal observational design. Adult (≥18 years) patients (n = 170) with primary brain tumors treated with proton therapy were followed over five years. Symptom experience and symptom distress were evaluated using the patient-reported Radiotherapy-Related Symptom Assessment Scale. Data from baseline, 1, 12, and 60 months were analyzed using non-parametric tests. Results Of the 170 patients, the levels of symptoms and symptom distress were low. Fatigue increased at 1 (p=0.005) and 12 months (p=0.025) and was the most frequent symptom from baseline to 60 months' follow-up. Cognitive impairment increased at 12 (p=0.027) and 60 months (p<0.001) and was the most distressing symptom at 60 months' follow-up. There were significant, moderate to strong, correlations at all time points between symptom experience and symptom distress of fatigue, insomnia, pain, dyspnea, cognitive impairment, worry, anxiety, nausea, sadness, constipation, and skin reactions. Conclusion Symptom experience and symptom distress changed in intensity over time with cognitive impairment as the most distressing symptom at 60 months. Future research should focus on identifying effective interventions aimed at alleviating these symptoms and reducing symptom distress for this vulnerable group of patients.
Collapse
Affiliation(s)
- Kristin Kunni
- Skandion Clinic, Uppsala, Sweden
- Department of Nursing, Umeå University, Umeå, Sweden
| | - Ulrica Langegård
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg Sweden
- Institute of Health and Care Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Emma Ohlsson-Nevo
- Department of Oncology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- University Health Care Research Center, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Ingrid Kristensen
- Department of Haematology, Oncology and Radiation Physics, Lund University Hospital, Lund, Sweden
- Department of Clinical Sciences, Oncology and Pathology, Lund University, Lund, Sweden
| | - Katarina Sjövall
- Department of Health and Society, Kristianstad University, Kristianstad, Sweden
| | - Per Fessé
- Institute of Health and Care Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
- Centre for Research and Development, Uppsala University/Region Gävleborg, Gävle, Sweden
| | - Linda Åkeflo
- Institute of Health and Care Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Karin Ahlberg
- Institute of Health and Care Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Per Fransson
- Department of Nursing, Umeå University, Umeå, Sweden
| |
Collapse
|
2
|
Gupta A, Subramani V, Kumar R, Kareem R, Vishwanathan B, Sharma DN. Revolutionizing cancer treatment in India: Evaluating the unmet need, economics, and a roadmap for project implementation of particle therapy. Cancer 2024; 130:2528-2537. [PMID: 38373062 DOI: 10.1002/cncr.35233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/01/2024] [Accepted: 01/17/2024] [Indexed: 02/21/2024]
Abstract
INTRODUCTION This study aims to quantitatively assess eligible patients and project the demand for particle therapy facilities in India from 2020 to 2040. In addition, an economic analysis evaluates the financial feasibility of implementing this technology. The study also examines the prospective benefits and challenges of adopting this technology in India. METHODOLOGY Cancer incidence and projected trends were analyzed for pediatric patients using the Global Childhood Cancer microsimulation model and adult patients using the Globocan data. Economic cost evaluation is performed for large-scale combined particle (carbon and proton-three room fixed-beam), large-scale proton (one gantry and two fixed-beam), and small-scale proton (one gantry) facility. RESULTS By 2040, the estimated number of eligible patients for particle therapy is projected to reach 161,000, including approximately 14,000 pediatric cases. The demand for particle therapy facilities is projected to rise from 81 to 97 in 2020 to 121 to 146 by 2040. The capital expenditure is estimated to be only 3.7 times that of a standard photon linear accelerator over a 30-year period. Notably, the treatment cost can be reduced to USD 400 to 800 per fraction, substantially lower than that in high-income countries (USD 1000 to 3000 per fraction). CONCLUSION This study indicates that, in the Indian scenario, all particle therapy models are cost-beneficial and feasible, with large-scale proton therapy being the most suitable. Despite challenges such as limited resources, space, a skilled workforce, referral systems, and patient affordability, it offers substantial benefits. These include the potential to treat many patients and convenient construction and operational costs. An iterative phased implementation strategy can effectively overcome these challenges, paving the way for the successful adoption of particle therapy in India. PLAIN LANGUAGE SUMMARY In India, the number of eligible patients benefiting from high-precision particle therapy technology is projected to rise till 2040. Despite high upfront costs, our study finds the long-term feasibility of all particle therapy models, potentially offering a substantial reduction in treatment cost compared to high-income countries. Despite challenges, India can succeed with an iterative phased approach.
Collapse
Affiliation(s)
- Anil Gupta
- Department of Radiation Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - V Subramani
- Department of Radiation Oncology, All India Institute of Medical Sciences, New Delhi & National Cancer Institute, Jhajjar, Haryana, India
| | - Rishabh Kumar
- Department of Radiation Oncology, Amrita Hospital, Faridabad, India
| | - Rafi Kareem
- Department of Medical Physics, Heidelberg Ion Therapy Center, Heidelberg, Germany
| | | | - Daya Nand Sharma
- Department of Radiation Oncology, All India Institute of Medical Sciences, New Delhi & National Cancer Institute, Jhajjar, Haryana, India
| |
Collapse
|
3
|
Amstutz F, Krcek R, Bachtiary B, Weber DC, Lomax AJ, Unkelbach J, Zhang Y. Treatment planning comparison for head and neck cancer between photon, proton, and combined proton-photon therapy - From a fixed beam line to an arc. Radiother Oncol 2024; 190:109973. [PMID: 37913953 DOI: 10.1016/j.radonc.2023.109973] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 09/25/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND AND PURPOSE This study investigates whether combined proton-photon therapy (CPPT) improves treatment plan quality compared to single-modality intensity-modulated radiation therapy (IMRT) or intensity-modulated proton therapy (IMPT) for head and neck cancer (HNC) patients. Different proton beam arrangements for CPPT and IMPT are compared, which could be of specific interest concerning potential future upright-positioned treatments. Furthermore, it is evaluated if CPPT benefits remain under inter-fractional anatomical changes for HNC treatments. MATERIAL AND METHODS Five HNC patients with a planning CT and multiple (4-7) repeated CTs were studied. CPPT with simultaneously optimized photon and proton fluence, single-modality IMPT, and IMRT treatment plans were optimized on the planning CT and then recalculated and reoptimized on each repeated CT. For CPPT and IMPT, plans with different degrees of freedom for the proton beams were optimized. Fixed horizontal proton beam line (FHB), gantry-like, and arc-like plans were compared. RESULTS The target coverage for CPPT without adaptation is insufficient (average V95%=88.4 %), while adapted plans can recover the initial treatment plan quality for target (average V95%=95.5 %) and organs-at-risk. CPPT with increased proton beam flexibility increases plan quality and reduces normal tissue complication probability of Xerostomia and Dysphagia. On average, Xerostomia NTCP reductions compared to IMRT are -2.7 %/-3.4 %/-5.0 % for CPPT FHB/CPPT Gantry/CPPT Arc. The differences for IMPT FHB/IMPT Gantry/IMPT Arc are + 0.8 %/-0.9 %/-4.3 %. CONCLUSION CPPT for HNC needs adaptive treatments. Increasing proton beam flexibility in CPPT, either by using a gantry or an upright-positioned patient, improves treatment plan quality. However, the photon component is substantially reduced, therefore, the balance between improved plan quality and costs must be further determined.
Collapse
Affiliation(s)
- Florian Amstutz
- Center for Proton Therapy, Paul Scherrer Institute, Switzerland; Department of Physics, ETH Zurich, Switzerland
| | - Reinhardt Krcek
- Center for Proton Therapy, Paul Scherrer Institute, Switzerland; Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | | | - Damien C Weber
- Center for Proton Therapy, Paul Scherrer Institute, Switzerland; Department of Radiation Oncology, University Hospital Zurich, Switzerland; Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Antony J Lomax
- Center for Proton Therapy, Paul Scherrer Institute, Switzerland; Department of Physics, ETH Zurich, Switzerland
| | - Jan Unkelbach
- Department of Radiation Oncology, University Hospital Zurich, Switzerland
| | - Ye Zhang
- Center for Proton Therapy, Paul Scherrer Institute, Switzerland.
| |
Collapse
|
4
|
Yan S, Ngoma TA, Ngwa W, Bortfeld TR. Global democratisation of proton radiotherapy. Lancet Oncol 2023; 24:e245-e254. [PMID: 37269856 DOI: 10.1016/s1470-2045(23)00184-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/05/2023] [Accepted: 04/19/2023] [Indexed: 06/05/2023]
Abstract
Proton radiotherapy is an advanced treatment option compared with conventional x-ray treatment, delivering much lower doses of radiation to healthy tissues surrounding the tumour. However, proton therapy is currently not widely available. In this Review, we summarise the evolution of proton therapy to date, together with the benefits to patients and society. These developments have led to an exponential growth in the number of hospitals using proton radiotherapy worldwide. However, the gap between the number of patients who should be treated with proton radiotherapy and those who have access to it remains large. We summarise the ongoing research and development that is contributing to closing this gap, including the improvement of treatment efficiency and efficacy, and advances in fixed-beam treatments that do not require an enormously large, heavy, and costly gantry. The ultimate goal of decreasing the size of proton therapy machines to fit into standard treatment rooms appears to be within reach, and we discuss future research and development opportunities to achieve this goal.
Collapse
Affiliation(s)
- Susu Yan
- Division of Radiation Biophysics, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Twalib A Ngoma
- Department Clinical Oncology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Wilfred Ngwa
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Information and Sciences, ICT University, Yaoundé, Cameroon
| | - Thomas R Bortfeld
- Division of Radiation Biophysics, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Sjövall K, Langegård U, Fransson P, Nevo-Ohlsson E, Kristensen I, Ahlberg K, Johansson B. Evaluating patient reported outcomes and experiences in a novel proton beam clinic - challenges, activities, and outcomes of the ProtonCare project. BMC Cancer 2023; 23:132. [PMID: 36759789 PMCID: PMC9909877 DOI: 10.1186/s12885-023-10586-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND The ProtonCare Study Group (PCSG) was formed with the purpose to develop and implement a framework for evaluation of proton beam therapy (PBT) and the related care at a novel clinic (Skandionkliniken), based on patient reported data. METHOD A logic model framework was used to describe the process of development and implementation of a structured plan for evaluation of PBT for all diagnoses based on patient reported data. After the mission for the project was determined, meetings with networks and stakeholders were facilitated by PCSG to identify assumptions, resources, challenges, activities, outputs, outcomes, and outcome indicators. RESULT This paper presents the challenges and accomplishments PCSG made so far. We describe required resources, activities, and accomplished results. The long-term outcomes that were outlined as a result of the process are two; 1) Improved knowledge about health outcomes of patients that are considered for PBT and 2) The findings will serve as a base for clinical decisions when patients are referred for PBT. CONCLUSION Using the logical model framework proved useful in planning and managing the ProtonCare project. As a result, the work of PCSG has so far resulted in long-lasting outcomes that creates a base for future evaluation of patients' perspective in radiotherapy treatment in general and in PBT especially. Our experiences can be useful for other research groups facing similar challenges. Continuing research on patients´ perspective is a central part in ongoing and future research. Collaboration, cooperation, and coordination between research groups/networks from different disciplines are a significant part of the work aiming to determine the more precise role of PBT in future treatment options.
Collapse
Affiliation(s)
- K Sjövall
- Faculty of Health Sciences, Kristianstad University, SE-291 88, Kristianstad, Sweden.
| | - U Langegård
- grid.8761.80000 0000 9919 9582Institute of Health and Care Sciences, Göteborg University, Box 457, SE- 405 30 Göteborg, Sweden
| | - P Fransson
- grid.12650.300000 0001 1034 3451Department of Nursing, Umeå University, SE-90 187 Umeå, Sweden
| | - E Nevo-Ohlsson
- grid.15895.300000 0001 0738 8966School of Health Sciences, Örebro University, SE-701 82 Örebro, Sweden
| | - I Kristensen
- grid.4514.40000 0001 0930 2361Systemic Radiation Therapy, Lund University, SE-221 00 Lund, Sweden
| | - K Ahlberg
- grid.8761.80000 0000 9919 9582Institute of Health and Care Sciences, Göteborg University, Box 457, SE- 405 30 Göteborg, Sweden
| | - B Johansson
- grid.8993.b0000 0004 1936 9457Blod- Och Tumörsjukdomar Administration, Uppsala University, SE- 51 85 Uppsala, Sweden
| |
Collapse
|
6
|
Yu NY, DeWees TA, Voss MM, Breen WG, Chiang JS, Ding JX, Daniels TB, Owen D, Olivier KR, Garces YI, Park SS, Sarkaria JN, Yang P, Savvides PS, Ernani V, Liu W, Schild SE, Merrell KW, Sio TT. Cardiopulmonary Toxicity Following Intensity-Modulated Proton Therapy (IMPT) Versus Intensity-Modulated Radiation Therapy (IMRT) for Stage III Non-Small Cell Lung Cancer. Clin Lung Cancer 2022; 23:e526-e535. [PMID: 36104272 DOI: 10.1016/j.cllc.2022.07.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/14/2022] [Accepted: 07/24/2022] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Intensity-modulated proton therapy (IMPT) has the potential to reduce radiation dose to normal organs when compared to intensity-modulated radiation therapy (IMRT). We hypothesized that IMPT is associated with a reduced rate of cardiopulmonary toxicities in patients with Stage III NSCLC when compared with IMRT. METHODS We analyzed 163 consecutively treated patients with biopsy-proven, stage III NSCLC who received IMPT (n = 35, 21%) or IMRT (n = 128, 79%). Patient, tumor, and treatment characteristics were analyzed. Overall survival (OS), freedom-from distant metastasis (FFDM), freedom-from locoregional relapse (FFLR), and cardiopulmonary toxicities (CTCAE v5.0) were calculated using the Kaplan-Meier estimate. Univariate cox regressions were conducted for the final model. RESULTS Median follow-up of surviving patients was 25.5 (range, 4.6-58.1) months. Median RT dose was 60 (range, 45-72) Gy [RBE]. OS, FFDM, and FFLR were not different based on RT modality. IMPT provided significant dosimetric pulmonary and cardiac sparing when compared to IMRT. IMPT was associated with a reduced rate of grade more than or equal to 3 pneumonitis (HR 0.25, P = .04) and grade more than or equal to 3 cardiac events (HR 0.33, P = .08). Pre-treatment predicted diffusing capacity for carbon monoxide less than equal to 57% (HR 2.8, P = .04) and forced expiratory volume in the first second less than equal to 61% (HR 3.1, P = .03) were associated with an increased rate of grade more than or equal to 3 pneumonitis. CONCLUSIONS IMPT is associated with a reduced risk of clinically significant pneumonitis and cardiac events when compared with IMRT without compromising tumor control in stage III NSCLC. IMPT may provide a safer treatment option, particularly for high-risk patients with poor pretreatment pulmonary function.
Collapse
Affiliation(s)
- Nathan Y Yu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ
| | - Todd A DeWees
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Scottsdale, AZ
| | - Molly M Voss
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Scottsdale, AZ
| | - William G Breen
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN
| | | | - Julia X Ding
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ
| | - Thomas B Daniels
- Department of Radiation Oncology, NYU Langone Health, New York, NY
| | - Dawn Owen
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN
| | | | | | - Sean S Park
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN
| | - Ping Yang
- Department of Health Sciences Research, Mayo Clinic, Scottsdale, AZ
| | | | - Vinicius Ernani
- Department of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ
| | | | | | - Terence T Sio
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ.
| |
Collapse
|
7
|
Pan-Canadian consensus recommendations for proton beam therapy access in Canada. Radiother Oncol 2022; 176:228-233. [PMID: 36228758 DOI: 10.1016/j.radonc.2022.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/21/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE Proton Beam Therapy (PBT)is a treatment option for select cancer patients. It is currently not available in Canada. Assessment and referral processes for out-of-country treatment for eligible patients vary by jurisdiction, leading to variability in access to this treatment for Canadian cancer patients. The purpose of this initiative was to develop a framework document to inform consistent and equitable PBT access for appropriate patients through the creation of pan-Canadian PBT access consensus recommendations. MATERIALS AND METHODS A modified Delphiprocess was used to develop pan-Canadian recommendations with input from 22 PBT clinical and administrative experts across all provinces, external peer-review by provincial cancer and system partners, and feedback from a targeted community consultation. This was conducted by electronic survey and live discussion. Consensus threshold was set at 70% agreement. RESULTS Fourconsensus rounds resulted in a final set of 27 recommendations divided into three categories: patient eligibility (n = 9); program level (n = 10); and system level (n = 8). Patient eligibility included: anatomic site (n = 4), patient characteristics (n = 3), clinical efficacy (n = 2). Program level included: regulatory and staff requirements (n = 5), equipment and technologies (n = 4), quality assurance (n = 1). System level included: referral process (n = 5), costing, budget impact and quality adjusted life years (n = 2), eligible patient estimates (n = 1). Recommendations were released nationally in June 2021 and distributed to all 43 cancer programs in Canada. CONCLUSION A pan-Canadian consensus-building approach was successful in creating an evidence-based, peer-reviewed suite of recommendations thatsupportapplication of consistent clinical criteria to inform treatment options, facility set-up and access to high quality proton therapy.
Collapse
|
8
|
Fabiano S, Torelli N, Papp D, Unkelbach J. A novel stochastic optimization method for handling misalignments of proton and photon doses in combined treatments. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac858f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 07/29/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. Combined proton–photon treatments, where most fractions are delivered with photons and only a few are delivered with protons, may represent a practical approach to optimally use limited proton resources. It has been shown that, when organs at risk (OARs) are located within or near the tumor, the optimal multi-modality treatment uses protons to hypofractionate parts of the target volume and photons to achieve near-uniform fractionation in dose-limiting healthy tissues, thus exploiting the fractionation effect. These plans may be sensitive to range and setup errors, especially misalignments between proton and photon doses. Thus, we developed a novel stochastic optimization method to directly incorporate these uncertainties into the biologically effective dose (BED)-based simultaneous optimization of proton and photon plans. Approach. The method considers the expected value
E
b
and standard deviation
σ
b
of the cumulative BED
b
in every voxel of a structure. For the target, a piecewise quadratic penalty function of the form
b
min
−
E
b
−
2
σ
b
+
2
is minimized, aiming for plans in which the expected BED minus two times the standard deviation exceeds the prescribed BED
b
min
.
Analogously,
E
b
+
2
σ
b
−
b
max
+
2
is considered for OARs. Main results. Using a spinal metastasis case and a liver cancer patient, it is demonstrated that the novel stochastic optimization method yields robust combined treatment plans. Tumor coverage and a good sparing of the main OARs are maintained despite range and setup errors, and especially misalignments between proton and photon doses. This is achieved without explicitly considering all combinations of proton and photon error scenarios. Significance. Concerns about range and setup errors for safe clinical implementation of optimized proton–photon radiotherapy can be addressed through an appropriate stochastic planning method.
Collapse
|
9
|
Papp D, Unkelbach J. Technical note: Optimal allocation of limited proton therapy resources using model-based patient selection. Med Phys 2022; 49:4980-4987. [PMID: 35715935 PMCID: PMC9541835 DOI: 10.1002/mp.15812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/06/2022] [Accepted: 05/29/2022] [Indexed: 11/07/2022] Open
Abstract
PURPOSE We consider the following scenario: A radiotherapy clinic has a limited number of proton therapy slots available each day to treat cancer patients of a given tumor site. The clinic's goal is to minimize the expected number of complications in the cohort of all patients of that tumor site treated at the clinic, and thereby maximize the benefit of its limited proton resources. METHODS To address this problem, we extend the normal tissue complication probability (NTCP) model-based approach to proton therapy patient selection to the situation of limited resources at a given institution. We assume that, on each day, a newly diagnosed patient is scheduled for treatment at the clinic with some probability and with some benefit Δ N T C P $\Delta NTCP$ from protons over photons, which is drawn from a probability distribution. When a new patient is scheduled for treatment, a decision for protons or photons must be made, and a patient may wait only for a limited amount of time for a proton slot becoming available. The goal is to determine the Δ N T C P $\Delta NTCP$ thresholds for selecting a patient for proton therapy, which optimally balance the competing goals of making use of all available slots while not blocking slots with patients with low benefit. This problem can be formulated as a Markov decision process (MDP) and the optimal thresholds can be determined via a value-policy iteration method. RESULTS The optimal Δ N T C P $\Delta NTCP$ thresholds depend on the number of available proton slots, the average number of patients under treatment, and the distribution of Δ N T C P $\Delta NTCP$ values. In addition, the optimal thresholds depend on the current utilization of the facility. For example, if one proton slot is available and a second frees up shortly, the optimal Δ N T C P $\Delta NTCP$ threshold is lower compared to a situation where all but one slot remain blocked for longer. CONCLUSIONS MDP methodology can be used to augment current NTCP model-based patient selection methods to the situation that, on any given day, the number of proton slots is limited. The optimal Δ N T C P $\Delta NTCP$ threshold then depends on the current utilization of the proton facility. Although, the optimal policy yields only a small nominal benefit over a constant threshold, it is more robust against variations in patient load.
Collapse
Affiliation(s)
- Dávid Papp
- Department of Mathematics, North Carolina State UniversityNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Jan Unkelbach
- Department of Radiation Oncology, University Hospital ZürichUniversity Hospital ZürichZürichCH 8091Switzerland
| |
Collapse
|
10
|
Burnet NG, Mee T, Gaito S, Kirkby NF, Aitkenhead AH, Anandadas CN, Aznar MC, Barraclough LH, Borst G, Charlwood FC, Clarke M, Colaco RJ, Crellin AM, Defourney NN, Hague CJ, Harris M, Henthorn NT, Hopkins KI, Hwang E, Ingram SP, Kirkby KJ, Lee LW, Lines D, Lingard Z, Lowe M, Mackay RI, McBain CA, Merchant MJ, Noble DJ, Pan S, Price JM, Radhakrishna G, Reboredo-Gil D, Salem A, Sashidharan S, Sitch P, Smith E, Smith EAK, Taylor MJ, Thomson DJ, Thorp NJ, Underwood TSA, Warmenhoven JW, Wylie JP, Whitfield G. Estimating the percentage of patients who might benefit from proton beam therapy instead of X-ray radiotherapy. Br J Radiol 2022; 95:20211175. [PMID: 35220723 PMCID: PMC10993980 DOI: 10.1259/bjr.20211175] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES High-energy Proton Beam Therapy (PBT) commenced in England in 2018 and NHS England commissions PBT for 1.5% of patients receiving radical radiotherapy. We sought expert opinion on the level of provision. METHODS Invitations were sent to 41 colleagues working in PBT, most at one UK centre, to contribute by completing a spreadsheet. 39 responded: 23 (59%) completed the spreadsheet; 16 (41%) declined, arguing that clinical outcome data are lacking, but joined six additional site-specialist oncologists for two consensus meetings. The spreadsheet was pre-populated with incidence data from Cancer Research UK and radiotherapy use data from the National Cancer Registration and Analysis Service. 'Mechanisms of Benefit' of reduced growth impairment, reduced toxicity, dose escalation and reduced second cancer risk were examined. RESULTS The most reliable figure for percentage of radical radiotherapy patients likely to benefit from PBT was that agreed by 95% of the 23 respondents at 4.3%, slightly larger than current provision. The median was 15% (range 4-92%) and consensus median 13%. The biggest estimated potential benefit was from reducing toxicity, median benefit to 15% (range 4-92%), followed by dose escalation median 3% (range 0 to 47%); consensus values were 12 and 3%. Reduced growth impairment and reduced second cancer risk were calculated to benefit 0.5% and 0.1%. CONCLUSIONS The most secure estimate of percentage benefit was 4.3% but insufficient clinical outcome data exist for confident estimates. The study supports the NHS approach of using the evidence base and developing it through randomised trials, non-randomised studies and outcomes tracking. ADVANCES IN KNOWLEDGE Less is known about the percentage of patients who may benefit from PBT than is generally acknowledged. Expert opinion varies widely. Insufficient clinical outcome data exist to provide robust estimates. Considerable further work is needed to address this, including international collaboration; much is already underway but will take time to provide mature data.
Collapse
Affiliation(s)
- Neil G Burnet
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
| | - Thomas Mee
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - Simona Gaito
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - Norman F Kirkby
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - Adam H Aitkenhead
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
- Christie Medical Physics and Engineering, The Christie NHS
Foundation Trust, Wilmslow Road,
Manchester, United Kingdom
| | - Carmel N Anandadas
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
| | - Marianne C Aznar
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - Lisa H Barraclough
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
| | - Gerben Borst
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - Frances C Charlwood
- Christie Medical Physics and Engineering, The Christie NHS
Foundation Trust, Wilmslow Road,
Manchester, United Kingdom
| | - Matthew Clarke
- Christie Medical Physics and Engineering, The Christie NHS
Foundation Trust, Wilmslow Road,
Manchester, United Kingdom
| | - Rovel J Colaco
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - Adrian M Crellin
- NHS England National Clinical Lead Proton Beam Therapy, Leeds
Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds and St James's
Institute of Oncology, Leeds Teaching Hospitals NHS Trust, Beckett
Street, Leeds, LS9 7TF, UK, Leeds,
United Kingdom
| | - Noemie N Defourney
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - Christina J Hague
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
| | - Margaret Harris
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
| | - Nicholas T Henthorn
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - Kirsten I Hopkins
- International Atomic Energy Agency, Vienna International
Centre, Vienna,
Austria
| | - E Hwang
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
- Department of Radiation Oncology, Sydney West Radiation
Oncology Network, Crown Princess Mary Cancer Centre,
Sydney, New South Wales, Australia and
Institute of Medical Physics, School of Physics, University of Sydney,
Sydney, New South Wales, Australia
| | - Sam P Ingram
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
- Christie Medical Physics and Engineering, The Christie NHS
Foundation Trust, Wilmslow Road,
Manchester, United Kingdom
| | - Karen J Kirkby
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - Lip W Lee
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
| | - David Lines
- Christie Medical Physics and Engineering, The Christie NHS
Foundation Trust, Wilmslow Road,
Manchester, United Kingdom
| | - Zoe Lingard
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - Matthew Lowe
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
- Christie Medical Physics and Engineering, The Christie NHS
Foundation Trust, Wilmslow Road,
Manchester, United Kingdom
| | - Ranald I Mackay
- Christie Medical Physics and Engineering, The Christie NHS
Foundation Trust, Wilmslow Road,
Manchester, United Kingdom
| | - Catherine A McBain
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
| | - Michael J Merchant
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - David J Noble
- Department of Clinical Oncology, Edinburgh Cancer Centre,
Western General Hospital,
Edinburgh, United Kingdom
| | - Shermaine Pan
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - James M Price
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | | | - David Reboredo-Gil
- Christie Medical Physics and Engineering, The Christie NHS
Foundation Trust, Wilmslow Road,
Manchester, United Kingdom
| | - Ahmed Salem
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | | | - Peter Sitch
- Christie Medical Physics and Engineering, The Christie NHS
Foundation Trust, Wilmslow Road,
Manchester, United Kingdom
| | - Ed Smith
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
- Proton Clinical Outcomes Unit, The Christie NHS Foundation
Trust, Manchester, United
Kingdom
| | - Edward AK Smith
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
- Christie Medical Physics and Engineering, The Christie NHS
Foundation Trust, Wilmslow Road,
Manchester, United Kingdom
| | - Michael J Taylor
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - David J Thomson
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - Nicola J Thorp
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
| | - Tracy SA Underwood
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - John W Warmenhoven
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - James P Wylie
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
| | - Gillian Whitfield
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| |
Collapse
|
11
|
Chilukuri S, Panda PK, Jalali R. Proton Therapy in LMICs: Is the Need Justified? JCO Glob Oncol 2022; 8:e2100268. [PMID: 35025690 PMCID: PMC8769152 DOI: 10.1200/go.21.00268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|
12
|
Hyer DE, Ding X, Rong Y. Proton therapy needs further technological development to fulfill the promise of becoming a superior treatment modality (compared to photon therapy). J Appl Clin Med Phys 2021; 22:4-11. [PMID: 34730268 PMCID: PMC8598137 DOI: 10.1002/acm2.13450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 01/10/2021] [Indexed: 12/25/2022] Open
Affiliation(s)
- Daniel E. Hyer
- Department of Radiation OncologyUniversity of IowaIowa CityIowaUSA
| | - Xuanfeng Ding
- Department of Radiation OncologyWilliam Beaumont HospitalRoyal ParkMichiganUSA
| | - Yi Rong
- Department of Radiation OncologyMayo Clinic ArizonaPhoenixArizonaUSA
| |
Collapse
|
13
|
Ristova MM, Gershan V, Schopper H, Amaldi U, Dosanjh M. Patients With Cancer in the Countries of South-East Europe (the Balkans) Region and Prospective of the Particle Therapy Center: South-East European International Institute for Sustainable Technologies (SEEIIST). Adv Radiat Oncol 2021; 6:100772. [PMID: 34805620 PMCID: PMC8581504 DOI: 10.1016/j.adro.2021.100772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 01/02/2023] Open
Abstract
PURPOSE A recent initiative was launched for establishing the South-East European International Institute for Sustainable Technologies (SEEIIST), which will provide a cutting-edge Hadron radiation therapy treatment and research institute for treating cancer patients with Hadron therapy (HT). To justify the initiative for building the SEEIIST facility, a study was conducted to estimate the number of patients with cancer from the SEE region that would be eligible for HT. METHODS AND MATERIALS Two different methods for projecting the future annual cancer incidence have been applied: (1) using the International Agency on Research on Cancer@World Health Organization's (WHO) Globocan model which uses country's demographic factors, and (2) averaging the crude incidence data of 3 SEE countries with available national cancer registries, using a linear regression model of combined incidence per 100,000, and applying it to the entire SEE region. Cancer epidemiology data were collected and studied by using the countries' cancer datasheets from WHO. The top 10 cancers were presented for the SEE region. Studies of other countries were used to develop a primordial model for estimating the number of SEE patients who could be treated most successfully with HT upon SEEIIST commissioning in 2030. RESULTS A model was developed to estimate the number of eligible patients for HT from SEE. It is estimated that 2900 to 3200 patients per year would be eligible for HT in the new SEEIIST facility in 2030. CONCLUSIONS After commissioning, SEEIIST will initially treat approximately 400 patients per year, progressing toward 1000. Creation of SEEIIST dedicated patient selection criteria will be both necessary and highly challenging.
Collapse
Affiliation(s)
- Mimoza M. Ristova
- Faculty of Natural Sciences and Mathematics, Physics Department, University Ss Cyril and Methodius in Skopje, North Macedonia
- SEEIIST Association, Geneva, Switzerland
- CERN, Geneva, Switzerland
| | - Vesna Gershan
- Faculty of Natural Sciences and Mathematics, Physics Department, University Ss Cyril and Methodius in Skopje, North Macedonia
| | - Herwig Schopper
- SEEIIST Association, Geneva, Switzerland
- CERN, Geneva, Switzerland
| | | | - Manjit Dosanjh
- CERN, Geneva, Switzerland
- Department of Physics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
14
|
Loap P, Vitolo V, Barcellini A, De Marzi L, Mirandola A, Fiore MR, Vischioni B, Jereczek-Fossa BA, Girard N, Kirova Y, Orlandi E. Hadrontherapy for Thymic Epithelial Tumors: Implementation in Clinical Practice. Front Oncol 2021; 11:738320. [PMID: 34707989 PMCID: PMC8543015 DOI: 10.3389/fonc.2021.738320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/21/2021] [Indexed: 12/04/2022] Open
Abstract
Radiation therapy is part of recommendations in the adjuvant settings for advanced stage or as exclusive treatment in unresectable thymic epithelial tumors (TETs). However, first-generation techniques delivered substantial radiation doses to critical organs at risk (OARs), such as the heart or the lungs, resulting in noticeable radiation-induced toxicity. Treatment techniques have significantly evolved for TET irradiation, and modern techniques efficiently spare normal surrounding tissues without negative impact on tumor coverage and consequently local control or patient survival. Considering its dosimetric advantages, hadrontherapy (which includes proton therapy and carbon ion therapy) has proved to be worthwhile for TET irradiation in particular for challenging clinical situations such as cardiac tumoral involvement. However, clinical experience for hadrontherapy is still limited and mainly relies on small-size proton therapy studies. This critical review aims to analyze the current status of hadrontherapy for TET irradiation to implement it at a larger scale.
Collapse
Affiliation(s)
- Pierre Loap
- Department of Radiation Oncology, Institut Curie, Paris, France.,Radiation Oncology Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Viviana Vitolo
- Radiation Oncology Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Amelia Barcellini
- Radiation Oncology Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Ludovic De Marzi
- Department of Radiation Oncology, Institut Curie, Paris, France.,Institut Curie, Paris Sciences & Lettres (PSL) Research University, University Paris Saclay, laboratoire d'Imagerie Translationnelle en Oncologie, Institut National de la Santé et de la Recherche Médicale (INSERM LITO), Orsay, France
| | - Alfredo Mirandola
- Radiation Oncology Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Maria Rosaria Fiore
- Radiation Oncology Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Barbara Vischioni
- Radiation Oncology Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Barbara Alicja Jereczek-Fossa
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy.,Division of Radiotherapy, Istituto Europeo di Oncologia (IEO) European Institute of Oncology Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Nicolas Girard
- Institut du Thorax Curie Montsouris, Paris, France.,Department of Medical Oncology, Institut Curie, Paris, France.,University Paris Saint-Quentin, Versailles, France
| | - Youlia Kirova
- Department of Radiation Oncology, Institut Curie, Paris, France
| | - Ester Orlandi
- Radiation Oncology Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| |
Collapse
|
15
|
Loizeau N, Fabiano S, Papp D, Stützer K, Jakobi A, Bandurska-Luque A, Troost EGC, Richter C, Unkelbach J. Optimal Allocation of Proton Therapy Slots in Combined Proton-Photon Radiation Therapy. Int J Radiat Oncol Biol Phys 2021; 111:196-207. [PMID: 33848609 DOI: 10.1016/j.ijrobp.2021.03.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/02/2021] [Accepted: 03/30/2021] [Indexed: 01/01/2023]
Abstract
PURPOSE Proton therapy is a limited resource that is not available to all patients who may benefit from it. We investigated combined proton-photon treatments, in which some fractions are delivered with protons and the remaining fractions with photons, as an approach to maximize the benefit of limited proton therapy resources at a population level. METHODS AND MATERIALS To quantify differences in normal-tissue complication probability (NTCP) between protons and photons, we considered a cohort of 45 patients with head and neck cancer for whom intensity modulated radiation therapy and intensity modulated proton therapy plans were previously created, in combination with NTCP models for xerostomia and dysphagia considered in the Netherlands for proton patient selection. Assuming limited availability of proton slots, we developed methods to optimally assign proton fractions in combined proton-photon treatments to minimize the average NTCP on a population level. The combined treatments were compared with patient selection strategies in which patients are assigned to single-modality proton or photon treatments. RESULTS There is a benefit of combined proton-photon treatments compared with patient selection, owing to the nonlinearity of NTCP functions; that is, the initial proton fractions are the most beneficial, whereas additional proton fractions have a decreasing benefit when a flatter part of the NTCP curve is reached. This effect was small for the patient cohort and NTCP models considered, but it may be larger if dose-response relationships are better known. In addition, when proton slots are limited, patient selection methods face a trade-off between leaving slots unused and blocking slots for future patients who may have a larger benefit. Combined proton-photon treatments with flexible proton slot assignment provide a method to make optimal use of all available resources. CONCLUSIONS Combined proton-photon treatments allow for better use of limited proton therapy resources. The benefit over patient selection schemes depends on the NTCP models and the dose differences between protons and photons.
Collapse
Affiliation(s)
- Nicolas Loizeau
- Physics Institute, University of Zürich, Zürich, Switzerland; Department of Radiation Oncology, University Hospital Zürich, Zürich, Switzerland.
| | - Silvia Fabiano
- Department of Radiation Oncology, University Hospital Zürich, Zürich, Switzerland
| | - Dávid Papp
- Department of Mathematics, North Carolina State University, Raleigh, North Carolina
| | - Kristin Stützer
- OncoRay-National Center for Radiation Research in Oncology, Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany
| | - Annika Jakobi
- OncoRay-National Center for Radiation Research in Oncology, Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Anna Bandurska-Luque
- OncoRay-National Center for Radiation Research in Oncology, Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Esther G C Troost
- OncoRay-National Center for Radiation Research in Oncology, Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz Association / Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Christian Richter
- OncoRay-National Center for Radiation Research in Oncology, Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz Association / Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Jan Unkelbach
- Department of Radiation Oncology, University Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
16
|
Burbadge C, Kasanda E, Bildstein V, Dublin G, Olaizola B, Höhr C, Mücher D. Proton therapy range verification method via delayed γ-ray spectroscopy of a molybdenum tumour marker. Phys Med Biol 2021; 66:025005. [PMID: 32998122 DOI: 10.1088/1361-6560/abbd16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this work, a new method of range verification for proton therapy (PT) is experimentally demonstrated for the first time. If a metal marker is implanted near the tumour site, its response to proton activation will result in the emission of characteristic γ rays. The relative intensity of γ rays originating from competing fusion-evaporation reaction channels provides a unique signature of the average proton energy at the marker, and by extension the beam's range, in vivo and in real time. The clinical feasibility of this method was investigated at the PT facility at TRIUMF with a proof-of-principle experiment which irradiated a naturally-abundant molybdenum foil at various proton beam energies. Delayed characteristic γ rays were measured with two Compton-shielded LaBr3 scintillators. The technique was successfully demonstrated by relating the relative intensity of two γ-ray peaks to the energy of the beam at the Mo target, opening the door to future clinical applications where the range of the beam can be verified in real time.
Collapse
Affiliation(s)
- C Burbadge
- Department of Physics, University of Guelph, 50 Stone Rd E, Guelph, Ontario, N1G 2W1, Canada
| | | | | | | | | | | | | |
Collapse
|
17
|
Brandal P, Bergfeldt K, Aggerholm-Pedersen N, Bäckström G, Kerna I, Gubanski M, Björnlinger K, Evensen ME, Kuddu M, Pettersson E, Brydøy M, Hellebust TP, Dale E, Valdman A, Weber L, Høyer M. A Nordic-Baltic perspective on indications for proton therapy with strategies for identification of proper patients. Acta Oncol 2020; 59:1157-1163. [PMID: 32902341 DOI: 10.1080/0284186x.2020.1817977] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The beneficial effects of protons are primarily based on reduction of low to intermediate radiation dose bath to normal tissue surrounding the radiotherapy target volume. Despite promise for reduced long-term toxicity, the percentage of cancer patients treated with proton therapy remains low. This is probably caused by technical improvements in planning and delivery of photon therapy, and by high cost, low availability and lack of high-level evidence on proton therapy. A number of proton treatment facilities are under construction or have recently opened; there are now two operational Scandinavian proton centres and two more are under construction, thereby eliminating the availability hurdle. Even with the advantageous physical properties of protons, there is still substantial ambiguity and no established criteria related to which patients should receive proton therapy. This topic was discussed in a session at the Nordic Collaborative Workshop on Particle Therapy, held in Uppsala 14-15 November 2019. This paper resumes the Nordic-Baltic perspective on proton therapy indications and discusses strategies to identify patients for proton therapy. As for indications, neoplastic entities, target volume localisation, size, internal motion, age, second cancer predisposition, dose escalation and treatment plan comparison based on the as low as reasonably achievable (ALARA) principle or normal tissue complication probability (NTCP) models were discussed. Importantly, the patient selection process should be integrated into the radiotherapy community and emphasis on collaboration across medical specialties, involvement of key decision makers and knowledge dissemination in general are important factors. An active Nordic-Baltic proton therapy organisation would also serve this purpose.
Collapse
Affiliation(s)
- Petter Brandal
- Department of Oncology, Oslo University Hospital, Oslo, Norway
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| | | | | | | | - Irina Kerna
- North Estonia Medical Centre, Tallinn, Estonia
| | | | | | | | - Maire Kuddu
- North Estonia Medical Centre, Tallinn, Estonia
| | | | | | - Taran P. Hellebust
- Department of Oncology, Oslo University Hospital, Oslo, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| | - Einar Dale
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | | | | | - Morten Høyer
- Danish Center for Particle Therapy, Aarhus University Hospital, Denmark
| |
Collapse
|
18
|
Bergfeldt K, Nystrom H, Witt Nystrom P, Høyer M. Is there a Nordic solution for the 'proton-problem'? Acta Oncol 2020; 59:1137-1138. [PMID: 32852249 DOI: 10.1080/0284186x.2020.1809705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | - Håkan Nystrom
- Skandion Clinic, Uppsala, Sweden.,Department of Radiation Oncology, University Medical Center Groningen, Groningen, The Netherlands
| | - Petra Witt Nystrom
- Department of Radiation Oncology, University Medical Center Groningen, Groningen, The Netherlands.,Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Morten Høyer
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
19
|
Witt Nyström P, Bratland Å, Minn H, Grau C. Ongoing and future clinical trials in particle therapy in the Nordic countries. Acta Oncol 2020; 59:1145-1150. [PMID: 32673134 DOI: 10.1080/0284186x.2020.1792548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In the Nordic countries, as in the rest of the world, particle therapy as a radiotherapy modality, is evolving, albeit the hard evidence for the clinical benefit still is scarce. However, a common goal for the Nordic countries is to include a minimum of 80% of the patients treated with particle therapy into clinical trials. In this paper, we summarize the current status of clinical trials involving particle therapy in the Nordic countries, with an overview of both active and coming trials. So far, one is closed for inclusion and data are being analyzed, seven trials are actively recruiting patients and several more trials are underway. No common Nordic trial has yet been designed, nor is in the planning phase, and the authors will discuss the obstacles as well as the opportunities a common Nordic platform may represent.
Collapse
Affiliation(s)
- Petra Witt Nyström
- The Skandion Clinic, Uppsala, Sweden
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Åse Bratland
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Heikki Minn
- Department of Oncology and Radiotherapy, University Hospital Turku, Turku, Finland
| | - Cai Grau
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
20
|
Ning MS, Palmer MB, Shah AK, Chambers LC, Garlock LB, Melson BB, Frank SJ. Three-Year Results of a Prospective Statewide Insurance Coverage Pilot for Proton Therapy: Stakeholder Collaboration Improves Patient Access to Care. JCO Oncol Pract 2020; 16:e966-e976. [PMID: 32302271 PMCID: PMC8462618 DOI: 10.1200/jop.19.00437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2019] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Proton therapy is increasingly prescribed, given its potential to improve outcomes; however, prior authorization remains a barrier to access and is associated with frequent denials and treatment delays. We sought to determine whether appropriate access to proton therapy could ensure timely care without overuse or increased costs. METHODS Our large academic cancer center collaborated with a statewide self-funded employer (n = 186,000 enrollees) on an insurance coverage pilot, incorporating a value-based analysis and ensuring preauthorization for appropriate indications. Coverage was ensured for prospective trials and five evidence-supported anatomic sites. Enrollment initiated in 2016 and continued for 3 years. Primary end points were use, authorization time, and cost of care, with case-matched comparison of total charges at 1 month pretreatment through 6 months posttreatment. RESULTS Thirty-two patients were approved over 3 years, with only 22 actually receiving proton therapy, versus a predicted use by 120 patients (P < .01). Median follow-up was 20.1 months, and average authorization time decreased from 17 days to < 1 day (P < .01), significantly enhancing patient access. During this time, 25 patients who met pilot eligibility were instead treated with photons; and 17 patients with > 6 months of follow-up were case matched by treatment site to 17 patients receiving proton therapy, with no significant differences in sex, age, performance status, stage, histology, indication, prescribed fractions, or chemotherapy. Total medical costs (including radiation therapy [RT] and non-RT charges) for patients treated with PBT were lower than expected (a cost increase initially was expected), with no significant difference in total average charges (P = .82), in the context of overall ancillary care use. CONCLUSION This coverage pilot demonstrated that appropriate access to proton therapy does not necessitate overuse or significantly increase comprehensive medical costs. Objective evidence-based coverage polices ensure appropriate patient selection. Stakeholder collaboration can streamline patient access while reducing administrative burden.
Collapse
Affiliation(s)
- Matthew S. Ning
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | - Laura C. Chambers
- Office of Employee Benefits, The University of Texas System, Austin, TX
| | - Laura B. Garlock
- Office of Employee Benefits, The University of Texas System, Austin, TX
| | - Benjamin B. Melson
- Department of Financial Planning and Analysis, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Steven J. Frank
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
- Proton Therapy Center, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
21
|
Accounting for Range Uncertainties in the Optimization of Combined Proton-Photon Treatments Via Stochastic Optimization. Int J Radiat Oncol Biol Phys 2020; 108:792-801. [PMID: 32361008 DOI: 10.1016/j.ijrobp.2020.04.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/16/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE Proton treatment slots are a limited resource. Combined proton-photon treatments, in which most fractions are delivered with photons and only a few with protons, may represent a practical solution to optimize the allocation of proton resources over the patient population. We demonstrate how a limited number of proton fractions can be optimally used in multimodality treatments and address the issue of the robustness of combined treatments against proton range uncertainties. METHODS AND MATERIALS Combined proton-photon treatments are planned by simultaneously optimizing intensity modulated radiation therapy and proton therapy plans while accounting for the fractionation effect through the biologically effective dose model. The method was investigated for different tumor sites (a spinal metastasis, a sacral chordoma, and an atypical meningioma) in which organs at risk (OARs) were located within or near the tumor. Stochastic optimization was applied to mitigate range uncertainties. RESULTS In optimal combinations, proton and photon fractions deliver similar doses to OARs overlaying the target volume to protect these dose-limiting normal tissues through fractionation. Meanwhile, parts of the tumor are hypofractionated with protons. Thus, the total dose delivered with photons is reduced compared with simple combinations in which each modality delivers the prescribed dose per fraction to the target volume. The benefit of optimal combinations persists when range errors are accounted for via stochastic optimization. CONCLUSIONS Limited proton resources are optimally used in combined treatments if parts of the tumor are hypofractionated with protons and near-uniform fractionation is maintained in serial OARs. Proton range uncertainties can be efficiently accounted for through stochastic optimization and are not an obstacle for clinical application.
Collapse
|
22
|
Hueso-González F, Bortfeld T. Compact Method for Proton Range Verification Based on Coaxial Prompt Gamma-Ray Monitoring: a Theoretical Study. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2020; 4:170-183. [PMID: 32258856 PMCID: PMC7111431 DOI: 10.1109/trpms.2019.2930362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Range uncertainties in proton therapy hamper treatment precision. Prompt gamma-rays were suggested 16 years ago for real-time range verification, and have already shown promising results in clinical studies with collimated cameras. Simultaneously, alternative imaging concepts without collimation are investigated to reduce the footprint and price of current prototypes. In this manuscript, a compact range verification method is presented. It monitors prompt gamma-rays with a single scintillation detector positioned coaxially to the beam and behind the patient. Thanks to the solid angle effect, proton range deviations can be derived from changes in the number of gamma-rays detected per proton, provided that the number of incident protons is well known. A theoretical background is formulated and the requirements for a future proof-of-principle experiment are identified. The potential benefits and disadvantages of the method are discussed, and the prospects and potential obstacles for its use during patient treatments are assessed. The final milestone is to monitor proton range differences in clinical cases with a statistical precision of 1 mm, a material cost of 25000 USD and a weight below 10 kg. This technique could facilitate the widespread application of in vivo range verification in proton therapy and eventually the improvement of treatment quality.
Collapse
Affiliation(s)
- F Hueso-González
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America
| | - T Bortfeld
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America
| |
Collapse
|
23
|
Blakely EA, Faddegon B, Tinkle C, Bloch C, Dominello M, Griffin RJ, Joiner MC, Burmeister J. Three discipline collaborative radiation therapy (3DCRT) special debate: The United States needs at least one carbon ion facility. J Appl Clin Med Phys 2019; 20:6-13. [PMID: 31573146 PMCID: PMC6839391 DOI: 10.1002/acm2.12727] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 08/29/2019] [Accepted: 09/04/2019] [Indexed: 01/07/2023] Open
Affiliation(s)
| | - Bruce Faddegon
- Department of Radiation OncologyUniversity of California – San FranciscoSan FranciscoCAUSA
| | - Christopher Tinkle
- Department of Radiation OncologySt. Jude Children’s Research HospitalMemphisTNUSA
| | - Charles Bloch
- Department of Radiation OncologyUniversity of WashingtonSeattleWAUSA
| | - Michael Dominello
- Department of OncologyWayne State University School of MedicineDetroitMIUSA
| | - Robert J Griffin
- Department of OncologyUniversity of Arkansas for Medical SciencesLittle RockARUSA
| | - Michael C Joiner
- Department of OncologyWayne State University School of MedicineDetroitMIUSA
| | - Jay Burmeister
- Department of OncologyWayne State University School of MedicineDetroitMIUSA,Gershenson Radiation Oncology CenterBarbara Ann Karmanos Cancer InstituteDetroitMIUSA
| |
Collapse
|
24
|
The Insurance Approval Process for Proton Radiation Therapy: A Significant Barrier to Patient Care. Int J Radiat Oncol Biol Phys 2019; 104:724-733. [DOI: 10.1016/j.ijrobp.2018.12.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/05/2018] [Accepted: 12/09/2018] [Indexed: 12/20/2022]
|
25
|
Remick JS, Bentzen SM, Simone CB, Nichols E, Suntharalingam M, Regine WF. Downstream Effect of a Proton Treatment Center on an Academic Medical Center. Int J Radiat Oncol Biol Phys 2019; 104:756-764. [PMID: 30885776 DOI: 10.1016/j.ijrobp.2019.03.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/22/2019] [Accepted: 03/11/2019] [Indexed: 12/25/2022]
Abstract
PURPOSE To quantify the effects of opening a proton center (PC) on an academic medical center (AMC)/radiation oncology department. METHODS AND MATERIALS Radiation treatment volume and relative value units from fiscal year 2015 (FY15) to FY17 were retrospectively analyzed at the AMC and 2 community-based centers. To quantify new patient referrals to the AMC, we reviewed the electronic medical record for all patients seen at the PC since consults were initiated in November 2015 (n = 1173). Patients were excluded if the date of entry into the AMC electronic medical record predated their PC consultation. Hospital resource use and professional and technical charges were obtained for these patients. Academic growth, philanthropy, and resident education were evaluated based on grant submissions, clinical trial enrollment, philanthropy, and pediatric case exposure, respectively, from PC opening through FY17. RESULTS From FY15 to FY17, radiation fractions at the AMC and the 2 community sites decreased by 14% (95% confidence interval [CI], 12%-16%, P < .001) and increased by 19% (95% CI, 16%-23%, P < .001) and 2% (95% CI, -1.1 to 4.3%, P = NS), respectively; the number of new starts decreased by 3% (95% CI, -13% to 7%, P = NS) and 2% (95% CI, -20% to 16%, P = NS) and increased by 13% (95% CI -2% to 27%, P = NS), respectively. At the AMC, technical and professional relative value units decreased by 5% and 14%, respectively. The PC made 561 external referrals to the AMC, which resulted in $2.38 million technical and $2.13 million professional charges at the AMC. Fifteen grant submissions ($12.83 million) resulted in 6 awards ($3.26 million). Twenty-two clinical trials involving proton therapy were opened, on which a total of 5% (n = 54) of patients enrolled during calendar years 2017 and 2018. The PC was involved in gift donations of $1.6 million. There was a nonsignificant 37% increase in number of pediatric cases. CONCLUSIONS Despite a slight decline in AMC photon patient volumes and relative value units, a positive downstream effect was associated with the addition of a PC, which benefited the AMC.
Collapse
Affiliation(s)
- Jill S Remick
- Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland
| | - Søren M Bentzen
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Charles B Simone
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Elizabeth Nichols
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Mohan Suntharalingam
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - William F Regine
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
26
|
Patterns of proton therapy use in pediatric cancer management in 2016: An international survey. Radiother Oncol 2019; 132:155-161. [DOI: 10.1016/j.radonc.2018.10.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/10/2018] [Accepted: 10/22/2018] [Indexed: 01/19/2023]
|
27
|
Lievens Y, Nagels K. Economic data for particle therapy: Dealing with different needs in a heterogeneous landscape. Radiother Oncol 2018; 128:19-25. [PMID: 29606525 DOI: 10.1016/j.radonc.2018.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/10/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND In the light of scarce resources to be allocated for cancer care and a steady stream of costly innovations in all modalities applied to treat cancer, particle therapy needs to demonstrate its cost-utility balance to allow its positioning in the context of competing modalities. In the continuous evolving particle therapy landscape, the timely availability of appropriate economic data is crucial. METHODS Economic data collection and compilation for particle therapy needs to follow health economic standards. Costing related analyses particularly need attention as clinical outcome data follow international standards to provide comparability. Among others, perspective, time horizons and cost categories are critical. RESULTS In this report from the "Health Economics Work Package" of the European Particle Therapy Network, the approaches commonly applied in health economic assessments are described and tailored to the specific needs of particle therapy. Data collection for cost calculation, economic evaluation and budget impact analysis are discussed. CONCLUSION The presented data are intended to serve as a guidance for economic data collection, bearing in mind that in each specific case, the heterogeneous requirements of national health systems will need to be considered and assessments adapted accordingly.
Collapse
|
28
|
Affiliation(s)
- Thomas R Bortfeld
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
29
|
Karsch L, Beyreuther E, Enghardt W, Gotz M, Masood U, Schramm U, Zeil K, Pawelke J. Towards ion beam therapy based on laser plasma accelerators. Acta Oncol 2017; 56:1359-1366. [PMID: 28828925 DOI: 10.1080/0284186x.2017.1355111] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Only few ten radiotherapy facilities worldwide provide ion beams, in spite of their physical advantage of better achievable tumor conformity of the dose compared to conventional photon beams. Since, mainly the large size and high costs hinder their wider spread, great efforts are ongoing to develop more compact ion therapy facilities. One promising approach for smaller facilities is the acceleration of ions on micrometre scale by high intensity lasers. Laser accelerators deliver pulsed beams with a low pulse repetition rate, but a high number of ions per pulse, broad energy spectra and high divergences. A clinical use of a laser based ion beam facility requires not only a laser accelerator providing beams of therapeutic quality, but also new approaches for beam transport, dosimetric control and tumor conformal dose delivery procedure together with the knowledge of the radiobiological effectiveness of laser-driven beams. Over the last decade research was mainly focused on protons and progress was achieved in all important challenges. Although currently the maximum proton energy is not yet high enough for patient irradiation, suggestions and solutions have been reported for compact beam transport and dose delivery procedures, respectively, as well as for precise dosimetric control. Radiobiological in vitro and in vivo studies show no indications of an altered biological effectiveness of laser-driven beams. Laser based facilities will hardly improve the availability of ion beams for patient treatment in the next decade. Nevertheless, there are possibilities for a need of laser based therapy facilities in future.
Collapse
Affiliation(s)
- Leonhard Karsch
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - Wolfgang Enghardt
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
| | - Malte Gotz
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Umar Masood
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Ulrich Schramm
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Technische Universität Dresden, Dresden, Germany
| | - Karl Zeil
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Jörg Pawelke
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
30
|
Schlocker AJ, Corn BW. Proton Beam Therapy in Small Nations: Financial Irrationality or Unique Collaborative Opportunity? Int J Radiat Oncol Biol Phys 2016; 95:21-24. [DOI: 10.1016/j.ijrobp.2015.10.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 10/12/2015] [Indexed: 11/30/2022]
|
31
|
Romesser PB, Cahlon O, Scher ED, Hug EB, Sine K, DeSelm C, Fox JL, Mah D, Garg MK, Han-Chih Chang J, Lee NY. Proton Beam Reirradiation for Recurrent Head and Neck Cancer: Multi-institutional Report on Feasibility and Early Outcomes. Int J Radiat Oncol Biol Phys 2016; 95:386-395. [PMID: 27084656 DOI: 10.1016/j.ijrobp.2016.02.036] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 10/22/2022]
Abstract
PURPOSE Reirradiation therapy (re-RT) is the only potentially curative treatment option for patients with locally recurrent head and neck cancer (HNC). Given the significant morbidity with head and neck re-RT, interest in proton beam radiation therapy (PBRT) has increased. We report the first multi-institutional clinical experience using curative-intent PBRT for re-RT in recurrent HNC. METHODS AND MATERIALS A retrospective analysis of ongoing prospective data registries from 2 hybrid community practice and academic proton centers was conducted. Patients with recurrent HNC who underwent at least 1 prior course of definitive-intent external beam radiation therapy (RT) were included. Acute and late toxicities were assessed with the National Cancer Institute Common Terminology Criteria for Adverse Events version 4.0 and the Radiation Therapy Oncology Group late radiation morbidity scoring system, respectively. The cumulative incidence of locoregional failure was calculated with death as a competing risk. The actuarial 12-month freedom-from-distant metastasis and overall survival rates were calculated with the Kaplan-Meier method. RESULTS Ninety-two consecutive patients were treated with curative-intent re-RT with PBRT between 2011 and 2014. Median follow-up among surviving patients was 13.3 months and among all patients was 10.4 months. The median time between last RT and PBRT was 34.4 months. There were 76 patients with 1 prior RT course and 16 with 2 or more courses. The median PBRT dose was 60.6 Gy (relative biological effectiveness, [RBE]). Eighty-five percent of patients underwent prior HNC RT for an oropharynx primary, and 39% underwent salvage surgery before re-RT. The cumulative incidence of locoregional failure at 12 months, with death as a competing risk, was 25.1%. The actuarial 12-month freedom-from-distant metastasis and overall survival rates were 84.0% and 65.2%, respectively. Acute toxicities of grade 3 or greater included mucositis (9.9%), dysphagia (9.1%), esophagitis (9.1%), and dermatitis (3.3%). There was 1 death during PBRT due to disease progression. Grade 3 or greater late skin and dysphagia toxicities were noted in 6 patients (8.7%) and 4 patients (7.1%), respectively. Two patients had grade 5 toxicity due to treatment-related bleeding. CONCLUSIONS Proton beam re-RT of the head and neck can provide effective tumor control with acceptable acute and late toxicity profiles likely because of the decreased dose to the surrounding normal, albeit previously irradiated, tissue, although longer follow-up is needed to confirm these findings.
Collapse
Affiliation(s)
- Paul B Romesser
- Memorial Sloan Kettering Cancer Center, Radiation Oncology, New York, New York
| | - Oren Cahlon
- Memorial Sloan Kettering Cancer Center, Radiation Oncology, New York, New York; ProCure Proton Therapy Center, Somerset, New Jersey
| | - Eli D Scher
- Memorial Sloan Kettering Cancer Center, Radiation Oncology, New York, New York
| | - Eugen B Hug
- ProCure Proton Therapy Center, Somerset, New Jersey
| | - Kevin Sine
- ProCure Proton Therapy Center, Somerset, New Jersey
| | - Carl DeSelm
- Memorial Sloan Kettering Cancer Center, Radiation Oncology, New York, New York
| | - Jana L Fox
- Montefiore Medical Center, Radiation Oncology, Bronx, New York
| | - Dennis Mah
- ProCure Proton Therapy Center, Somerset, New Jersey
| | - Madhur K Garg
- Montefiore Medical Center, Radiation Oncology, Bronx, New York
| | | | - Nancy Y Lee
- Memorial Sloan Kettering Cancer Center, Radiation Oncology, New York, New York.
| |
Collapse
|
32
|
Dosanjh M, Cirilli M, Navin S. Introduction to the EC's Marie Curie Initial Training Network Project: The European Training Network in Digital Medical Imaging for Radiotherapy (ENTERVISION). Front Oncol 2015; 5:265. [PMID: 26697403 PMCID: PMC4668289 DOI: 10.3389/fonc.2015.00265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/12/2015] [Indexed: 12/30/2022] Open
Abstract
Between 2011 and 2015, the ENTERVISION Marie Curie Initial Training Network has been training 15 young researchers from a variety of backgrounds on topics ranging from in-beam Positron Emission Tomography or Single Particle Tomography techniques, to adaptive treatment planning, optical imaging, Monte Carlo simulations and biological phantom design. This article covers the main research activities, as well as the training scheme implemented by the participating institutes, which included academia, research, and industry.
Collapse
|
33
|
Dionisi F, Avery S, Lukens JN, Ding X, Kralik J, Kirk M, Roses RE, Amichetti M, Metz JM, Plastaras JP. Proton therapy in adjuvant treatment of gastric cancer: planning comparison with advanced x-ray therapy and feasibility report. Acta Oncol 2014; 53:1312-20. [PMID: 24797885 DOI: 10.3109/0284186x.2014.912351] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Adjuvant chemoradiotherapy improves both overall- and relapse-free survival in patients with resected gastric cancer. However, this comes at the cost of increased treatment-related toxicity. Proton therapy (PT) has distinct dosimetric characteristics that may reduce dose to normal tissues, improving the therapeutic ratio. The purpose of this treatment planning study is to compare PT and intensity-modulated x-ray therapy (IMXT) in gastric cancer with regards to normal tissue sparing. MATERIAL AND METHODS The patient population consisted of resected gastric cancer patients treated at a single institution between 2008 and 2013. Patients who had undergone 4D CT simulation were replanned to the originally delivered doses (45-54 Gy in 25-30 daily fractions) using six-field photon IMXT and 2-3-field PT (double scattering-uniform scanning techniques). RESULTS Thirteen patients were eligible for the planning comparison. IMXT provided slightly higher homogeneity indices (median values 0.04 ± 0.01 vs. 0.07 ± 0.01, p = 0.03). PT resulted in significantly (p < 0.05) lower intermediate-low doses for all the normal tissues examined (small bowel V15 82 ml vs. 133 ml, liver mean doses Gy 11.9 vs. 14.4 Gy, left/right kidney mean doses 5/0.9 Gy vs. 7.8/3.1 Gy, heart mean doses 7.4 Gy vs. 9.5 Gy). The total energy deposited outside the target volume was significantly lower with PT (median integral dose 90.1 J vs. 129 J). Four patients were treated with PT: treatment was feasible and verifications scans showed that target coverage was robust. CONCLUSION PT can contribute to normal tissue sparing in the adjuvant treatment of gastric cancer, with a potential benefit in terms of compliance to treatment, acute and late toxicities.
Collapse
Affiliation(s)
- Francesco Dionisi
- Proton Therapy Unit, Department of Oncology, Azienda Provinciale per i Servizi Sanitari (APSS) , Trento , Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Welsh J, Amini A, Ciura K, Nguyen N, Palmer M, Allen PK, Paolini M, Liao Z, Bluett J, Mohan R, Gomez D, Cox JD, Komaki R, Chang JY. Evaluating proton stereotactic body radiotherapy to reduce chest wall dose in the treatment of lung cancer. Med Dosim 2014; 38:442-447. [PMID: 24200220 DOI: 10.1016/j.meddos.2013.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/26/2013] [Accepted: 08/13/2013] [Indexed: 11/28/2022]
Abstract
Stereotactic body radiotherapy (SBRT) can produce excellent local control of several types of solid tumor; however, toxicity to nearby critical structures is a concern. We found previously that in SBRT for lung cancer, the chest wall (CW) volume receiving 20, 30, or 40Gy (V20, V30, or V40) was linked with the development of neuropathy. Here we sought to determine whether the dosimetric advantages of protons could produce lower CW doses than traditional photon-based SBRT. We searched an institutional database to identify patients treated with photon SBRT for lung cancer with tumors within < 2.5cm of the CW. We found 260 cases; of these, chronic grade ≥ 2 CW pain was identified in 23 patients. We then selected 10 representative patients from this group and generated proton SBRT treatment plans, using the identical dose of 50Gy in 4 fractions, and assessed potential differences in CW dose between the 2 plans. The proton SBRT plans reduced the CW doses at all dose levels measured. The median CW V20 was 364.0cm(3) and 160.0cm(3) (p < 0.0001), V30 was 144.6cm(3)vs 77.0cm(3) (p = 0.0012), V35 was 93.9cm(3)vs 57.9cm(3) (p = 0.005), V40 was 66.5cm(3)vs 45.4cm(3) (p = 0.0112), and mean lung dose was 5.9Gy vs 3.8Gy (p = 0.0001) for photons and protons, respectively. Coverage of the planning target volume (PTV) was comparable between the 2 sets of plans (96.4% for photons and 97% for protons). From a dosimetric standpoint, proton SBRT can achieve the same coverage of the PTV while significantly reducing the dose to the CW and lung relative to photon SBRT and therefore may be beneficial for the treatment of lesions closer to critical structures.
Collapse
Affiliation(s)
- James Welsh
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Arya Amini
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX.,UC Irvine School of Medicine, Irvine, CA
| | - Katherine Ciura
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ngoc Nguyen
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Matt Palmer
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Pamela K Allen
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Michael Paolini
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Zhongxing Liao
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jaques Bluett
- Departments of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Radhe Mohan
- Departments of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Daniel Gomez
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - James D Cox
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ritsuko Komaki
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Joe Y Chang
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
35
|
Kerstiens J, Johnstone PA. Proton Therapy Expansion Under Current United States Reimbursement Models. Int J Radiat Oncol Biol Phys 2014; 89:235-40. [DOI: 10.1016/j.ijrobp.2014.02.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/10/2014] [Accepted: 02/11/2014] [Indexed: 11/25/2022]
|
36
|
Quo vadis radiotherapy? Technological advances and the rising problems in cancer management. BIOMED RESEARCH INTERNATIONAL 2013; 2013:749203. [PMID: 23862155 PMCID: PMC3684032 DOI: 10.1155/2013/749203] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 04/04/2013] [Indexed: 12/17/2022]
Abstract
Purpose. Despite the latest technological advances in radiotherapy, cancer control is still challenging for several tumour sites. The survival rates for the most deadly cancers, such as ovarian and pancreatic, have not changed over the last decades. The solution to the problem lies in the change of focus: from local treatment to systemic therapy. The aim of this paper is to present the current status as well as the gaps in radiotherapy and, at the same time, to look into potential solutions to improve cancer control and survival. Methods. The currently available advanced radiotherapy treatment techniques have been analysed and their cost-effectiveness discussed. The problem of systemic disease management was specifically targeted. Results. Clinical studies show limited benefit in cancer control from hadron therapy. However, targeted therapies together with molecular imaging could improve treatment outcome for several tumour sites while controlling the systemic disease. Conclusion. The advances in photon therapy continue to be competitive with the much more expensive hadron therapy. To justify the cost effectiveness of proton/heavy ion therapy, there is a need for phase III randomised clinical trials. Furthermore, the success of systemic disease management lies in the fusion between radiation oncology technology and microbiology.
Collapse
|
37
|
|
38
|
Muren LP, Rossi C, Hug E, Lee A, Glimelius B. Establishing and expanding the indications for proton and particle therapy. Acta Oncol 2013; 52:459-62. [PMID: 23477358 DOI: 10.3109/0284186x.2013.770167] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Ludvig P. Muren
- Department of Medical Physics, Aarhus University/Aarhus University Hospital,
Aarhus, Denmark
- Department of Physics and Technology, University of Bergen,
Bergen, Norway
| | - Carl Rossi
- Scripps Proton Radiotherapy Center,
San Diego, California, USA
| | - Eugen Hug
- Procure Proton Therapy Centers,
New York, New York, USA
| | - Andrew Lee
- Proton Therapy Center, Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center,
Houston, Texas, USA
| | - Bengt Glimelius
- Department of Radiology, Oncology and Radiation Science, Uppsala University,
Uppsala, Sweden
| |
Collapse
|
39
|
Results of a multicentric in silico clinical trial (ROCOCO): comparing radiotherapy with photons and protons for non-small cell lung cancer. J Thorac Oncol 2012; 7:165-76. [PMID: 22071782 DOI: 10.1097/jto.0b013e31823529fc] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION This multicentric in silico trial compares photon and proton radiotherapy for non-small cell lung cancer patients. The hypothesis is that proton radiotherapy decreases the dose and the volume of irradiated normal tissues even when escalating to the maximum tolerable dose of one or more of the organs at risk (OAR). METHODS Twenty-five patients, stage IA-IIIB, were prospectively included. On 4D F18-labeled fluorodeoxyglucose-positron emission tomography-computed tomography scans, the gross tumor, clinical and planning target volumes, and OAR were delineated. Three-dimensional conformal radiotherapy (3DCRT) and intensity-modulated radiotherapy (IMRT) photon and passive scattered conformal proton therapy (PSPT) plans were created to give 70 Gy to the tumor in 35 fractions. Dose (de-)escalation was performed by rescaling to the maximum tolerable dose. RESULTS Protons resulted in the lowest dose to the OAR, while keeping the dose to the target at 70 Gy. The integral dose (ID) was higher for 3DCRT (59%) and IMRT (43%) than for PSPT. The mean lung dose reduced from 18.9 Gy for 3DCRT and 16.4 Gy for IMRT to 13.5 Gy for PSPT. For 10 patients, escalation to 87 Gy was possible for all 3 modalities. The mean lung dose and ID were 40 and 65% higher for photons than for protons, respectively. CONCLUSIONS The treatment planning results of the Radiation Oncology Collaborative Comparison trial show a reduction of ID and the dose to the OAR when treating with protons instead of photons, even with dose escalation. This shows that PSPT is able to give a high tumor dose, while keeping the OAR dose lower than with the photon modalities.
Collapse
|
40
|
Postoperative adjuvant chemotherapy for stage II colorectal cancer: a systematic review of 12 randomized controlled trials. J Gastrointest Surg 2012; 16:646-55. [PMID: 22194062 DOI: 10.1007/s11605-011-1682-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Accepted: 09/07/2011] [Indexed: 01/31/2023]
Abstract
BACKGROUND The impact of postoperative adjuvant chemotherapy on the oncological outcomes for stage II colorectal cancer remains controversial. METHODS The literature was searched for studies published between 1985 and 2010 in which patients with stage II colorectal cancer were randomly assigned to receive either surgery combined with postoperative adjuvant chemotherapy or surgery alone. End points included 5-year overall survival, 5-year disease-free survival, recurrence, and mortality. RESULTS A significant improvement in 5-year overall survival was associated with surgery combined with postoperative adjuvant chemotherapy for stage II colon cancer (hazard ratio, 0.81; 95% confidence interval (CI), 0.71-0.91) and for stage II rectal cancer (hazard ratio, 0.72; 95% CI, 0.61-0.86). The 5-year disease-free survival also favored the group of surgery combined with postoperative adjuvant chemotherapy for stage II colon cancer (hazard ratio, 0.86; 95% CI, 0.75-0.98) and for stage II rectal cancer (hazard ratio, 0.34; 95% CI, 0.22-0.51). For stage II colon cancer, a significant reduction in risk of recurrence was found in favor of postoperative adjuvant chemotherapy (risk ratio, 0.82; 95% CI, 0.71-0.95). CONCLUSIONS Postoperative adjuvant chemotherapy for stage II colorectal cancer appears to be associated with improved 5-year overall survival and 5-year disease-free survival, and reduction in risk of recurrence.
Collapse
|
41
|
Abstract
With the introduction of new biologically based imaging possibilities, a higher degree of individualisation and adaptation of radiotherapy will be possible. Better knowledge of the biology of the target and its sub-volumes will enable dose prescriptions tailored to the individual patients, tissues and sub-volumes. Repeated imaging during the course of treatment will in addition enable adaptation of the treatment to cope with anatomical, as well as biological changes of the patient and of the target tissues. To translate these bright future perspectives into significant improvements in clinical outcome, advanced tools to tailor the physical dose distributions are needed. The most conformal radiotherapy technique known to mankind and clinically available today is proton therapy; in particular Intensity Modulated Proton Therapy (IMPT) with active spot scanning can not only tailor the dose to the desired target, but also effectively avoid sensitive structures in the proximity of the target to a degree far better than other conformal techniques such as Intensity Modulated Radiotherapy with photons (IMRT). The development of IMPT is now mature enough for clinical introduction on a broad scale. Proton therapy is still more expensive than conventional radiotherapy, but with the present rapid increase in the number of proton facilities worldwide and new initiatives to improve efficiency, the difference in affordability will continue to decrease and in comparison with the benefits, soon diminish even further. Contrary to what is sometimes claimed, the demands for better physical dose distributions and better avoidance of non-target tissue, has never been higher. Prolonged expected survival in many groups of patients emphasises the need to reduce late toxicities. The success of concomitant systemic therapies, with their tendency to cause higher morbidity stresses even further the increased need for subtle dose-sculpting methodologies and tools. There is no contradiction between striving for better physical dose distributions and a more biologically based approach. On the contrary, physical dose distributions are the tools to which achieve a treatment that can meet the biological demands.
Collapse
|
42
|
Evaluation of Potential Proton Therapy Utilization in a Market-Based Environment. J Am Coll Radiol 2010; 7:522-8. [DOI: 10.1016/j.jacr.2010.01.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 01/29/2010] [Indexed: 11/22/2022]
|
43
|
|
44
|
Devicienti S, Strigari L, D'Andrea M, Benassi M, Dimiccoli V, Portaluri M. Patient positioning in the proton radiotherapy era. J Exp Clin Cancer Res 2010; 29:47. [PMID: 20465816 PMCID: PMC2881119 DOI: 10.1186/1756-9966-29-47] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 05/13/2010] [Indexed: 11/24/2022] Open
Abstract
The main hindrance to the diffusion of proton therapy facilities is the high cost for gantry installations. An alternative technical option is provided by fixed-beam treatment rooms, where the patient is rotated and translated in space with a robotic arm solution to enable beam incidence from various angles. The technological efforts based on robotic applications made up to now for patient positioning in proton beam facilities are described here, highlighting their limitations and perspectives.
Collapse
Affiliation(s)
| | - Lidia Strigari
- Laboratory of Medical Physics and Expert Systems, Regina Elena National Cancer Institute, Rome, Italy
| | - Marco D'Andrea
- Laboratory of Medical Physics and Expert Systems, Regina Elena National Cancer Institute, Rome, Italy
| | - Marcello Benassi
- Laboratory of Medical Physics and Expert Systems, Regina Elena National Cancer Institute, Rome, Italy
| | - Vincenzo Dimiccoli
- Technical division ITEL Telecomunicazioni s.r.l. Ruvo di Puglia (Ba), Italy
| | - Maurizio Portaluri
- Radiotherapy ASL Brindisi "A.Perrino" Hospital, Brindisi, Italy
- Institute of Clinical Physiology - National Research Council (IFC-CNR), Pisa, Italy
| |
Collapse
|
45
|
Bouyon-Monteau A, Habrand JL, Datchary J, Alapetite C, Bolle S, Dendale R, Feuvret L, Helfre S, Calugaru V, Cosset JM, Bey P. [Is proton beam therapy the future of radiotherapy? Part I: clinical aspects]. Cancer Radiother 2010; 14:727-38. [PMID: 20427218 DOI: 10.1016/j.canrad.2010.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 01/16/2010] [Accepted: 01/21/2010] [Indexed: 11/29/2022]
Abstract
Proton beam therapy uses positively charged particles, protons, whose physical properties improve dose-distribution (Bragg peak characterized by a sharp distal and lateral penumbra) compared with conventional photon-based radiation therapy (X-ray). These ballistic advantages apply to the treatment of deep-sited tumours located close to critical structures and requiring high-dose levels. [60-250 MeV] proton-beam therapy is now widely accepted as the "gold standard" in specific indications in adults--ocular melanoma, chordoma and chondrosarcoma of the base of skull --and is regarded as a highly promising treatment modality in the treatment of paediatric malignancies (brain tumours, sarcomas…). This includes the relative sparing of surrounding normal organs from low and mid-doses that can cause deleterious side-effects such as radiation-induced secondary malignancies. Other clinical studies are currently testing proton beam in dose-escalation evaluations, in prostate, lung, hepatocellular cancers, etc. Clinical validation of these new indications appears necessary. To date, over 60,000 patients worldwide have received part or all of their radiation therapy program by proton beams, in approximately 30 treatment facilities.
Collapse
Affiliation(s)
- A Bouyon-Monteau
- Centre de protonthérapie d'Orsay, institut Curie, campus universitaire, bâtiment 101, 91898 Orsay cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Olsen DR, Overgaard J. Leveraging clinical performance by technological excellence – The case of particle therapy. Radiother Oncol 2010; 95:1-2. [DOI: 10.1016/j.radonc.2010.03.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 03/22/2010] [Indexed: 11/25/2022]
|
47
|
Proton beam radiotherapy versus three-dimensional conformal stereotactic body radiotherapy in primary peripheral, early-stage non-small-cell lung carcinoma: a comparative dosimetric analysis. Int J Radiat Oncol Biol Phys 2009; 75:950-8. [PMID: 19801106 DOI: 10.1016/j.ijrobp.2009.04.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 04/05/2009] [Accepted: 04/10/2009] [Indexed: 11/23/2022]
Abstract
PURPOSE Proton radiotherapy (PT) and stereotactic body radiotherapy (SBRT) have the capacity to optimize the therapeutic ratio. We analyzed the dosimetric differences between PT and SBRT in treating primary peripheral early-stage non-small-cell lung cancer. METHODS AND MATERIALS Eight patients were simulated, planned, and treated with SBRT according to accepted techniques. SBRT treatments were retrospectively planned using heterogeneity corrections. PT treatment plans were generated using single-, two-, and three-field passively scattered and actively scanned proton beams. Calculated dose characteristics were compared. RESULTS Comparable planning target volume (PTV) median minimum and maximum doses were observed between PT and SBRT plans. Higher median maximum doses 2 cm from the PTV were observed for PT, but higher median PTV doses were observed for SBRT. The total lung mean and V5 doses were significantly lower with actively scanned PT. The lung V13 and V20 were comparable. The dose to normal tissues was lower with PT except to skin and ribs. Although the maximum doses to skin and ribs were similar or higher with PT, the median doses to these structures were higher with SBRT. Passively scattered plans, compared with actively scanned plans, typically demonstrated higher doses to the PTV, lung, and organs at risk. CONCLUSIONS Single-, two-, or three-field passively or actively scanned proton therapy delivered comparable PTV dose with generally less dose to normal tissues in these hypothetic treatments. Actively scanned beam plans typically had more favorable dose characteristics to the target, lung, and other soft tissues compared with the passively scanned plans. The clinical significance of these findings remains to be determined.
Collapse
|
48
|
Ugenskiene R, Prise K, Folkard M, Lekki J, Stachura Z, Zazula M, Stachura J. Dose response and kinetics of foci disappearance following exposure to high- and low-LET ionizing radiation. Int J Radiat Biol 2009. [DOI: 10.1080/09553000903072462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
49
|
Igaki H, Tokuuye K, Takeda T, Sugahara S, Hata M, Hashimoto T, Fukumitsu N, Wu J, Ohnishi K, Ohara K, Akine Y. Sequential evaluation of hepatic functional reserve by 99mTechnetium-galactosyl human serum albumin scintigraphy after proton beam therapy: a report of three cases and a review of the literatures. Acta Oncol 2009; 45:1102-7. [PMID: 17118846 DOI: 10.1080/02841860600690347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The treatment strategy for malignant liver tumors should be appropriately determined because post-treatment quality of life greatly depends on the patients' residual hepatic function. In this report, we present three patients with malignant liver tumors treated by proton beam therapy in whom pre- and post-therapeutic hepatic functional reserves were evaluated sequentially for more than a year by 99mTechnetium-galactosyl human serum albumin (99mTc-GSA) scintigraphy. All three patients exhibited the distinctive time course of 99mTc-GSA uptake efficiency, which suggested a transient decline in the ratio of liver activity to heart and liver activity at 15 minutes (LHL15) 3-6 months after proton beam therapy. This change was not in parallel with that expected from a functioning normal liver tissue volume. In a year after proton beam therapy, LHL15 recovered nearly to the pre-treatment level in all three patients. Our observations may be related to the up-regulation of receptor-mediated 99mTc-GSA uptake during hepatic regeneration after proton beam therapy.
Collapse
Affiliation(s)
- Hiroshi Igaki
- Proton Medical Research Center, University of Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Palm A, Johansson KA. A review of the impact of photon and proton external beam radiotherapy treatment modalities on the dose distribution in field and out-of-field; implications for the long-term morbidity of cancer survivors. Acta Oncol 2009; 46:462-73. [PMID: 17497313 DOI: 10.1080/02841860701218626] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The use of untraditional treatment modalities for external beam radiotherapy such as intensity modulated radiation therapy (IMRT) and proton beam therapy is increasing. This review focuses on the changes in the dose distribution and the impact on radiation related risks for long-term cancer survivors. We compare conventional radiotherapy, IMRT, and proton beam therapy based on published treatment planning studies as well as published measurements and Monte Carlo simulations of out-of-field dose distributions. Physical dose parameters describing the dose distribution in the target volume, the conformity index, the dose distribution in organs at risk, and the dose distribution in non-target tissue, respectively, are extracted from the treatment planning studies. Measured out-of-field dose distributions are presented as the dose equivalent as a function of distance from the treatment field. Data in the literature clearly shows that, compared with conventional radiotherapy, IMRT improves the dose distribution in the target volume, which may increase the probability of tumor control. IMRT also seems to increase the out-of-field dose distribution, as well as the irradiated non-target volume, although the data is not consistent, leading to a potentially increased risk of radiation induced secondary malignancies, while decreasing the dose to normal tissues close to the target volume, reducing the normal tissue complication probability. Protons show no or only minor advantage on the dose distribution in the target volume and the conformity index compared to IMRT. However, the data consistently shows that proton beam therapy substantially decreases the OAR average dose compared to the other two techniques. It is also clear that protons provide an improved dose distribution in non-target tissues compared to conventional radiotherapy and IMRT. IMRT and proton beam therapy may significantly improve tumor control for cancer patients and quality of life for long-term cancer survivors.
Collapse
Affiliation(s)
- Asa Palm
- Department of Therapeutic Radiation Physics, Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Göteborg, Sweden.
| | | |
Collapse
|