1
|
Tzikas A, Lavdas E, Kechagias D, Mavroidis P. Dose-response modeling and treatment plan assessment with a python software toolkit. Med Dosim 2024; 49:340-352. [PMID: 38782687 DOI: 10.1016/j.meddos.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024]
Abstract
This software assistant aims at calculating the dose-response relations of tumors and normal tissues, or clinically assessing already determined values by other researchers. It can also indicate the optimal dose prescription by optimizing the expected treatment outcome. The software is developed solely in python programming language, and it employs PSFL license for its Graphical User Interface (GUI), NUMPY, MATPLOTLIB, and SCIPY libraries. It comprises of two components. The first is the Dose-response relations derivation component, which takes as input the dose volume histograms (DVHs) of patients and their recorded responses regarding a given clinical endpoint to determine the parameters of different tumor control probability (TCP) or normal tissue complication probability (NTCP) models. The second is the Treatment Plan Assessment component, which uses the DVHs of a plan and the dose-response parameters values of the involved tumors and organs at risk (OARs) to calculate their expected responses. Additionally, the overall probabilities of benefit (PB), injury (PI) and complication-free tumor control (P+) are calculated. The software calculates rapidly the corresponding generalized equivalent uniform doses (gEUD) and biologically effective uniform doses (D‾‾) for the Lyman-Kutcher-Burman (LKB), parallel volume (PV) and relative seriality (RS) models respectively, determining the model parameters. In the Dose-Response Relations Derivation component, the software plots the dose-response curves of the irradiated organ with the relevant confidence internals along with the data of the patients with and without toxicity. It also calculates the odds ratio (OR) and the area under the curve (AUC) of different dose metrics or model parameter values against the individual patient outcomes to determine their discrimination capacity. It also performs a goodness-of-fit evaluation of any model parameter set. The user has the option of viewing plots like Scatter, 3D surfaces, and Bootstrap plots. In the Treatment Plan Assessment part, the software calculates the TCP and NTCP values of the involved tumors and OARs, respectively. Furthermore, it plots the dose-response curves of the TCPs, NTCPs, PB, PI, and P+ for a range of prescription doses for different treatment plans. The presented software is ideal for efficiently conducting studies of radiobiological modeling. Furthermore, it is ideal for performing treatment plan assessment, comparison, and optimization studies.
Collapse
Affiliation(s)
- Athanasios Tzikas
- University of West Attica, Department of Biomedical Sciences, Athens, Greece
| | - Eleftherios Lavdas
- University of West Attica, Department of Biomedical Sciences, Athens, Greece
| | - Dimitrios Kechagias
- University of West Attica, Department of Biomedical Sciences, Athens, Greece
| | - Panayiotis Mavroidis
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, NC.
| |
Collapse
|
2
|
Papanikolaou P, Swanson G, Stathakis S, Mavroidis P. NTCP Modeling and Dose-Volume Correlations of Significant Hematocrit Drop 3 Months After Prostate Radiation Therapy. Adv Radiat Oncol 2024; 9:101393. [PMID: 38292887 PMCID: PMC10823068 DOI: 10.1016/j.adro.2023.101393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/05/2023] [Indexed: 02/01/2024] Open
Abstract
Purpose Our purpose was to determine and model the dose-response relations of different parts of the pelvis regarding the endpoint of hematocrit level drop after pelvic radiation therapy (RT). Methods and Materials Two hundred and twenty-one patients treated with RT for prostate adenocarcinoma between 2014 and 2016 were included. All patients had complete blood counts collected at baseline and 3 months post-RT. The net difference of hematocrit level post-RT versus baseline was calculated, and the level of the 15th percentiles defined the thresholds of response in each case. The doses to 8 different pelvic structures were derived and fitted to the hematocrit levels using the relative seriality normal tissue complication probability model and the biologically equivalent uniform dose (D = ). Results Pelvic structures that correlated with significant decreases in hematocrit were the os coxae bilaterally superior to the acetabulum (OCUB), the total os coxae bilaterally, and the bone volume of the whole pelvis. The structure showing the highest correlation was OCUB with a maximum area under the curve (AUC) of 0.74. For V20 Gy < 30% the odds ratio was 9.8 with 95% CI of 2.9 to 32.9. For mean dose (Dmean) to OCUB, an AUC of 0.73 was observed where the dose threshold was 23 Gy and the odds ratio was 2.7 and 95% CI 1.3 to 5.6. The values for the D50, γ, and s parameters of the relative seriality model were 26.9 Gy (25.9-27.9), 1.3 (1.2-2.2), and 0.12 (0.10-0.83), respectively. The AUC of D = was 0.73 and patients with D = to OCUB ≥ 27 Gy had 8.2 times higher rate of significant hematocrit drop versus <27 Gy. Conclusions These findings confirm the association of radiation-induced damage to pelvic bone marrow with a drop in hematocrit. A threshold of V20 Gy < 30%, Dmean < 23 Gy, or D = < 27 Gy to OCUB may significantly reduce the risk for this endpoint.
Collapse
Affiliation(s)
- Panos Papanikolaou
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Gregory Swanson
- Department of Radiation Oncology, Baylor Scott & White Health, Temple, Texas
| | - Sotirios Stathakis
- Department of Physics, Mary Bird Perkins Cancer Center, Baton Rouge, Louisiana
| | - Panayiotis Mavroidis
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
3
|
Tzikas A, Lavdas E, Kehagias D, Amdur R, Mendenhall W, Sheets N, Green R, Chera B, Mavroidis P. NTCP modelling of xerostomia after radiotherapy for oropharyngeal cancer using the PRO-CTCAE and CTCAE scoring systems at different time-points post-RT. Phys Med 2023; 116:103169. [PMID: 37989042 DOI: 10.1016/j.ejmp.2023.103169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/30/2023] [Accepted: 11/05/2023] [Indexed: 11/23/2023] Open
Abstract
PURPOSE This study aims at determining the parameter values of three normal tissue complication probability (NTCP) models for the contralateral parotid gland, contralateral submandibular gland (SMG) and contralateral salivary glands regarding the endpoint of xerostomia 6-24 months after radiotherapy for oropharynx cancer. METHODS The treatment and outcome data of 231 patients with favorable risk, HPV-associated oropharyngeal squamous cell carcinoma are analyzed. 60 Gy intensity modulated radiotherapy was delivered to all the patients. The presence and severity of xerostomia was recorded (pre- and post- radiotherapy) by the PRO-CTCAE and the CTCAE scoring systems. In both scoring systems, patients with a change in symptom severity (from baseline) of ≥ 2 were considered responders. RESULTS Xerostomia was observed in 61.3 %, 39.2 %, 28.6 % and 27.0 % of the patients based on the PRO-CTCAE scoring system at 6-, 12-, 18- and 24-months post-RT, respectively. The AUCs of the contralateral salivary glands ranged between 0.58-0.64 in the LKB model with the gEUD ranging between 20.3 Gy and 24.7 Gy. CONCLUSIONS Based on the PRO-CTCAE scores, mean dose < 22 Gy, V50 < 10 % for the contralateral salivary glands and mean dose < 18 Gy, V45 < 10 % for the contralateral parotid were found to significantly reduce by a factor of 2-3 the risk for radiation induced xerostomia that is observed at 6-24 months post-RT, respectively. Also, gEUD < 22 Gy to the contralateral salivary glands and < 18 Gy to the contralateral parotid was found to significantly reduce the risk for radiation induced xerostomia that is observed at 6-24 months post-RT by 2.0-2.3 times.
Collapse
Affiliation(s)
- Athanasios Tzikas
- University of West Attica, Department of Biomedical Sciences, Athens, Greece
| | - Eleftherios Lavdas
- University of West Attica, Department of Biomedical Sciences, Athens, Greece
| | - Dimitrios Kehagias
- University of West Attica, Department of Biomedical Sciences, Athens, Greece
| | - Robert Amdur
- Department of Radiation Oncology, University of Florida Hospitals, Gainesville, FL, United States
| | - William Mendenhall
- Department of Radiation Oncology, University of Florida Hospitals, Gainesville, FL, United States
| | - Nathan Sheets
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, NC, United States
| | - Rebecca Green
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, NC, United States
| | - Bhishamjit Chera
- Department of Radiation Oncology, MUSC Hollings Cancer Center, Charleston, SC, United States
| | - Panayiotis Mavroidis
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, NC, United States.
| |
Collapse
|
4
|
Artificial Intelligence for Outcome Modeling in Radiotherapy. Semin Radiat Oncol 2022; 32:351-364. [DOI: 10.1016/j.semradonc.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Szalkowski G, Karakas Z, Cengiz M, Schreiber E, Das S, Yazici G, Ozyigit G, Mavroidis P. Stereotactic body radiotherapy optimization to reduce the risk of carotid blowout syndrome using normal tissue complication probability objectives. J Appl Clin Med Phys 2022; 23:e13563. [PMID: 35194924 PMCID: PMC9121056 DOI: 10.1002/acm2.13563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/14/2022] [Accepted: 02/02/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE To determine the possibility of further improving clinical stereotactic body radiotherapy (SBRT) plans using normal tissue complication probability (NTCP) objectives in order to minimize the risk for carotid blowout syndrome (CBOS). METHODS 10 patients with inoperable locally recurrent head and neck cancer, who underwent SBRT using CyberKnife were analyzed. For each patient, three treatment plans were examined: (1) cone-based without delineation of the ipsilateral internal carotid (clinical plan used to treat the patients); (2) cone-based with the carotid retrospectively delineated and spared; and (3) Iris-based with carotid sparing. The dose-volume histograms of the target and primary organs at risk were calculated. The three sets of plans were compared based on dosimetric and TCP/NTCP (tumor control and normal tissue complication probabilities) metrics. For the NTCP values of carotid, the relative seriality model was used with the following parameters: D50 = 40 Gy, γ = 0.75, and s = 1.0. RESULTS Across the 10 patient plans, the average TCP did not significantly change when the plans were re-optimized to spare the carotid. The estimated risk of CBOS was significantly decreased in the re-optimized plans, by 14.9% ± 7.4% for the cone-based plans and 17.7% ± 7.1% for the iris-based plans (p = 0.002 for both). The iris-based plans had significant (p = 0.02) reduced CBOS risk and delivery time (20.1% ± 7.4% time reduction, p = 0.002) compared to the cone-based plans. CONCLUSION A significant improvement in the quality of the clinical plans could be achieved through the delineation of the internal carotids and the use of more modern treatment delivery modalities. In this way, for the same target coverage, a significant reduction in the risk of CBOS could be achieved. The range of risk reduction varied depending on the proximity of carotid artery to the target.
Collapse
Affiliation(s)
- Gregory Szalkowski
- Department of Radiation OncologyUniversity of North CarolinaNorth CarolinaChapel HillUSA
| | - Zeynep Karakas
- Department of Radiation OncologyUniversity of North CarolinaNorth CarolinaChapel HillUSA
| | - Mustafa Cengiz
- Faculty of MedicineDepartment of Radiation OncologyHacettepe UniversitySihhiyeAnkaraTurkey
| | - Eric Schreiber
- Department of Radiation OncologyUniversity of North CarolinaNorth CarolinaChapel HillUSA
| | - Shiva Das
- Department of Radiation OncologyUniversity of North CarolinaNorth CarolinaChapel HillUSA
| | - Gozde Yazici
- Faculty of MedicineDepartment of Radiation OncologyHacettepe UniversitySihhiyeAnkaraTurkey
| | - Gokhan Ozyigit
- Faculty of MedicineDepartment of Radiation OncologyHacettepe UniversitySihhiyeAnkaraTurkey
| | - Panayiotis Mavroidis
- Department of Radiation OncologyUniversity of North CarolinaNorth CarolinaChapel HillUSA
| |
Collapse
|
6
|
Akasiadis C, Ponce‐de‐Leon M, Montagud A, Michelioudakis E, Atsidakou A, Alevizos E, Artikis A, Valencia A, Paliouras G. Parallel model exploration for tumor treatment simulations. Comput Intell 2022. [DOI: 10.1111/coin.12515] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Charilaos Akasiadis
- Institute of Informatics & Telecommunications NCSR ‘Demokritos’ Agia Paraskevi Greece
| | | | - Arnau Montagud
- Life Sciences Department Barcelona Supercomputing Center Barcelona Spain
| | - Evangelos Michelioudakis
- Institute of Informatics & Telecommunications NCSR ‘Demokritos’ Agia Paraskevi Greece
- Department of Informatics and Telecommunications University of Athens Athens Greece
| | - Alexia Atsidakou
- Institute of Informatics & Telecommunications NCSR ‘Demokritos’ Agia Paraskevi Greece
| | - Elias Alevizos
- Institute of Informatics & Telecommunications NCSR ‘Demokritos’ Agia Paraskevi Greece
| | - Alexander Artikis
- Institute of Informatics & Telecommunications NCSR ‘Demokritos’ Agia Paraskevi Greece
| | - Alfonso Valencia
- Life Sciences Department Barcelona Supercomputing Center Barcelona Spain
| | - Georgios Paliouras
- Institute of Informatics & Telecommunications NCSR ‘Demokritos’ Agia Paraskevi Greece
| |
Collapse
|
7
|
Radiobiological assessment of nasopharyngeal cancer IMRT using various collimator angles and non-coplanar fields. JOURNAL OF RADIOTHERAPY IN PRACTICE 2021. [DOI: 10.1017/s1460396919000943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractAim:The aim of this study was to evaluate clinical efficacy and radiobiological outcome of intensity-modulated radiation therapy (IMRT) modalities using various collimator angles and non-coplanar fields for nasopharyngeal cancer (NPC).Materials and methods:A 70-Gy planning target volume dose was administered for 30 NPC patients referred for IMRT. Standard IMRT plans were constructed based on the target and organs at risk (OARs) volume; and dose constraints recommended by Radiation Therapy Oncology Group (RTOG). Using various collimator angles and non-coplanar fields, 11 different additional IMRT protocols were investigated. Homogeneity indexes (HIs) and conformation numbers (CNs) were calculated. Poisson and relative seriality models were utilised for estimating tumour control probability (TCP) and normal tissue complication probabilities (NTCPs), respectively.Results:Various collimator angles and non-coplanar fields had no significant effect on HI, CN and TCP, while significant effects were noted for some OARs, with a maximum mean dose (Dmax). No significant differences were observed among the calculated NTCPs of all the IMRT protocols. However, the protocol with 10° collimator angle (for five fields out of seven) and 8° couch angle had the lowest NTCP. Furthermore, the standard and some of non-coplanar IMRT protocols led to the reduction in OARs Dmax.Conclusions:Using appropriate standard/non-coplanar IMRT protocols for NPC treatment could potentially reduce the dose to the OARs and the probability of inducing secondary cancer in patients.
Collapse
|
8
|
Spohn SKB, Sachpazidis I, Wiehle R, Thomann B, Sigle A, Bronsert P, Ruf J, Benndorf M, Nicolay NH, Sprave T, Grosu AL, Baltas D, Zamboglou C. Influence of Urethra Sparing on Tumor Control Probability and Normal Tissue Complication Probability in Focal Dose Escalated Hypofractionated Radiotherapy: A Planning Study Based on Histopathology Reference. Front Oncol 2021; 11:652678. [PMID: 34055621 PMCID: PMC8160377 DOI: 10.3389/fonc.2021.652678] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose Multiparametric magnetic resonance tomography (mpMRI) and prostate specific membrane antigen positron emission tomography (PSMA-PET/CT) are used to guide focal radiotherapy (RT) dose escalation concepts. Besides improvements of treatment effectiveness, maintenance of a good quality of life is essential. Therefore, this planning study investigates whether urethral sparing in moderately hypofractionated RT with focal RT dose escalation influences tumour control probability (TCP) and normal tissue complication probability (NTCP). Patients and Methods 10 patients with primary prostate cancer (PCa), who underwent 68Ga PSMA-PET/CT and mpMRI followed by radical prostatectomy were enrolled. Intraprostatic tumour volumes (gross tumor volume, GTV) based on both imaging techniques (GTV-MRI and -PET) were contoured manually using validated contouring techniques and GTV-Union was created by summing both. For each patient three IMRT plans were generated with 60 Gy to the whole prostate and a simultaneous integrated boost up to 70 Gy to GTV-Union in 20 fractions by (Plan 1) not respecting and (Plan 2) respecting dose constraints for urethra as well as (Plan 3) respecting dose constraints for planning organ at risk volume for urethra (PRV = urethra + 2mm expansion). NTCP for urethra was calculated applying a Lyman-Kutcher-Burman model. TCP-Histo was calculated based on PCa distribution in co-registered histology (GTV-Histo). Complication free tumour control probability (P+) was calculated. Furthermore, the intrafractional movement was considered. Results Median overlap of GTV-Union and PRV-Urethra was 1.6% (IQR 0-7%). Median minimum distance of GTV-Histo to urethra was 3.6 mm (IQR 2 - 7 mm) and of GTV-Union to urethra was 1.8 mm (IQR 0.0 - 5.0 mm). The respective prescription doses and dose constraints were reached in all plans. Urethra-sparing in Plans 2 and 3 reached significantly lower NTCP-Urethra (p = 0.002) without significantly affecting TCP-GTV-Histo (p = p > 0.28), NTCP-Bladder (p > 0.85) or NTCP-Rectum (p = 0.85), resulting in better P+ (p = 0.006). Simulation of intrafractional movement yielded even higher P+ values for Plans 2 and 3 compared to Plan 1. Conclusion Urethral sparing may increase the therapeutic ratio and should be implemented in focal RT dose escalation concepts.
Collapse
Affiliation(s)
- Simon K B Spohn
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK). Partner Site Freiburg, Freiburg, Germany.,Berta-Ottenstein-Programme, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ilias Sachpazidis
- Division of Medical Physics, Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Rolf Wiehle
- Division of Medical Physics, Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Benedikt Thomann
- Division of Medical Physics, Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - August Sigle
- Department of Urology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Bronsert
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Juri Ruf
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Matthias Benndorf
- Department of Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nils H Nicolay
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK). Partner Site Freiburg, Freiburg, Germany
| | - Tanja Sprave
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK). Partner Site Freiburg, Freiburg, Germany
| | - Anca L Grosu
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK). Partner Site Freiburg, Freiburg, Germany
| | - Dimos Baltas
- German Cancer Consortium (DKTK). Partner Site Freiburg, Freiburg, Germany.,Division of Medical Physics, Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Constantinos Zamboglou
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK). Partner Site Freiburg, Freiburg, Germany.,Berta-Ottenstein-Programme, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Wilson LJ, Newhauser WD. Generalized approach for radiotherapy treatment planning by optimizing projected health outcome: preliminary results for prostate radiotherapy patients. Phys Med Biol 2021; 66:065007. [PMID: 33545710 DOI: 10.1088/1361-6560/abe3cf] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Research in cancer care increasingly focuses on survivorship issues, e.g. managing disease- and treatment-related morbidity and mortality occurring during and after treatment. This necessitates innovative approaches that consider treatment side effects in addition to tumor cure. Current treatment-planning methods rely on constrained iterative optimization of dose distributions as a surrogate for health outcomes. The goal of this study was to develop a generally applicable method to directly optimize projected health outcomes. We developed an outcome-based objective function to guide selection of the number, angle, and relative fluence weight of photon and proton radiotherapy beams in a sample of ten prostate-cancer patients by optimizing the projected health outcome. We tested whether outcome-optimized radiotherapy (OORT) improved the projected longitudinal outcome compared to dose-optimized radiotherapy (DORT) first for a statistically significant majority of patients, then for each individual patient. We assessed whether the results were influenced by the selection of treatment modality, late-risk model, or host factors. The results of this study revealed that OORT was superior to DORT. Namely, OORT maintained or improved the projected health outcome of photon- and proton-therapy treatment plans for all ten patients compared to DORT. Furthermore, the results were qualitatively similar across three treatment modalities, six late-risk models, and 10 patients. The major finding of this work was that it is feasible to directly optimize the longitudinal (i.e. long- and short-term) health outcomes associated with the total (i.e. therapeutic and stray) absorbed dose in all of the tissues (i.e. healthy and diseased) in individual patients. This approach enables consideration of arbitrary treatment factors, host factors, health endpoints, and times of relevance to cancer survivorship. It also provides a simpler, more direct approach to realizing the full beneficial potential of cancer radiotherapy.
Collapse
Affiliation(s)
- Lydia J Wilson
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001, United States of America
| | - Wayne D Newhauser
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001, United States of America.,Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, LA 70809, United States of America
| |
Collapse
|
10
|
Barry MA, Hussein M, Schettino G. Evaluating the Propagation of Uncertainties in Biologically Based Treatment Planning Parameters. Front Oncol 2020; 10:1058. [PMID: 32793468 PMCID: PMC7386327 DOI: 10.3389/fonc.2020.01058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/27/2020] [Indexed: 12/26/2022] Open
Abstract
Biologically based treatment planning is a broad term used to cover any instance in radiotherapy treatment planning where some form of biological input has been used. This is wide ranging, and the simpler forms (e.g., fractionation modification/optimization) have been in use for many years. However, there is a reluctance to use more sophisticated methods that incorporate biological models either for plan evaluation purposes or for driving plan optimizations. This is due to limited data available regarding the uncertainties in these model parameters and what impact these have clinically. This work aims to address some of these issues and to explore the role that uncertainties in individual model parameters have on the overall tumor control probability (TCP)/normal tissue complication probability (NTCP) calculated, those parameters that have the largest influence and situations where extra care must be taken. In order to achieve this, a software tool was developed, which can import individual clinical DVH's for analysis using a range of different TCP/NTCP models. On inputting individual model parameters, an uncertainty can be applied. Using a normally distributed random number generator, distributions of parameters can be generated, from which TCP/NTCP values can be calculated for each parameter set for the DVH in question. These represent the spread in TCP/NTCP parameters that would be observed for a simulated population of patients all being treated with that particular dose distribution. A selection of clinical DVHs was assessed using published parameters and their associated uncertainties. A range of studies was carried out to determine the impact of individual parameter uncertainties including reduction of uncertainties and assessment of what impact fractionation and dose have on these probabilities.
Collapse
Affiliation(s)
- Miriam A Barry
- National Physical Laboratory, Metrology for Medical Physics Department, Teddington, United Kingdom
| | - Mohammad Hussein
- National Physical Laboratory, Metrology for Medical Physics Department, Teddington, United Kingdom
| | - Giuseppe Schettino
- National Physical Laboratory, Metrology for Medical Physics Department, Teddington, United Kingdom.,Department of Physics, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
11
|
Wilson LJ, Newhauser WD. Justification and optimization of radiation exposures: a new framework to aggregate arbitrary detriments and benefits. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2020; 59:389-405. [PMID: 32556631 DOI: 10.1007/s00411-020-00855-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Myriad radiation effects, including benefits and detriments, complicate justifying and optimizing radiation exposures. The purpose of this study was to develop a comprehensive conceptual framework and corresponding quantitative methods to aggregate the detriments and benefits of radiation exposures to individuals, groups, and populations. In this study, concepts from the ICRP for low dose were integrated with clinical techniques focused on high dose to develop a comprehensive figure of merit (FOM) that takes into account arbitrary host- and exposure-related factors, endpoints, and time points. The study built on existing methods with three new capabilities: application to individuals, groups, and populations; extension to arbitrary numbers and types of endpoints; and inclusion of limitation, where relevant. The FOM was applied to three illustrative exposure situations: emergency response, diagnostic imaging, and cancer radiotherapy, to evaluate its utility in diverse settings. The example application to radiation protection revealed the FOM's utility in optimizing the benefits and risks to a population while keeping individual exposures below applicable regulatory limits. Examples in diagnostic imaging and cancer radiotherapy demonstrated the FOM's utility for guiding population- and patient-specific decisions in medical applications. The major finding of this work is that it is possible to quantitatively combine the benefits and detriments of any radiation exposure situation involving an individual or population to perform cost-effectiveness analyses using the ICRP key principles of radiation protection. This FOM fills a chronic gap in the application of radiation-protection theory, i.e., limitations of generalized frameworks to algorithmically justify and optimize radiation exposures. This new framework potentially enhances objective optimization and justification, especially in complex exposure situations.
Collapse
Affiliation(s)
- Lydia J Wilson
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA, 70803-4001, USA
| | - Wayne D Newhauser
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA, 70803-4001, USA.
- Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, LA, 70809, USA.
| |
Collapse
|
12
|
Alexandrian AN, Mavroidis P, Narayanasamy G, McConnell KA, Kabat CN, George RB, Defoor DL, Kirby N, Papanikolaou N, Stathakis S. Incorporating biological modeling into patient‐specific plan verification. J Appl Clin Med Phys 2020; 21:94-107. [PMID: 32101368 PMCID: PMC7075379 DOI: 10.1002/acm2.12831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 11/17/2022] Open
Abstract
Purpose Dose–volume histogram (DVH) measurements have been integrated into commercially available quality assurance systems to provide a metric for evaluating accuracy of delivery in addition to gamma analysis. We hypothesize that tumor control probability and normal tissue complication probability calculations can provide additional insight beyond conventional dose delivery verification methods. Methods A commercial quality assurance system was used to generate DVHs of treatment plan using the planning CT images and patient‐specific QA measurements on a phantom. Biological modeling was performed on the DVHs produced by both the treatment planning system and the quality assurance system. Results The complication‐free tumor control probability, P+, has been calculated for previously treated intensity modulated radiotherapy (IMRT) patients with diseases in the following sites: brain (−3.9% ± 5.8%), head‐neck (+4.8% ± 8.5%), lung (+7.8% ± 1.3%), pelvis (+7.1% ± 12.1%), and prostate (+0.5% ± 3.6%). Conclusion Dose measurements on a phantom can be used for pretreatment estimation of tumor control and normal tissue complication probabilities. Results in this study show how biological modeling can be used to provide additional insight about accuracy of delivery during pretreatment verification.
Collapse
Affiliation(s)
- Ara N. Alexandrian
- Department of Radiation Oncology University of Texas Health Sciences Center San Antonio TX USA
| | - Panayiotis Mavroidis
- Department of Radiation Oncology University of North Carolina Chapel Hill NC USA
| | - Ganesh Narayanasamy
- Department of Radiation Oncology University of Arkansas for Medical Sciences Little Rock AR USA
| | - Kristen A. McConnell
- Department of Radiation Oncology University of Texas Health Sciences Center San Antonio TX USA
| | - Christopher N. Kabat
- Department of Radiation Oncology University of Texas Health Sciences Center San Antonio TX USA
| | - Renil B. George
- Department of Radiation Oncology University of Texas Health Sciences Center San Antonio TX USA
| | - Dewayne L. Defoor
- Department of Radiation Oncology University of Texas Health Sciences Center San Antonio TX USA
| | - Neil Kirby
- Department of Radiation Oncology University of Texas Health Sciences Center San Antonio TX USA
| | - Nikos Papanikolaou
- Department of Radiation Oncology University of Texas Health Sciences Center San Antonio TX USA
| | - Sotirios Stathakis
- Department of Radiation Oncology University of Texas Health Sciences Center San Antonio TX USA
| |
Collapse
|
13
|
Ding Y, Barrett HH, Kupinski MA, Vinogradskiy Y, Miften M, Jones BL. Objective assessment of the effects of tumor motion in radiation therapy. Med Phys 2019; 46:3311-3323. [PMID: 31111961 DOI: 10.1002/mp.13601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Internal organ motion reduces the accuracy and efficacy of radiation therapy. However, there is a lack of tools to objectively (based on a medical or scientific task) assess the dosimetric consequences of motion, especially on an individual basis. We propose to use therapy operating characteristic (TOC) analysis to quantify the effects of motion on treatment efficacy for individual patients. We demonstrate the application of this tool with pancreatic stereotactic body radiation therapy (SBRT) clinical data and explore the origin of motion sensitivity. METHODS The technique is described as follows. (a) Use tumor-motion data measured from patients to calculate the motion-convolved dose of the gross tumor volume (GTV) and the organs at risk (OARs). (b) Calculate tumor control probability (TCP) and normal tissue complication probability (NTCP) from the motion-convolved dose-volume histograms. (c) Construct TOC curves from TCP and NTCP models. (d) Calculate the area under the TOC curve (AUTOC) and use it as a figure of merit for treatment efficacy. We used tumor motion data measured from patients to calculate the relation between AUTOC and motion magnitude for 25 pancreatic SBRT treatment plans. Furthermore, to explore the driving factor of motion sensitivity of a given plan, we compared the dose distribution of motion-sensitive plans and motion-robust plans and studied the dependence of motion sensitivity to motion directions. RESULTS Our technique is able to recognize treatment plans that are sensitive to motion. Under the presence of motion, the treatment efficacy of some plans changes from providing high tumor control and low risks of complications to providing no tumor control and high risks of side effects. Several treatment plans experience falloffs in AUTOC at a smaller magnitude of motion than other plans. In our dataset, a potential indicator of a motion-sensitive treatment plan is that the duodenum is in proximity to the tumor in the SI direction. CONCLUSIONS The TOC framework can serve as a tool to quantify the effects of internal organ motion in radiation therapy. With pancreatic SBRT clinical data, we applied this tool to study the change in treatment efficacy induced by motion for individual treatment plans. This framework could potentially be used clinically to understand the effects of motion in an individual patient and to design a patient-specific motion management plan. This framework could also be used in research to evaluate different components of the treatment process, such as motion-management techniques, treatment-planning algorithms, and treatment margins.
Collapse
Affiliation(s)
- Yijun Ding
- College of Optical Sciences, University of Arizona, Tucson, AZ, 85719, USA
| | - Harrison H Barrett
- College of Optical Sciences, University of Arizona, Tucson, AZ, 85719, USA.,Department of Medical Imaging, University of Arizona, Tucson, AZ, 85719, USA
| | - Matthew A Kupinski
- College of Optical Sciences, University of Arizona, Tucson, AZ, 85719, USA
| | - Yevgeniy Vinogradskiy
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Moyed Miften
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Bernard L Jones
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| |
Collapse
|
14
|
Mavroidis P, Grimm J, Cengiz M, Das S, Tan X, Yazici G, Ozyigit G. Fitting NTCP models to SBRT dose and carotid blowout syndrome data. Med Phys 2018; 45:4754-4762. [PMID: 30102783 DOI: 10.1002/mp.13121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 06/01/2018] [Accepted: 07/27/2018] [Indexed: 12/29/2022] Open
Abstract
PURPOSE To estimate the radiobiological parameters of three popular NTCP models, which describe the dose-response relations of carotid blowout syndrome (CBOS) after stereotactic body radiotherapy (SBRT). To evaluate the goodness-of-fit and the correlation of those models with CBOS. METHODS The study included 61 patients with inoperable locally recurrent head and neck cancer treated with SBRT using CyberKnife (Accuray, Sunnyvale, CA) at the Department of Radiation Oncology, Hacettepe University, Ankara, Turkey between June 2007 and March 2011. The dose-volume histograms of the internal carotid were exported from the plans of all the patients. The follow-up results regarding the end point of carotid blowout syndrome were collected retrospectively. Initially, univariable analyses (Wilcoxon rank-sum or Chi-square tests) and a multivariate logistic regression analysis were performed between the outcome data and a list of clinical and treatment factors to identify significant correlations. Additionally, the Lyman-Kutcher-Burman (LKB), Relative Seriality (RS), and Logit NTCP models were used to fit the clinical data. The fitting of the different models was assessed through the area under the receiver operating characteristic curve (AUC), Akaike information criterion (AIC), and Odds Ratio methods. RESULTS The clinical/treatment factors that were found to have a significant or close to significant correlations with acute CBOS were Age at the time of CK (P-value = 0.03), Maximum carotid dose (P-value = 0.06), and CK prescription dose (P-value = 0.08). Using Dmax , physical DVH, and EQD2 Gy -DVH as the dosimetric metrics in the NTCP models, the derived LKB model parameters were: (a) D50 = 45.8 Gy, m = 0.24, n = n/a; (b) D50 = 44.8 Gy, m = 0.28, n = 0.01; and (c) D50 = 115.8 Gy, m = 0.45, n = 0.01, respectively. The AUC values for the dosimetric metrics were 0.70, 0.68, and 0.61, respectively. The differences in AIC between the different models were less than 2 and ranged within ±0.9. CONCLUSION The maximum dose to the internal carotid less than 34 Gy appears to significantly reduce the risk for CBOS. Age at the time of CK, Maximum carotid dose, and CK prescription dose were also found to correlate with CBOS. The values of the parameters of three NTCP models were determined for this endpoint. A threshold of gEUD <34.5 Gy appears to be significantly associated with lower risks of CBOS.
Collapse
Affiliation(s)
- Panayiotis Mavroidis
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, NC, USA
| | - Jimm Grimm
- Department of Radiation Oncology, Johns Hopkins University, Baltimore, MA, USA
| | - Mustafa Cengiz
- Department of Radiation Oncology, Hacettepe University, Faculty of Medicine Sihhiye, Ankara, Turkey
| | - Shiva Das
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, NC, USA
| | - Xianming Tan
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina Hospitals, Chapel Hill, NC, USA
| | - Gozde Yazici
- Department of Radiation Oncology, Hacettepe University, Faculty of Medicine Sihhiye, Ankara, Turkey
| | - Gokhan Ozyigit
- Department of Radiation Oncology, Hacettepe University, Faculty of Medicine Sihhiye, Ankara, Turkey
| |
Collapse
|
15
|
Zamboglou C, Thomann B, Koubar K, Bronsert P, Krauss T, Rischke HC, Sachpazidis I, Drendel V, Salman N, Reichel K, Jilg CA, Werner M, Meyer PT, Bock M, Baltas D, Grosu AL. Focal dose escalation for prostate cancer using 68Ga-HBED-CC PSMA PET/CT and MRI: a planning study based on histology reference. Radiat Oncol 2018; 13:81. [PMID: 29716617 PMCID: PMC5930745 DOI: 10.1186/s13014-018-1036-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/26/2018] [Indexed: 01/20/2023] Open
Abstract
Background Focal radiation therapy has gained of interest in treatment of patients with primary prostate cancer (PCa). The question of how to define the intraprostatic boost volume is still open. Previous studies showed that multiparametric MRI (mpMRI) or PSMA PET alone could be used for boost volume definition. However, other studies proposed that the combined usage of both has the highest sensitivity in detection of intraprostatic lesions. The aim of this study was to demonstrate the feasibility and to evaluate the tumour control probability (TCP) and normal tissue complication probability (NTCP) of radiation therapy dose painting using 68Ga-HBED-CC PSMA PET/CT, mpMRI or the combination of both in primary PCa. Methods Ten patients underwent PSMA PET/CT and mpMRI followed by prostatectomy. Three gross tumour volumes (GTVs) were created based on PET (GTV-PET), mpMRI (GTV-MRI) and the union of both (GTV-union). Two plans were generated for each GTV. Plan95 consisted of whole-prostate IMRT to 77 Gy in 35 fractions and a simultaneous boost to 95 Gy (Plan95PET/Plan95MRI/Plan95union). Plan80 consisted of whole-prostate IMRT to 76 Gy in 38 fractions and a simultaneous boost to 80 Gy (Plan80PET/Plan80MRI/Plan80union). TCPs were calculated for GTV-histo (TCP-histo), which was delineated based on PCa distribution in co-registered histology slices. NTCPs were assessed for bladder and rectum. Results Dose constraints of published protocols were reached in every treatment plan. Mean TCP-histo were 99.7% (range: 97%–100%) and 75.5% (range: 33%–95%) for Plan95union and Plan80union, respectively. Plan95union had significantly higher TCP-histo values than Plan95MRI (p = 0.008) and Plan95PET (p = 0.008). Plan80union had significantly higher TCP-histo values than Plan80MRI (p = 0.012), but not than Plan80PET (p = 0.472). Plan95MRI had significantly lower NTCP-rectum than Plan95union (p = 0.012). No significant differences in NTCP-rectum and NTCP-bladder were observed for all other plans (p > 0.05). Conclusions IMRT dose escalation on GTVs based on mpMRI, PSMA PET/CT and the combination of both was feasible. Boosting GTV-union resulted in significantly higher TCP-histo with no or minimal increase of NTCPs compared to the other plans. Electronic supplementary material The online version of this article (10.1186/s13014-018-1036-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Constantinos Zamboglou
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, Robert-Koch Straße 3, 79106, Freiburg, Germany. .,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany. .,Berta-Ottenstein-Programme, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Benedikt Thomann
- Division of Medical Physics, Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Khodor Koubar
- Division of Medical Physics, Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Peter Bronsert
- Department of Pathology, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Tobias Krauss
- Department of Radiology, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Hans C Rischke
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, Robert-Koch Straße 3, 79106, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Ilias Sachpazidis
- Division of Medical Physics, Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Vanessa Drendel
- Department of Pathology, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Nasr Salman
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, Robert-Koch Straße 3, 79106, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Kathrin Reichel
- Department of Urology, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Cordula A Jilg
- Department of Urology, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Martin Werner
- Department of Pathology, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Philipp T Meyer
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Michael Bock
- Division of Medical Physics, Department of Radiology, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Dimos Baltas
- Division of Medical Physics, Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Anca L Grosu
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, Robert-Koch Straße 3, 79106, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| |
Collapse
|
16
|
Thomann B, Sachpazidis I, Koubar K, Zamboglou C, Mavroidis P, Wiehle R, Grosu AL, Baltas D. Influence of inhomogeneous radiosensitivity distributions and intrafractional organ movement on the tumour control probability of focused IMRT in prostate cancer. Radiother Oncol 2018; 127:62-67. [PMID: 29548559 DOI: 10.1016/j.radonc.2018.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/29/2018] [Accepted: 02/05/2018] [Indexed: 12/25/2022]
Abstract
PURPOSE To evaluate the influence of radioresistance and intrafractional movement on the tumour control probability (TCP) in IMRT prostate treatments using simultaneous integrated boosts to PSMA-PET/CT-delineated GTVs. MATERIALS AND METHODS 13 patients had PSMA-PET/CT prior to prostatectomy and histopathological examination. Two GTVs were available: GTV-PET and GTV-histo, which is the true cancer volume. Focused IMRT plans delivering 77 Gy in 35 fractions to the prostate and 95 Gy to PTV-PET were produced. For random portions of the true cancer volume, α and α/β were uniformly changed to represent different radiosensitivity reductions. TCP was calculated (linear quadratic model) for the true cancer volume with and without simulated intrafractional movement. RESULTS Intrafractional movement increased the TCP by up to 10.2% in individual cases and 1.2% averaged over all cases for medium radiosensitivity levels. At lower levels of radiosensitivity, movement decreased the TCP. Radiosensitivity reductions of 10-20% led to TCP reductions of 1-24% and 10-68% for 1% and 5% affected cancer volume, respectively. There is no linear correlation but a sudden breakdown of TCPs within a small range of radiosensitivity levels. CONCLUSION TCP drops significantly within a narrow range of radiosensitivity levels. Intrafractional movement can increase TCP when the boost volume is surrounded by a sufficiently high dose plateau.
Collapse
Affiliation(s)
- Benedikt Thomann
- Division of Medical Physics, Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Ilias Sachpazidis
- Division of Medical Physics, Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Khodor Koubar
- Division of Medical Physics, Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Constantinos Zamboglou
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Panayiotis Mavroidis
- University of North Carolina at Chapel Hill, Department of Radiation Oncology, USA
| | - Rolf Wiehle
- Division of Medical Physics, Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anca-Ligia Grosu
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dimos Baltas
- Division of Medical Physics, Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
17
|
Mavroidis P, Pearlstein KA, Dooley J, Sun J, Saripalli S, Das SK, Wang AZ, Chen RC. Fitting NTCP models to bladder doses and acute urinary symptoms during post-prostatectomy radiotherapy. Radiat Oncol 2018; 13:17. [PMID: 29394931 PMCID: PMC5797360 DOI: 10.1186/s13014-018-0961-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/18/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND To estimate the radiobiological parameters of three popular normal tissue complication probability (NTCP) models, which describe the dose-response relations of bladder regarding different acute urinary symptoms during post-prostatectomy radiotherapy (RT). To evaluate the goodness-of-fit and the correlation of those models with those symptoms. METHODS Ninety-three consecutive patients treated from 2010 to 2015 with post-prostatectomy image-guided intensity modulated radiotherapy (IMRT) were included in this study. Patient-reported urinary symptoms were collected pre-RT and weekly during treatment using the validated Prostate Cancer Symptom Indices (PCSI). The assessed symptoms were flow, dysuria, urgency, incontinence, frequency and nocturia using a Likert scale of 1 to 4 or 5. For this analysis, an increase by ≥2 levels in a symptom at any time during treatment compared to baseline was considered clinically significant. The dose volume histograms of the bladder were calculated. The Lyman-Kutcher-Burman (LKB), Relative Seriality (RS) and Logit NTCP models were used to fit the clinical data. The fitting of the different models was assessed through the area under the receiver operating characteristic curve (AUC), Akaike information criterion (AIC) and Odds Ratio methods. RESULTS For the symptoms of urinary urgency, leakage, frequency and nocturia, the derived LKB model parameters were: 1) D50 = 64.2Gy, m = 0.50, n = 1.0; 2) D50 = 95.0Gy, m = 0.45, n = 0.50; 3) D50 = 83.1Gy, m = 0.56, n = 1.00; and 4) D50 = 85.4Gy, m = 0.60, n = 1.00, respectively. The AUC values for those symptoms were 0.66, 0.58, 0.64 and 0.64, respectively. The differences in AIC between the different models were less than 2 and ranged within 0.1 and 1.3. CONCLUSIONS Different dose metrics were correlated with the symptoms of urgency, incontinence, frequency and nocturia. The symptoms of urinary flow and dysuria were poorly associated with dose. The values of the parameters of three NTCP models were determined for bladder regarding four acute urinary symptoms. All the models could fit the clinical data equally well. The NTCP predictions of urgency showed the best correlation with the patient reported outcomes.
Collapse
Affiliation(s)
- Panayiotis Mavroidis
- Department of Radiation Oncology, University of North Carolina, 101 Manning Dr, Chapel Hill, NC 27599-7512 USA
| | - Kevin A. Pearlstein
- Department of Radiation Oncology, University of North Carolina, 101 Manning Dr, Chapel Hill, NC 27599-7512 USA
| | - John Dooley
- Department of Radiation Oncology, University of North Carolina, 101 Manning Dr, Chapel Hill, NC 27599-7512 USA
| | - Jasmine Sun
- Department of Radiation Oncology, University of North Carolina, 101 Manning Dr, Chapel Hill, NC 27599-7512 USA
| | - Srinivas Saripalli
- Department of Radiation Oncology, University of North Carolina, 101 Manning Dr, Chapel Hill, NC 27599-7512 USA
| | - Shiva K. Das
- Department of Radiation Oncology, University of North Carolina, 101 Manning Dr, Chapel Hill, NC 27599-7512 USA
| | - Andrew Z. Wang
- Department of Radiation Oncology, University of North Carolina, 101 Manning Dr, Chapel Hill, NC 27599-7512 USA
| | - Ronald C. Chen
- Department of Radiation Oncology, University of North Carolina, 101 Manning Dr, Chapel Hill, NC 27599-7512 USA
| |
Collapse
|
18
|
Mavroidis P, Komisopoulos G, Buckey C, Mavroeidi M, Swanson GP, Baltas D, Papanikolaou N, Stathakis S. Radiobiological evaluation of prostate cancer IMRT and conformal-RT plans using different treatment protocols. Phys Med 2017; 40:33-41. [DOI: 10.1016/j.ejmp.2017.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/07/2017] [Accepted: 07/04/2017] [Indexed: 10/19/2022] Open
|
19
|
Mavroidis P, Price A, Fried D, Kostich M, Amdur R, Mendenhall W, Liu C, Das S, Marks LB, Chera B. Dose-volume toxicity modeling for de-intensified chemo-radiation therapy for HPV-positive oropharynx cancer. Radiother Oncol 2017; 124:240-247. [PMID: 28712533 DOI: 10.1016/j.radonc.2017.06.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 04/07/2017] [Accepted: 06/21/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE The aim is to determine the radiobiological parameters of four popular normal tissue complication probability (NTCP) models that describe the dose-response relations of salivary glands and pharyngeal constrictors to the severity of patient reported xerostomia and dysphagia, respectively 6 and 12months post chemo-radiotherapy, furthermore, to evaluate the goodness-of-fit of the NTCP models for different combinations of glands and constrictors. MATERIAL AND METHODS Forty-three patients were treated on a prospective multi-institutional phase II study (ClinicalTrials.gov, NCT01530997) assessing the efficacy of de-intensified chemoradiotherapy in patients with favorable risk, HPV-associated oropharyngeal squamous cell carcinoma. All patients received 60Gy intensity modulated radiotherapy with concurrent weekly intravenous cisplatinum. All patients reported severity of their xerostomia and dysphagia (pre- and post-treatment) using the patient reported outcome version of the CTCAE (PRO-CTCAE). A change in severity (from baseline) of ≥2 was considered clinically meaningful. The Lyman-Kutcher-Burman (LKB), Relative Seriality (RS), Logit, and Relative Seriality Logit (RSL) NTCP models were used to fit the patients' dose/volume data to changes in PRO-CTCAE severity of xerostomia and dysphagia (from baseline to 6 and 12months post-treatment). The correlation of the models with the patient outcomes was performed for different combinations of salivary glands and different sections of pharyngeal constrictors. The goodness-of-fit of the different models was assessed through the area under the receiver operating characteristic curve (AUC), maximum of the log-likelihood function, normal error distribution and Akaike information criterion (AIC). RESULTS The dose/volume metrics of the combined contralateral (parotid+submandibular) glands appear to correlate best with xerostomia, at both 6- and 12-months. Among the different sections of pharyngeal constrictors, the dose/volume metrics of the superior pharyngeal constrictors appear to correlate best with dysphagia at 6months. The AUC values ranged from 0.72 to 0.85 in the case of xerostomia and 0.73 to 0.74 in the case of dysphagia over the different models. The four NTCP models showed similar goodness-of-fit. The differences in AIC between the different models were less than 2 and ranged within 0.7 and 0.8 in the cases of xerostomia and dysphagia, respectively. The calculated parameters of the LKB model were D50=26.9Gy, m=0.63, n=1.0 for the combined contralateral glands at 12months and D50=62.0Gy, m=0.10, n=0.49 for the superior pharyngeal constrictors at 6months. CONCLUSIONS The values of the parameters of four NTCP models were determined for salivary glands and pharyngeal constrictors. All four models could fit the clinical data equally well. The NTCP predictions of the combined contralateral glands and superior pharyngeal constrictors showed the best correlation with the patient reported outcomes of xerostomia and dysphagia, respectively.
Collapse
Affiliation(s)
- Panayiotis Mavroidis
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, United States.
| | - Alex Price
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, United States
| | - David Fried
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, United States
| | - Mark Kostich
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, United States
| | - Robert Amdur
- Department of Radiation Oncology, University of Florida Hospitals, Gainesville, United States; Shands Cancer Center, University of Florida Hospitals, Gainesville, United States
| | - William Mendenhall
- Department of Radiation Oncology, University of Florida Hospitals, Gainesville, United States; Shands Cancer Center, University of Florida Hospitals, Gainesville, United States
| | - Chihray Liu
- Department of Radiation Oncology, University of Florida Hospitals, Gainesville, United States
| | - Shiva Das
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, United States
| | - Lawrence B Marks
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, United States
| | - Bhishamjit Chera
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, United States; Lineberger Comprehensive Cancer Center, University of North Carolina Hospitals, Chapel Hill, United States
| |
Collapse
|
20
|
Zamboglou C, Sachpazidis I, Koubar K, Drendel V, Wiehle R, Kirste S, Mix M, Schiller F, Mavroidis P, Meyer PT, Werner M, Grosu AL, Baltas D. Evaluation of intensity modulated radiation therapy dose painting for localized prostate cancer using 68Ga-HBED-CC PSMA-PET/CT: A planning study based on histopathology reference. Radiother Oncol 2017; 123:472-477. [PMID: 28499607 DOI: 10.1016/j.radonc.2017.04.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 04/06/2017] [Accepted: 04/22/2017] [Indexed: 12/25/2022]
Abstract
PURPOSE To demonstrate the feasibility and to evaluate the tumour control probability (TCP) and normal tissue complication probability (NTCP) of IMRT dose painting using 68Ga-HBED-CC PSMA PET/CT for target delineation in prostate cancer (PCa). METHODS AND MATERIALS 10 patients had PSMA PET/CT scans prior to prostatectomy. GTV-PET was generated on the basis of an intraprostatic SUVmax of 30%. Two IMRT plans were generated for each patient: Plan77 which consisted of whole-prostate IMRT to 77Gy, and Plan95 which consisted of whole-prostate IMRT to 77Gy and a simultaneous integrated boost to the GTV-PET up to 95Gy (35 fractions). The feasibility of these plans was judged by their ability to adhere to the FLAME trial protocol. TCP-histo/-PET were calculated on co-registered histology (GTV-histo) and GTV-PET, respectively. NTCPs for rectum and bladder were calculated. RESULTS All plans reached prescription doses whilst adhering to dose constraints. In Plan77 and Plan95 mean doses in GTV-histo were 75.8±0.3Gy and 96.9±1Gy, respectively. Average TCP-histo values for Plan77 and Plan95 were 70% (range: 15-97%), and 96% (range: 78-100%, p<0.0001). Average TCP-PET values for Plan77 and Plan95 were 55% (range: 27-82%), and 100% (range: 99-100%, p<0.0001). There was no significant difference between TCP-PET and TCP-histo in Plan95 (p=0.25). There were no significant differences in rectal (p=0.563) and bladder (p=0.3) NTCPs. CONCLUSIONS IMRT dose painting using PSMA PET/CT was technically feasible and resulted in significantly higher TCPs without higher NTCPs.
Collapse
Affiliation(s)
- Constantinos Zamboglou
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, Germany.
| | - Ilias Sachpazidis
- Division of Medical Physics, Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, Germany
| | - Khodor Koubar
- Division of Medical Physics, Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, Germany
| | - Vanessa Drendel
- Department of Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, Germany
| | - Rolf Wiehle
- Division of Medical Physics, Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, Germany
| | - Simon Kirste
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, Germany
| | - Michael Mix
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, Germany
| | - Florian Schiller
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, Germany
| | - Panayiotis Mavroidis
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, USA
| | - Philipp T Meyer
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, Germany
| | - Martin Werner
- Division of Medical Physics, Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, Germany
| | - Anca L Grosu
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, Germany
| | - Dimos Baltas
- Division of Medical Physics, Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, Germany
| |
Collapse
|
21
|
Strigari L, Ferrero V, Visonà G, Dalmasso F, Gobbato A, Cerello P, Visentin S, Attili A. Targeted dose enhancement in radiotherapy for breast cancer using gold nanoparticles, part 2: A treatment planning study. Med Phys 2017; 44:1993-2001. [PMID: 28236658 DOI: 10.1002/mp.12178] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/15/2016] [Accepted: 02/13/2017] [Indexed: 12/22/2022] Open
Abstract
PURPOSE In recent years, there has been growing interest in the use of gold nanoparticles (GNPs) combined with radiotherapy to improve tumor control. However, the complex interplay between GNP uptake and dose distribution in realistic clinical treatment are still somewhat unknown. METHODS The effects of different concentrations of 2 nm diameter GNP, ranging from 0 to 5×105 nanoparticles per tumoral cell, were theoretically investigated. A parametrization of the GNP distribution outside the target was carried out using a Gaussian standard deviation σ, from a zero value, relative to a selective concentration of GNPs inside the tumor volume alone, to 50mm, when GNPs are spatially distributed also in the healthy tissues surrounding the tumor. Treatment simulations of five patients with breast cancer were performed with 6 and 15 MV photons assuming a partial breast irradiation. A closed analytical reformulation of the Local Effect Model coupled with the estimation of local dose deposited around a GNP was validated using an in vitro study for MDA-MB-231 tumoral cells. The expected treatment outcome was quantified in terms of tumor control probability (TCP) and normal tissue complication probability (NTCP) as a function of the spatially varying gold uptake. RESULTS Breast cancer treatment planning simulations show improved treatment outcomes when GNPs are selectively concentrated in the tumor volume (i.e., σ = 0 mm). In particular, the TCP increases up to 18% for 5×105 nanoparticles per cell in the tumor region depending on the treatment schedules, whereas an improvement of the therapeutic index is observed only for concentrations of about 105 GNPs per tumoral cell and limited spatial distribution in the normal tissue. CONCLUSIONS The model provides a useful framework to estimate the nanoparticle-driven radiosensitivity in breast cancer treatment irradiation, accounting for the complex interplay between dose and GNP uptake distributions.
Collapse
Affiliation(s)
- Lidia Strigari
- Laboratory of Medical Physics and Expert Systems, National Cancer Institute Regina Elena, Roma, Italy
| | - Veronica Ferrero
- Physics Department, Università degli Studi di Torino, Torino, Italy.,Istituto Nazionale di Fisica Nucleare (INFN), Torino, Italy
| | - Giovanni Visonà
- Physics Department, Università degli Studi di Torino, Torino, Italy
| | - Federico Dalmasso
- Physics Department, Università degli Studi di Torino, Torino, Italy.,Istituto Nazionale di Fisica Nucleare (INFN), Torino, Italy
| | - Andrea Gobbato
- Physics Department, Università degli Studi di Torino, Torino, Italy.,Istituto Nazionale di Fisica Nucleare (INFN), Torino, Italy
| | | | - Sonja Visentin
- Istituto Nazionale di Fisica Nucleare (INFN), Torino, Italy.,Molecular Biotechnology and Health Sciences Department, Università degli Studi di Torino, Torino, Italy
| | - Andrea Attili
- Istituto Nazionale di Fisica Nucleare (INFN), Torino, Italy
| |
Collapse
|
22
|
Narayanasamy G, Avila G, Mavroidis P, Papanikolaou N, Gutierrez A, Baacke D, Shi Z, Stathakis S. Comparison of composite prostate radiotherapy plan doses with dependent and independent boost phases. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2016; 39:727-33. [PMID: 27550442 DOI: 10.1007/s13246-016-0469-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 08/02/2016] [Indexed: 10/21/2022]
Abstract
Prostate cases commonly consist of dual phase planning with a primary plan followed by a boost. Traditionally, the boost phase is planned independently from the primary plan with the risk of generating hot or cold spots in the composite plan. Alternatively, boost phase can be planned taking into account the primary dose. The aim of this study was to compare the composite plans from independently and dependently planned boosts using dosimetric and radiobiological metrics. Ten consecutive prostate patients previously treated at our institution were used to conduct this study on the Raystation™ 4.0 treatment planning system. For each patient, two composite plans were developed: a primary plan with an independently planned boost and a primary plan with a dependently planned boost phase. The primary plan was prescribed to 54 Gy in 30 fractions to the primary planning target volume (PTV1) which includes prostate and seminal vesicles, while the boost phases were prescribed to 24 Gy in 12 fractions to the boost planning target volume (PTV2) that targets only the prostate. PTV coverage, max dose, median dose, target conformity, dose homogeneity, dose to OARs, and probabilities of benefit, injury, and complication-free tumor control (P+) were compared. Statistical significance was tested using either a 2-tailed Student's t-test or Wilcoxon signed-rank test. Dosimetrically, the composite plan with dependent boost phase exhibited smaller hotspots, lower maximum dose to the target without any significant change to normal tissue dose. Radiobiologically, for all but one patient, the percent difference in the P+ values between the two methods was not significant. A large percent difference in P+ value could be attributed to an inferior primary plan. The benefits of considering the dose in primary plan while planning the boost is not significant unless a poor primary plan was achieved.
Collapse
Affiliation(s)
- Ganesh Narayanasamy
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Gabrielle Avila
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Panayiotis Mavroidis
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Radiation Oncology, University of North Carolina, Chapel Hill, NC, USA
| | - Niko Papanikolaou
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Alonso Gutierrez
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Diana Baacke
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Zheng Shi
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Sotirios Stathakis
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA. .,Department of Radiology, University of Texas Health Science Center at San Antonio, 7979 Wurzbach Rd, MC 7889, San Antonio, TX, 78229-4427, USA.
| |
Collapse
|
23
|
Petrou E, Narayanasamy G, Lavdas E, Stathakis S, Papanikolaou N, Lind B, Mavroidis P. Evaluation of the generalized gamma as a tool for treatment planning optimization. INTERNATIONAL JOURNAL OF CANCER THERAPY AND ONCOLOGY 2014. [DOI: 10.14319/ijcto.0204.18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
24
|
The use of biologically related model (Eclipse) for the intensity-modulated radiation therapy planning of nasopharyngeal carcinomas. PLoS One 2014; 9:e112229. [PMID: 25372041 PMCID: PMC4221619 DOI: 10.1371/journal.pone.0112229] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 10/06/2014] [Indexed: 01/22/2023] Open
Abstract
Purpose Intensity-modulated radiation therapy (IMRT) is the most common treatment technique for nasopharyngeal carcinoma (NPC). Physical quantities such as dose/dose-volume parameters are used conventionally for IMRT optimization. The use of biological related models has been proposed and can be a new trend. This work was to assess the performance of the biologically based IMRT optimization model installed in a popular commercial treatment planning system (Eclipse) as compared to its dose/dose volume optimization model when employed in the clinical environment for NPC cases. Methods Ten patients of early stage NPC and ten of advanced stage NPC were selected for this study. IMRT plans optimized using biological related approach (BBTP) were compared to their corresponding plans optimized using the dose/dose volume based approach (DVTP). Plan evaluation was performed using both biological indices and physical dose indices such as tumor control probability (TCP), normal tissue complication probability (NTCP), target coverage, conformity, dose homogeneity and doses to organs at risk. The comparison results of the more complex advanced stage cases were reported separately from those of the simpler early stage cases. Results The target coverage and conformity were comparable between the two approaches, with BBTP plans producing more hot spots. For the primary targets, BBTP plans produced comparable TCP for the early stage cases and higher TCP for the advanced stage cases. BBTP plans reduced the volume of parotid glands receiving doses of above 40 Gy compared to DVTP plans. The NTCP of parotid glands produced by BBTP were 8.0±5.8 and 7.9±8.7 for early and advanced stage cases, respectively, while those of DVTP were 21.3±8.3 and 24.4±12.8, respectively. There were no significant differences in the NTCP values between the two approaches for the serial organs. Conclusions Our results showed that the BBTP approach could be a potential alternative approach to the DVTP approach for NPC.
Collapse
|
25
|
Myers PA, Mavroidis P, Papanikolaou N, Stathakis S. Comparing conformal, arc radiotherapy and helical tomotherapy in craniospinal irradiation planning. J Appl Clin Med Phys 2014; 15:4724. [PMID: 25207562 PMCID: PMC5711087 DOI: 10.1120/jacmp.v15i5.4724] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 06/11/2014] [Accepted: 05/23/2014] [Indexed: 12/16/2022] Open
Abstract
Currently, radiotherapy treatment plan acceptance is based primarily on dosimetric performance measures. However, use of radiobiological analysis to assess benefit in terms of tumor control and harm in terms of injury to normal tissues can be advantageous. For pediatric craniospinal axis irradiation (CSI) patients, in particular, knowing the technique that will optimize the probabilities of benefit versus injury can lead to better long-term outcomes. Twenty-four CSI pediatric patients (median age 10) were retrospectively planned with three techniques: three-dimensional conformal radiation therapy (3D CRT), volumetric-modulated arc therapy (VMAT), and helical tomotherapy (HT). VMAT plans consisted of one superior and one inferior full arc, and tomotherapy plans were created using a 5.02cm field width and helical pitch of 0.287. Each plan was normalized to 95% of target volume (whole brain and spinal cord) receiving prescription dose 23.4Gy in 13 fractions. Using an in-house MATLAB code and DVH data from each plan, the three techniques were evaluated based on biologically effective uniform dose (D=), the complication-free tumor control probability (P+), and the width of the therapeutically beneficial range. Overall, 3D CRT and VMAT plans had similar values of D= (24.1 and 24.2 Gy), while HT had a D= slightly lower (23.6 Gy). The average values of the P+ index were 64.6, 67.4, and 56.6% for 3D CRT, VMAT, and HT plans, respectively, with the VMAT plans having a statistically significant increase in P+. Optimal values of D= were 28.4, 33.0, and 31.9 Gy for 3D CRT, VMAT, and HT plans, respectively. Although P+ values that correspond to the initial dose prescription were lower for HT, after optimizing the D= prescription level, the optimal P+ became 94.1, 99.5, and 99.6% for 3D CRT, VMAT, and HT, respectively, with the VMAT and HT plans having statistically significant increases in P+. If the optimal dose level is prescribed using a radiobiological evaluation method, as opposed to a purely dosimetric one, the two IMRT techniques, VMAT and HT, will yield largest overall benefit to CSI patients by maximizing tumor control and limiting normal tissue injury. Using VMAT or HT may provide these pediatric patients with better long-term outcomes after radiotherapy.
Collapse
Affiliation(s)
- Pamela A Myers
- University of Texas Health Science Center at San Antonio.
| | | | | | | |
Collapse
|
26
|
Stathakis S, Mavroidis P, Shi C, Xu J, Kauweloa KI, Narayanasamy G, Papanikolaou N. γ+ index: A new evaluation parameter for quantitative quality assurance. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2014; 114:60-69. [PMID: 24508212 DOI: 10.1016/j.cmpb.2014.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 12/23/2013] [Accepted: 01/06/2014] [Indexed: 06/03/2023]
Abstract
PURPOSE The accuracy of dose delivery and the evaluation of differences between calculated and delivered dose distributions, has been studied by several groups. The aim of this investigation is to extend the gamma index by including radiobiological information and to propose a new index that we will here forth refer to as the gamma plus (γ+). Furthermore, to validate the robustness of this new index in performing a quality control analysis of an IMRT treatment plan using pure radiobiological measures such as the biologically effective uniform dose (D) and complication-free tumor control probability (P+). MATERIAL AND METHODS A new quality assurance index, the (γ+), is proposed based on the theoretical concept of gamma index presented by Low et al. (1998). In this study, the dose difference, including the radiobiological dose information (biological effective dose, BED) is used instead of just the physical dose difference when performing the γ+ calculation. An in-house software was developed to compare different dose distributions based on the γ+ concept. A test pattern for a two-dimensional dose comparison was built using the in-house software platform. The γ+ index was tested using planar dose distributions (exported from the treatment planning system) and delivered (film) dose distributions acquired in a solid water phantom using a test pattern and a theoretical clinical case. Furthermore, a lung cancer case for a patient treated with IMRT was also selected for the analysis. The respective planar dose distributions from the treatment plan and the film were compared based on the γ+ index and were evaluated using the radiobiological measures of P+ and D. RESULTS The results for the test pattern analysis indicate that the γ+ index distributions differ from those of the gamma index since the former considers radiobiological parameters that may affect treatment outcome. For the theoretical clinical case, it is observed that the γ+ index varies for different treatment parameters (e.g. dose per fraction). The dose area histogram (DAH) from the plan and film dose distributions are associated with P+ values of 50.8% and 49.0%, for a D to the target of 54.0 Gy and 53.3 Gy, respectively. CONCLUSION The γ+ index shows advantageous properties in the quantitative evaluation of dose delivery and quality control of IMRT treatments because it includes information about the expected responses and radiobiological doses of the individual tissues.
Collapse
Affiliation(s)
- Sotirios Stathakis
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Panayiotis Mavroidis
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Department of Medical Radiation Physics, Karolinska Institutet & Stockholm University, Stockholm, Sweden
| | - Chengyu Shi
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jun Xu
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Kevin I Kauweloa
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Ganesh Narayanasamy
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Niko Papanikolaou
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
27
|
Komisopoulos G, Mavroidis P, Rodriguez S, Stathakis S, Papanikolaou N, Nikiforidis GC, Sakellaropoulos GC. Radiobiologic comparison of helical tomotherapy, intensity modulated radiotherapy, and conformal radiotherapy in treating lung cancer accounting for secondary malignancy risks. Med Dosim 2014; 39:337-47. [DOI: 10.1016/j.meddos.2014.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 05/31/2014] [Accepted: 06/12/2014] [Indexed: 12/25/2022]
|
28
|
Mavroidis P, Ferreira BC, Papanikolaou N, Lopes MDC. Analysis of fractionation correction methodologies for multiple phase treatment plans in radiation therapy. Med Phys 2013; 40:031715. [PMID: 23464310 DOI: 10.1118/1.4792636] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Radiation therapy is often delivered by multiple sequential treatment plans. For an accurate radiobiological evaluation of the overall treatment, fractionation corrections to each dose distribution must be applied before summing the three-dimensional dose matrix of each plan since the simpler approach of performing the fractionation correction to the total dose-volume histograms, obtained by the arithmetical sum of the different plans, becomes inaccurate for more heterogeneous dose patterns. In this study, the differences between these two fractionation correction methods, named here as exact (corrected before) and approximate (after summation), respectively, are assessed for different cancer types. METHODS Prostate, breast, and head and neck (HN) tumor patients were selected to quantify the differences between two fractionation correction methods (the exact vs the approximate). For each cancer type, two different treatment plans were developed using uniform (CRT) and intensity modulated beams (IMRT), respectively. The responses of the target and normal tissue were calculated using the Poisson linear-quadratic-time model and the relative seriality model, respectively. All treatments were radiobiologically evaluated and compared using the complication-free tumor control probability (P+), the biologically effective uniform dose (D) together with common dosimetric criteria. RESULTS For the prostate cancer patient, an underestimation of around 14%-15% in P+ was obtained when the fractionation correction was applied after summation compared to the exact approach due to significant biological and dosimetric variations obtained between the two fractionation correction methods in the involved lymph nodes. For the breast cancer patient, an underestimation of around 3%-4% in the maximum dose in the heart was obtained. Despite the dosimetric differences in this organ, no significant variations were obtained in treatment outcome. For the HN tumor patient, an underestimation of about 5% in treatment outcome was obtained for the CRT plan as a result of an underestimation of the planning target volume control probability by about 10%. An underestimation of about 6% in the complication probability of the right parotid was also obtained. For all the other organs at risk, dosimetric differences of up to 4% were obtained but with no significant impact in the expected clinical outcome. However, for the IMRT plan, an overestimation in P+ of 4.3% was obtained mainly due to an underestimation of the complication probability of the left and right parotids (2.9% and 5.8%, respectively). CONCLUSIONS The use of the exact fractionation correction method, which is applying fractionation correction on the separate dose distributions of a multiple phase treatment before their summation was found to have a significant expected clinical impact. For regions of interest that are irradiated with very heterogeneous dose distributions and significantly different doses per fraction in the different treatment phases, the exact fractionation correction method needs to be applied since a significant underestimation of the true patient outcome can be introduced otherwise.
Collapse
Affiliation(s)
- Panayiotis Mavroidis
- Department of Radiation Oncology, University of Texas Health Sciences Center, San Antonio, Texas 78229, USA.
| | | | | | | |
Collapse
|
29
|
Allen Li X, Alber M, Deasy JO, Jackson A, Ken Jee KW, Marks LB, Martel MK, Mayo C, Moiseenko V, Nahum AE, Niemierko A, Semenenko VA, Yorke ED. The use and QA of biologically related models for treatment planning: short report of the TG-166 of the therapy physics committee of the AAPM. Med Phys 2013; 39:1386-409. [PMID: 22380372 DOI: 10.1118/1.3685447] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Treatment planning tools that use biologically related models for plan optimization and/or evaluation are being introduced for clinical use. A variety of dose-response models and quantities along with a series of organ-specific model parameters are included in these tools. However, due to various limitations, such as the limitations of models and available model parameters, the incomplete understanding of dose responses, and the inadequate clinical data, the use of biologically based treatment planning system (BBTPS) represents a paradigm shift and can be potentially dangerous. There will be a steep learning curve for most planners. The purpose of this task group is to address some of these relevant issues before the use of BBTPS becomes widely spread. In this report, the authors (1) discuss strategies, limitations, conditions, and cautions for using biologically based models and parameters in clinical treatment planning; (2) demonstrate the practical use of the three most commonly used commercially available BBTPS and potential dosimetric differences between biologically model based and dose-volume based treatment plan optimization and evaluation; (3) identify the desirable features and future directions in developing BBTPS; and (4) provide general guidelines and methodology for the acceptance testing, commissioning, and routine quality assurance (QA) of BBTPS.
Collapse
Affiliation(s)
- X Allen Li
- Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hoffmann AL, Huizenga H, Kaanders JHAM. Employing the therapeutic operating characteristic (TOC) graph for individualised dose prescription. Radiat Oncol 2013; 8:55. [PMID: 23497640 PMCID: PMC3606307 DOI: 10.1186/1748-717x-8-55] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 02/28/2013] [Indexed: 11/25/2022] Open
Abstract
Background In current practice, patients scheduled for radiotherapy are treated according to ‘rigid’ protocols with predefined dose prescriptions that do not consider risk-taking preferences of individuals. The therapeutic operating characteristic (TOC) graph is applied as a decision-aid to assess the trade-off between treatment benefit and morbidity to facilitate dose prescription customisation. Methods Historical dose-response data from prostate cancer patient cohorts treated with 3D-conformal radiotherapy is used to construct TOC graphs. Next, intensity-modulated (IMRT) plans are generated by optimisation based on dosimetric criteria and dose-response relationships. TOC graphs are constructed for dose-scaling of the optimised IMRT plan and individualised dose prescription. The area under the TOC curve (AUC) is estimated to measure the therapeutic power of these plans. Results On a continuous scale, the TOC graph directly visualises treatment benefit and morbidity risk of physicians’ or patients’ choices for dose (de-)escalation. The trade-off between these probabilities facilitates the selection of an individualised dose prescription. TOC graphs show broader therapeutic window and higher AUCs with increasing target dose heterogeneity. Conclusions The TOC graph gives patients and physicians access to a decision-aid and read-out of the trade-off between treatment benefit and morbidity risks for individualised dose prescription customisation over a continuous range of dose levels.
Collapse
Affiliation(s)
- Aswin L Hoffmann
- Department of Radiation Oncology, Radboud University Nijmegen Medical Center, Nijmegen, 6500 HB, The Netherlands.
| | | | | |
Collapse
|
31
|
Tzikas A, Komisopoulos G, Ferreira BC, Hyödynmaa S, Axelsson S, Papanikolaou N, Lavdas E, Lind BK, Mavroidis P. Radiobiological Evaluation of Breast Cancer Radiotherapy Accounting for the Effects of Patient Positioning and Breathing in Dose Delivery. A Meta Analysis. Technol Cancer Res Treat 2013; 12:31-44. [DOI: 10.7785/tcrt.2012.500274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In breast cancer radiotherapy, significant discrepancies in dose delivery can contribute to underdosage of the tumor or overdosage of normal tissue, which is potentially related to a reduction of local tumor control and an increase of side effects. To study the impact of these factors in breast cancer radiotherapy, a meta analysis of the clinical data reported by Mavroidis et al. (2002) in Acta Oncol (41:471–85), showing the patient setup and breathing uncertainties characterizing three different irradiation techniques, were employed. The uncertainties in dose delivery are simulated based on fifteen breast cancer patients (5 mastectomized, 5 resected with negative node involvement (R-) and 5 resected with positive node involvement (R+)), who were treated by three different irradiation techniques, respectively. The positioning and breathing effects were taken into consideration in the determination of the real dose distributions delivered to the CTV and lung in each patient. The combined frequency distributions of the positioning and breathing distributions were obtained by convolution. For each patient the effectiveness of the dose distribution applied is calculated by the Poisson and relative seriality models and a set of parameters that describe the dose-response relations of the target and lung. The three representative radiation techniques are compared based on radiobiological measures by using the complication-free tumor control probability, P+ and the biologically effective uniform dose, D̿ concepts. For the Mastectomy case, the average P+ values of the planned and delivered dose distributions are 93.8% for a D̿CTV of 51.8 Gy and 85.0% for a D̿CTV of 50.3 Gy, respectively. The respective total control probabilities, PB values are 94.8% and 92.5%, whereas the corresponding total complication probabilities, PI values are 0.9% and 7.4%. For the R- case, the average P+ values are 89.4% for a D̿CTV of 48.9 Gy and 88.6% for a D̿CTV of 49.0 Gy, respectively. The respective PB values are 89.8% and 89.9%, whereas the corresponding PI values are 0.4% and 1.2%. For the R+ case, the average P+ values are 86.1% for a D̿CTV of 49.2 Gy and 85.5% for a D̿CTV of 49.1 Gy, respectively. The respective PB values are 90.2% and 90.1%, whereas the corresponding PI values are 4.1% and 4.6%. The combined effects of positioning uncertainties and breathing can introduce a significant deviation between the planned and delivered dose distributions in lung in breast cancer radiotherapy. The positioning and breathing uncertainties do not affect much the dose distribution to the CTV. The simulated delivered dose distributions show larger lung complication probabilities than the treatment plans. This means that in clinical practice the true expected complications are underestimated. Radiation pneumonitis of Grade 1–2 is more frequent and any radiotherapy optimization should use this as a more clinically relevant endpoint.
Collapse
Affiliation(s)
- Athanasios Tzikas
- Department of Medical Radiation Physics, Karolinska Institutet and Stockholm University, Sweden
| | | | | | - Simo Hyödynmaa
- Department of Oncology, Tampere University Hospital, Tampere, Finland
| | - Sofie Axelsson
- Department of Medical Radiation Physics, Karolinska Institutet and Stockholm University, Sweden
| | - Nikos Papanikolaou
- Department of Radiological Sciences, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Eleftherios Lavdas
- Department of Radiology, University Hospital of Larissa, Larissa, Greece
| | - Bengt K. Lind
- Department of Medical Radiation Physics, Karolinska Institutet and Stockholm University, Sweden
| | - Panayiotis Mavroidis
- Department of Medical Radiation Physics, Karolinska Institutet and Stockholm University, Sweden
| |
Collapse
|
32
|
Roland T, Tryggestad E, Mavroidis P, Hales R, Papanikolaou N. The radiobiological P(+) index for pretreatment plan assessment with emphasis on four-dimensional radiotherapy modalities. Med Phys 2012; 39:6420-30. [PMID: 23039677 DOI: 10.1118/1.4754653] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Radiation treatment modalities will continue to emerge that promise better clinical outcomes albeit technologically challenging to implement. An important question facing the radiotherapy community then is the need to justify the added technological effort for the clinical return. Mobile tumor radiotherapy is a typical example, where 4D tumor tracking radiotherapy (4DTRT) has been proposed over the simpler conventional modality for better results. The modality choice per patient can depend on a wide variety of factors. In this work, we studied the complication-free tumor control probability (P(+)) index, which combines the physical complexity of the treatment plan with the radiobiological characteristics of the clinical case at hand and therefore found to be useful in evaluating different treatment techniques and estimating the expected clinical effectiveness of different radiation modalities. METHODS 4DCT volumes of 18 previously treated lung cancer patients with tumor motion and size ranging from 2 mm to 15 mm and from 4 cc to 462 cc, respectively, were used. For each patient, 4D treatment plans were generated to extract the 4D dose distributions, which were subsequently used with clinically derived radiobiological parameters to compute the P(+) index per modality. RESULTS The authors observed, on average, a statistically significant increase in P(+) of 3.4% ± 3.8% (p < 0.003) in favor of 4DTRT. There was high variability among the patients with a <0.5% up to 13.4% improvement in P(+). CONCLUSIONS The observed variability in the improvement of the clinical effectiveness suggests that the relative benefit of tracking should be evaluated on a per patient basis. Most importantly, this variability could be effectively captured in the computed P(+). The index can thus be useful to discriminate and hence point out the need for a complex modality like 4DTRT over another. Besides tumor mobility, a wide range of other factors, e.g., size, location, fractionation, etc., can affect the relative benefits. Application of the P(+) objective is a simple and effective way to combine these factors in the evaluation of a treatment plan.
Collapse
Affiliation(s)
- Teboh Roland
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | | | | | | | | |
Collapse
|
33
|
Yakoumakis N, Winey B, Killoran J, Mayo C, Niedermayr T, Panayiotakis G, Lingos T, Court L. Using four-dimensional computed tomography images to optimize the internal target volume when using volume-modulated arc therapy to treat moving targets. J Appl Clin Med Phys 2012; 13:3850. [PMID: 23149778 PMCID: PMC5718550 DOI: 10.1120/jacmp.v13i6.3850] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 07/02/2012] [Indexed: 12/25/2022] Open
Abstract
In this work we used 4D dose calculations, which include the effects of shape deformations, to investigate an alternative approach to creating the ITV. We hypothesized that instead of needing images from all the breathing phases in the 4D CT dataset to create the outer envelope used for treatment planning, it is possible to exclude images from the phases closest to the inhale phase. We used 4D CT images from 10 patients with lung cancer. For each patient, we drew a gross tumor volume on the exhale-phase image and propagated this to the images from other phases in the 4D CT dataset using commercial image registration software. We created four different ITVs using the N phases closest to the exhale phase (where N = 10, 8, 7, 6). For each ITV contour, we created a volume-modulated arc therapy plan on the exhale-phase CT and normalized it so that the prescribed dose covered at least 95% of the ITV. Each plan was applied to CT images from each CT phase (phases 1-10), and the calculated doses were then mapped to the exhale phase using deformable registration. The effect of the motion was quantified using the dose to 95% of the target on the exhale phase (D95) and tumor control probability. For the three-dimensional and 4D dose calculations of the plan where N = 10, differences in the D95 value varied from 3% to 14%, with an average difference of 7%. For 9 of the 10 patients, the reduction in D95 was less than 5% if eight phases were used to create the ITV. For three of the 10 patients, the reduction in the D95 was less than 5% if seven phases were used to create the ITV. We were unsuccessful in creating a general rule that could be used to create the ITV. Some reduction (8/10 phases) was possible for most, but not all, of the patients, and the ITV reduction was small.
Collapse
Affiliation(s)
- Nikolaos Yakoumakis
- Department of Radiation Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Mavroidis P, Ferreira BC, Lopes MDC. Response-probability volume histograms and iso-probability of response charts in treatment plan evaluation. Med Phys 2011; 38:2382-97. [PMID: 21776773 DOI: 10.1118/1.3570613] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE This study aims at demonstrating a new method for treatment plan evaluation and comparison based on the radiobiological response of individual voxels. This is performed by applying them on three different cancer types and treatment plans of different conformalities. Furthermore, their usefulness is examined in conjunction with traditionally applied radiobiological and dosimetric treatment plan evaluation criteria. METHODS Three different cancer types (head and neck, breast and prostate) were selected to quantify the benefits of the proposed treatment plan evaluation method. In each case, conventional conformal radiotherapy (CRT) and intensity modulated radiotherapy (IMRT) treatment configurations were planned. Iso-probability of response charts was produced by calculating the response probability in every voxel using the linear-quadratic-Poisson model and the dose-response parameters of the corresponding structure to which this voxel belongs. The overall probabilities of target and normal tissue responses were calculated using the Poisson and the relative seriality models, respectively. The 3D dose distribution converted to a 2 Gy fractionation, D2(GY) and iso-BED distributions are also shown and compared with the proposed methodology. Response-probability volume histograms (RVH) were derived and compared with common dose volume histograms (DVH). The different dose distributions were also compared using the complication-free tumor control probability, P+, the biologically effective uniform dose, D, and common dosimetric criteria. RESULTS 3D Iso-probability of response distributions is very useful for plan evaluation since their visual information focuses on the doses that are likely to have a larger clinical effect in that particular organ. The graphical display becomes independent of the prescription dose highlighting the local radiation therapy effect in each voxel without the loss of important spatial information. For example, due to the exponential nature of the Poisson distribution, cold spots in the target volumes or hot spots in the normal tissues are much easier to be identified. Response-volume histograms, as DVH, can also be derived and used for plan comparison. RVH are advantageous since by incorporating the radiobiological properties of each voxel they summarize the 3D distribution into 2D without the loss of relevant information. Thus, more clinically relevant radiobiological objectives and constraints could be defined and used in treatment planning optimization. These measures become increasingly important when dose distributions need to be designed according to the microscopic biological properties of tumor and normal tissues. CONCLUSIONS The proposed methods do not aim to replace quantifiers like the probabilities of total tissue response, which ultimately are the quantities of interest to evaluate treatment success. However, iso-probability of response charts and response-probability volume histograms illustrates more clearly the difference in effectiveness between different treatment plans than the information provided by alternative dosimetric data. The use of 3D iso-probability of response distributions could serve as a good descriptor of the effectiveness of a dose distribution indicating primarily the regions in a tissue that dominate its response.
Collapse
Affiliation(s)
- Panayiotis Mavroidis
- Department of Medical Radiation Physics, Karolinska Institutet and Stockholm University, S-17176 Stockholm, Sweden.
| | | | | |
Collapse
|
35
|
Tzikas A, Karaiskos P, Papanikolaou N, Sandilos P, Koutsouveli E, Lavdas E, Scarleas C, Dardoufas K, Lind BK, Mavroidis P. Investigating the Clinical Aspects of Using CT vs. CT-MRI Images during Organ Delineation and Treatment Planning in Prostate Cancer Radiotherapy. Technol Cancer Res Treat 2011; 10:231-42. [DOI: 10.7785/tcrt.2012.500198] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In order to apply highly conformal dose distributions, which are characterized by steep dose fall-offs, it is necessary to know the exact target location and extension. This study aims at evaluating the impact of using combined CT-MRI images in organ delineation compared to using CT images alone, on the clinical results. For 10 prostate cancer patients, the respective CT and MRI images at treatment position were acquired. The CTV was delineated using the CT and MRI images, separately, whereas bladder and rectum were delineated using the CT images alone. Based on the CT and MRI images, two CTVs were produced for each patient. The mutual information algorithm was used in the fusion of the two image sets. In this way, the structures drawn on the MRI images were transferred to the CT images in order to produce the treatment plans. For each set of structures of each patient, IMRT and 3D-CRT treatment plans were produced. The individual treatment plans were compared using the biologically effective uniform dose ([Formula: see text]) and the complication-free tumor control probability ( P+) concepts together with the DVHs of the targets and organs at risk and common dosimetric criteria. For the IMRT treatment, at the optimum dose level of the average CT and CT-MRI delineated CTV dose distributions, the P+ values are 74.7% in both cases for a [Formula: see text] of 91.5 Gy and 92.1 Gy, respectively. The respective average total control probabilities, PB are 90.0% and 90.2%, whereas the corresponding average total complication probabilities, PI are 15.3% and 15.4%. Similarly, for the 3D-CRT treatment, the average P+ values are 42.5% and 46.7%, respectively for a [Formula: see text] of 86.4 Gy and 86.7 Gy, respectively. The respective average PB values are 80.0% and 80.6%, whereas the corresponding average PI values are 37.4% and 33.8%, respectively. For both radiation modalities, the improvement mainly stems from the better sparing of rectum. According to these results, the expected clinical effectiveness of IMRT can be increased by a maximum Δ P+ of around 0.9%, whereas of 3D-CRT by about 4.2% when combined CT-MRI delineation is performed instead of using CT images alone. It is apparent that in both IMRT and 3D-CRT radiation modalities, the better knowledge of the CTV extension improved the produced dose distribution. It is shown that the CTV is irradiated more effectively, while the complication probabilities of bladder and rectum, which is the principal organs at risk, are lower in the CT-MRI based treatment plans.
Collapse
Affiliation(s)
- A. Tzikas
- Department of Medical Radiation Physics, Karolinska Institutet and Stockholm University, Sweden
| | - P. Karaiskos
- Department of Radiotherapy and Medical Physics, Hygeia Hospital, Athens, Greece
- Department of Medical Physics, Medical School, University of Athens, Athens, Greece
| | - N. Papanikolaou
- Department of Radiological Sciences, University of Texas Health Science Center, San Antonio, Texas, USA
| | - P. Sandilos
- Department of Radiotherapy and Medical Physics, Hygeia Hospital, Athens, Greece
- Department of Radiology, Areteion University Hospital, Athens, Greece
| | - E. Koutsouveli
- Department of Radiotherapy and Medical Physics, Hygeia Hospital, Athens, Greece
| | - E. Lavdas
- Department of Radiology, Larissa University Hospital, Larissa, Greece
| | - C. Scarleas
- Department of Radiotherapy and Medical Physics, Hygeia Hospital, Athens, Greece
| | - K. Dardoufas
- Department of Radiotherapy and Medical Physics, Hygeia Hospital, Athens, Greece
- Department of Radiology, Areteion University Hospital, Athens, Greece
| | - B. K. Lind
- Department of Medical Radiation Physics, Karolinska Institutet and Stockholm University, Sweden
| | - P. Mavroidis
- Department of Medical Radiation Physics, Karolinska Institutet and Stockholm University, Sweden
| |
Collapse
|
36
|
Mavroidis P, Su FC, Giantsoudi D, Stathakis S, Komisopoulos G, Shi C, Swanson G, Papanikolaou N. Radiobiological and Dosimetric Analysis of Daily Megavoltage CT Registration on Adaptive Radiotherapy with Helical Tomotherapy. Technol Cancer Res Treat 2011; 10:1-13. [DOI: 10.7785/tcrt.2012.500175] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pre-treatment patient repositioning in highly conformal image-guided radiation therapy modalities is a prerequisite for reducing setup uncertainties. In Helical Tomotherapy (HT) treatment, a megavoltage CT (MVCT) image is usually acquired to evaluate daily changes in the patient's internal anatomy and setup position. This MVCT image is subsequently compared to the kilovoltage CT (kVCT) study that was used for dosimetric planning, by applying a registration process. This study aims at investigating the expected effect of patient setup correction using the Hi-Art tomotherapy system by employing radiobiological measures such as the biologically effective uniform dose ([Formula: see text]) and the complication-free tumor control probability ( P+). A new module of the Tomotherapy software (TomoTherapy, Inc, Madison, WI) called Planned Adaptive is employed in this study. In this process the delivered dose can be calculated by using the sinogram for each delivered fraction and the registered MVCT image set that corresponds to the patient's position and anatomical distribution for that fraction. In this study, patients treated for lung, pancreas and prostate carcinomas are evaluated by this method. For each cancer type, a Helical Tomotherapy plan was developed. In each cancer case, two dose distributions were calculated using the MVCT image sets before and after the patient setup correction. The fractional dose distributions were added and renormalized to the total number of fractions planned. The dosimetric and radiobiological differences of the dose distributions with and without patient setup correction were calculated. By using common statistical measures of the dose distributions and the P+ and [Formula: see text] concepts and plotting the tissue response probabilities vs. [Formula: see text] a more comprehensive comparison was performed based on radiobiological measures. For the lung cancer case, at the clinically prescribed dose levels of the dose distributions, with and without patient setup correction, the complication-free tumor control probabilities, P+ are 48.5% and 48.9% for a [Formula: see text] of 53.3 Gy. The respective total control probabilities, PB are 56.3% and 56.5%, whereas the corresponding total complication probabilities, PI are 7.9% and 7.5%. For the pancreas cancer case, at the prescribed dose levels of the two dose distributions, the P+ values are 53.7% and 45.7% for a [Formula: see text] of 54.7 Gy and 53.8 Gy, respectively. The respective PB values are 53.7% and 45.8%, whereas the corresponding PI values are ~0.0% and 0.1%. For the prostate cancer case, at the prescribed dose levels of the two dose distributions, the P+ values are 10.9% for a [Formula: see text] of 75.2 Gy and 11.9% for a [Formula: see text] of 75.4 Gy, respectively. The respective PB values are 14.5% and 15.3%, whereas the corresponding PI values are 3.6% and 3.4%. Our analysis showed that the very good daily patient setup and dose delivery were very close to the intended ones. With the exception of the pancreas cancer case, the deviations observed between the dose distributions with and without patient setup correction were within ±2% in terms of P+. In the radiobiologically optimized dose distributions, the role of patient setup correction using MVCT images could appear to be more important than in the cases of dosimetrically optimized treatment plans were the individual tissue radiosensitivities are not precisely considered.
Collapse
Affiliation(s)
- P. Mavroidis
- Department of Medical Radiation Physics, Karolinska Institutet and Stockholm University, Sweden
- University Hospital of Larissa, Greece
| | - F-C. Su
- Department of Radiological Sciences, University of Texas Health Science Center, San Antonio, Texas, USA
| | - D. Giantsoudi
- Department of Radiological Sciences, University of Texas Health Science Center, San Antonio, Texas, USA
| | - S. Stathakis
- Department of Radiological Sciences, University of Texas Health Science Center, San Antonio, Texas, USA
| | | | - C. Shi
- Department of Radiological Sciences, University of Texas Health Science Center, San Antonio, Texas, USA
| | - G. Swanson
- Department of Radiological Sciences, University of Texas Health Science Center, San Antonio, Texas, USA
| | - N. Papanikolaou
- Department of Radiological Sciences, University of Texas Health Science Center, San Antonio, Texas, USA
| |
Collapse
|
37
|
Mavroidis P, Shi C, Plataniotis GA, Delichas MG, Ferreira BC, Rodriguez S, Lind BK, Papanikolaou N. Comparison of the helical tomotherapy against the multileaf collimator-based intensity-modulated radiotherapy and 3D conformal radiation modalities in lung cancer radiotherapy. Br J Radiol 2011; 84:161-72. [PMID: 20858664 PMCID: PMC3473851 DOI: 10.1259/bjr/89275085] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 01/26/2010] [Accepted: 03/03/2010] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES The aim of this study was to compare three-dimensional (3D) conformal radiotherapy and the two different forms of IMRT in lung cancer radiotherapy. METHODS Cases of four lung cancer patients were investigated by developing a 3D conformal treatment plan, a linac MLC-based step-and-shoot IMRT plan and an HT plan for each case. With the use of the complication-free tumour control probability (P(+)) index and the uniform dose concept as the common prescription point of the plans, the different treatment plans were compared based on radiobiological measures. RESULTS The applied plan evaluation method shows the MLC-based IMRT and the HT treatment plans are almost equivalent over the clinically useful dose prescription range; however, the 3D conformal plan inferior. At the optimal dose levels, the 3D conformal treatment plans give an average P(+) of 48.1% for a effective uniform dose to the internal target volume (ITV) of 62.4 Gy, whereas the corresponding MLC-based IMRT treatment plans are more effective by an average ΔP(+) of 27.0% for a Δ effective uniform dose of 16.3 Gy. Similarly, the HT treatment plans are more effective than the 3D-conformal plans by an average ΔP(+) of 23.8% for a Δ effective uniform dose of 11.6 Gy. CONCLUSION A radiobiological treatment plan evaluation can provide a closer association of the delivered treatment with the clinical outcome by taking into account the dose-response relations of the irradiated tumours and normal tissues. The use of P - effective uniform dose diagrams can complement the traditional tools of evaluation to compare and effectively evaluate different treatment plans.
Collapse
Affiliation(s)
- P Mavroidis
- Department of Medical Radiation Physics, Karolinska Institutet, Stockholm University, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Court LE, Seco J, Lu XQ, Ebe K, Mayo C, Ionascu D, Winey B, Giakoumakis N, Aristophanous M, Berbeco R, Rottman J, Bogdanov M, Schofield D, Lingos T. Use of a realistic breathing lung phantom to evaluate dose delivery errors. Med Phys 2011; 37:5850-7. [PMID: 21158297 DOI: 10.1118/1.3496356] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To compare the effect of respiration-induced motion on delivered dose (the interplay effect) for different treatment techniques under realistic clinical conditions. METHODS A flexible resin tumor model was created using rapid prototyping techniques based on a computed tomography (CT) image of an actual tumor. Twenty micro-MOSFETs were inserted into the tumor model and the tumor model was inserted into an anthropomorphic breathing phantom. Phantom motion was programed using the motion trajectory of an actual patient. A four-dimensional CT image was obtained and several treatment plans were created using different treatment techniques and planning systems: Conformal (Eclipse), step-and-shoot intensity-modulated radiation therapy (IMRT) (Pinnacle), step-and-shoot IMRT (XiO), dynamic IMRT (Eclipse), complex dynamic IMRT (Eclipse), hybrid IMRT [60% conformal, 40% dynamic IMRT (Eclipse)], volume-modulated are therapy (VMAT) [single-arc (Eclipse)], VMAT [double-arc (Eclipse)], and complex VMAT (Eclipse). The complex plans were created by artificially pushing the optimizer to give complex multileaf collimator sequences. Each IMRT field was irradiated five times and each VMAT field was irradiated ten times, with each irradiation starting at a random point in the respiratory cycle. The effect of fractionation was calculated by randomly summing the measured doses. The maximum deviation for each measurement point per fraction and the probability that 95% of the model tumor had dose deviations less than 2% and 5% were calculated as a function of the number of fractions. Tumor control probabilities for each treatment plan were calculated and compared. RESULTS After five fractions, measured dose deviations were less than 2% for more than 95% of measurement points within the tumor model for all plans, except the complex dynamic IMRT, step-and-shoot IMRT (XiO), complex VMAT, and single-arc VMAT plans. Reducing the dose rate of the complex IMRT plans from 600 to 200 MU/min reduced the dose deviations to less than 2%. Dose deviations were less than 5% after five fractions for all plans, except the complex single-arc VMAT plan. CONCLUSIONS Rapid prototyping techniques can be used to create realistic tumor models. For most treatment techniques, the dose deviations averaged out after several fractions. Treatments with unusually complicated multileaf collimator sequences had larger dose deviations. For IMRT treatments, dose deviations can be reduced by reducing the dose rate. For VMAT treatments, using two arcs instead of one is effective for reducing dose deviations.
Collapse
Affiliation(s)
- Laurence E Court
- Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
On the use of published radiobiological parameters and the evaluation of NTCP models regarding lung pneumonitis in clinical breast radiotherapy. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2011; 34:69-81. [DOI: 10.1007/s13246-010-0051-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 12/20/2010] [Indexed: 11/26/2022]
|
40
|
Mavroidis P, Tzikas A, Papanikolaou N, Lind BK. Toolkit for determination of dose-response relations, validation of radiobiological parameters and treatment plan optimization based on radiobiological measures. Technol Cancer Res Treat 2010; 9:523-37. [PMID: 20815424 DOI: 10.1177/153303461000900511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Accurately determined dose-response relations of the different tumors and normal tissues should be estimated and used in the clinic. The aim of this study is to demonstrate developed tools that are necessary for determining the dose-response parameters of tumors and normal tissues, for clinically verifying already published parameter sets using local patient materials and for making use of all this information in the optimization and comparison of different treatment plans and radiation techniques. One of the software modules (the Parameter Determination Module) is designed to determine the dose-response parameters of tumors and normal tissues. This is accomplished by performing a maximum likelihood fitting to calculate the best estimates and confidence intervals of the parameters used by different radiobiological models. Another module of this software (the Parameter Validation Module) concerns the validation and compatibility of external or reported dose-response parameters describing tumor control and normal tissue complications. This is accomplished by associating the expected response rates, which are calculated using different models and published parameter sets, with the clinical follow-up records of the local patient population. Finally, the last module of the software (the Radiobiological Plan Evaluation Module) is used for estimating and optimizing the effectiveness a treatment plan in terms of complication-free tumor control, P(+). The use of the Parameter Determination Module is demonstrated by deriving the dose-response relation of proximal esophagus from head and neck cancer radiotherapy. The application of the Parameter Validation Module is illustrated by verifying the clinical compatibility of those dose-response parameters with the examined treatment methodologies. The Radiobiological Plan Evaluation Module is demonstrated by evaluating and optimizing the effectiveness of head and neck cancer treatment plans. The results of the radiobiological evaluation are compared against dosimetric criteria. The presented toolkit appears to be very convenient and efficient for clinical implementation of radiobiological modeling. It can also be used for the development of a clinical data and health information database for assisting the performance of epidemiological studies and the collaboration between different institutions within research and clinical frameworks.
Collapse
Affiliation(s)
- Panayiotis Mavroidis
- Department of Medical Radiation Physics, Karolinska Institutet and Stockholm University, Sweden.
| | | | | | | |
Collapse
|
41
|
Su FC, Mavroidis P, Shi C, Ferreira BC, Papanikolaou N. A graphic user interface toolkit for specification, report and comparison of dose-response relations and treatment plans using the biologically effective uniform dose. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2010; 100:69-78. [PMID: 20338661 PMCID: PMC2929303 DOI: 10.1016/j.cmpb.2010.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Revised: 02/16/2010] [Accepted: 02/18/2010] [Indexed: 05/29/2023]
Abstract
A toolkit (BEUDcal) has been developed for evaluating the effectiveness and for predicting the outcome of treatment plans by calculating the biologically effective uniform dose (BEUD) and complication-free tumor control probability. The input for the BEUDcal is the differential dose-volume histograms of organs exported from the treatment planning system. A clinical database is built for the dose-response parameters of different tumors and normal tissues. Dose-response probabilities of all the examined organs are illustrated together with the corresponding BEUDs and the P(+) values. Furthermore, BEUDcal is able to generate a report that simultaneously presents the radiobiological evaluation together with the physical dose indices, showing the complementary relation between the physical and radiobiological treatment plan analysis performed by BEUDcal. Comparisons between treatment plans for helical tomotherapy and multileaf collimator-based intensity modulated radiotherapy of a lung patient were demonstrated to show the versatility of BEUDcal in the assessment and report of dose-response relations.
Collapse
Affiliation(s)
- Fan-Chi Su
- Department of Therapeutic Radiology, Yale-New Haven Hospital, 20 York street, New Haven, CT 06510, USA.
| | | | | | | | | |
Collapse
|
42
|
Roland T, Shi C, Liu Y, Crownover R, Mavroidis P, Papanikolaou N. Tradeoffs for assuming rigid target motion in Mlc-based real time target tracking radiotherapy: a dosimetric and radiobiological analysis. Technol Cancer Res Treat 2010; 9:199-210. [PMID: 20218742 DOI: 10.1177/153303461000900209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We report on our assessment of two types of real time target tracking modalities for lung cancer radiotherapy namely (1) single phase propagation (SPP) where motion compensation assumes a rigid target and (2) multi-phase propagation (MPP) where motion compensation considers a deformable target. In a retrospective study involving 4DCT volumes from six (n=6) previously treated lung cancer patients, four-dimensional treatment plans representative of the delivery scenarios were generated per modality and the corresponding dose distributions were derived. The modalities were then evaluated (a) Dosimetrically for target coverage adequacy and normal tissue sparing by computing the mean GTV dose, relative conformity gradient index (CGI), mean lung dose (MLD) and lung V(2)0; (b) Radiobiologically by calculating the biological effective uniform dose (D) for the target and organs at risk (OAR) and the complication free tumor control probability (P(+)). As a reference for the comparative study, we included a 4D Static modality, which was a conventional approach to account for organ motion and involved the use of individualized motion margins. With reference to the 4D Static modality, the average percent decrease in lung V(20) and MLD were respectively (13.1-/+6.9) % and (11.4-/+ 5.6)% for the MPP modality, whereas for the SPP modality they were (9.4-/+6.2) % and (7.2-/+4.7) %. On the other hand, the CGI was observed to improve by 15.3-/+13.2 and 9.6-/+10.0 points for the MPP and SPP modalities, respectively while the mean GTV dose agreed to better than 3% difference across all the modalities. A similar trend was observed in the radiobiological analysis where the P(+) improved on average by (6.7-/+4.9) % and (4.1-/+3.6) % for the MPP and SPP modalities, respectively while the D computed for the OAR decreased on average by (6.2-/+3.6) % and (3.8-/+3.5) % for the MPP and SPP tracking modalities, respectively. The D calculated for the GTV for all the modalities was in agreement to better than 2% difference. In general, respiratory motion induces target displacement and deformation and therefore the complex MPP real time target tracking modality is the preferred. On the other hand, the SPP approach affords simplicity in implementation at the expense of failing to account for target deformation. Radiobiological and dosimetric analyses enabled us to investigate the consequences of failing to compensate for deformation and assess the impact if any on the clinical outcome. While it is not possible to draw any general conclusions on a small patient cohort, our study suggests that the two tracking modalities can lead to comparable clinical outcomes and as expected are advantageous when compared with the static conventional modality.
Collapse
Affiliation(s)
- T Roland
- Department of Radiological Sciences, University of Texas Health Science Center, San Antonio, TX, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Roland T, Mavroidis P, Shi C, Papanikolaou N. Incorporating system latency associated with real-time target tracking radiotherapy in the dose prediction step. Phys Med Biol 2010; 55:2651-68. [PMID: 20400813 DOI: 10.1088/0031-9155/55/9/015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
System latency introduces geometric errors in the course of real-time target tracking radiotherapy. This effect can be minimized, for example by the use of predictive filters, but cannot be completely avoided. In this work, we present a convolution technique that can incorporate the effect as part of the treatment planning process. The method can be applied independently or in conjunction with the predictive filters to compensate for residual latency effects. The implementation was performed on TrackBeam (Initia Ltd, Israel), a prototype real-time target tracking system assembled and evaluated at our Cancer Institute. For the experimental system settings examined, a Gaussian distribution attributable to the TrackBeam latency was derived with sigma = 3.7 mm. The TrackBeam latency, expressed as an average response time, was deduced to be 172 ms. Phantom investigations were further performed to verify the convolution technique. In addition, patient studies involving 4DCT volumes of previously treated lung cancer patients were performed to incorporate the latency effect in the dose prediction step. This also enabled us to effectively quantify the dosimetric and radiobiological impact of the TrackBeam and other higher latency effects on the clinical outcome of a real-time target tracking delivery.
Collapse
Affiliation(s)
- Teboh Roland
- Department of Radiological Sciences, University of Texas Health Science Center, San Antonio, TX, USA
| | | | | | | |
Collapse
|
44
|
|
45
|
Roland T, Mavroidis P, Gutierrez A, Goytia V, Papanikolaou N. A radiobiological analysis of the effect of 3D versus 4D image-based planning in lung cancer radiotherapy. Phys Med Biol 2009; 54:5509-23. [PMID: 19717886 DOI: 10.1088/0031-9155/54/18/011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dose distributions generated on a static anatomy may differ significantly from those delivered to temporally varying anatomy such as for abdominal and thoracic tumors, due largely in part to the unavoidable organ motion and deformation effects stemming from respiration. In this work, the degree of such variation for three treatment techniques, namely static conventional, gating and target tracking radiotherapy, was investigated. The actual delivered dose was approximated by planning all the phases of a 4DCT image set. Data from six (n = 6) previously treated lung cancer patients were used for this study with tumor motion ranging from 2 to 10 mm. Complete radiobiological analyses were performed to assess the clinical significance of the observed discrepancies between the 3D and 4DCT image-based dose distributions. Using the complication-free tumor control probability (P+) objective, we observed small differences in P+ between the 3D and 4DCT image-based plans (<2.0% difference on average) for the gating and static conventional regimens and higher differences in P+ (4.0% on average) for the tracking regimen. Furthermore, we observed, as a general trend, that the 3D plan underestimated the P+ values. While it is not possible to draw any general conclusions from a small patient cohort, our results suggest that there exists a patient population in which 4D planning does not provide any additional benefits beyond that afforded by 3D planning for static conventional or gated radiotherapy. This statement is consistent with previous studies based on physical dosimetric evaluations only. The higher differences observed with the tracking technique suggest that individual patient plans should be evaluated on a case-by-case basis to assess if 3D or 4D imaging is appropriate for the tracking technique.
Collapse
Affiliation(s)
- Teboh Roland
- Department of Radiation Oncology, Cancer Therapy and Research Center at The University of Texas Health Science Center at San Antonio, 7979 Wurzbach Rd, San Antonio, TX 78229, USA
| | | | | | | | | |
Collapse
|
46
|
Mavroidis P, Stathakis S, Gutierrez A, Esquivel C, Shi C, Papanikolaou N. Expected clinical impact of the differences between planned and delivered dose distributions in helical tomotherapy for treating head and neck cancer using helical megavoltage CT images. J Appl Clin Med Phys 2009; 10:125-139. [PMID: 19692977 PMCID: PMC5720549 DOI: 10.1120/jacmp.v10i3.2969] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 01/04/2009] [Accepted: 04/23/2009] [Indexed: 11/23/2022] Open
Abstract
Helical Tomotherapy (HT) has become increasingly popular over the past few years. However, its clinical efficacy and effectiveness continues to be investigated. Pre-treatment patient repositioning in highly conformal image-guided radiation therapy modalities is a prerequisite for reducing setup uncertainties. A MVCT image set has to be acquired to account for daily changes in the patient's internal anatomy and setup position. Furthermore, a comparison should be performed to the kVCT study used for dosimetric planning, by a registration process which results in repositioning the patient according to specific transitional and rotational shifts. Different image registration techniques may lead to different repositioning of the patient and, as a result, to varying delivered doses. This study aims to investigate the expected effect of patient setup correction using the Hi-Art tomotherapy system by employing radiobiological measures such as the biologically effective uniform dose (BEUD) and the complication-free tumor control probability (P+). In this study, a typical case of lung cancer with metastatic head & neck disease was investigated by developing a Helical Tomotherapy plan. For the Tomotherapy HiArt plan, the dedicated Tomotherapy treatment planning station was used. Three dose distributions (planned and delivered with and without patient setup correction) were compared based on radiobiological measures by using the P+ index and the BEUD concept as the common prescription point of the plans and plotting the tissue response probabilities against the mean target dose for a range of prescription doses. The applied plan evaluation method shows that in this cancer case the planned and delivered dose distributions with and without patient setup correction give a P+ of 81.6%, 80.9% and 72.2%, for a BEUD to the planning target volume (PTV) of 78.0Gy, 77.7Gy and 75.4Gy, respectively. The corresponding tumor control probabilities are 86.3%, 85.1% and 75.1%, whereas the total complication probabilities are 4.64%, 4.20% and 2.89%, respectively. HT can encompass the often large PTV required while minimizing the volume of the organs at risk receiving high dose. However, the effectiveness of a HT treatment plan can be considerably deteriorated if an accurate patient setup system is not available. Taking into account the dose-response relations of the irradiated tumors and normal tissues, a radiobiological treatment plan evaluation can be performed, which may provide a closer association of the delivered treatment with the clinical outcome. In such situations, for effective evaluation and comparison of different treatment plans, traditional dose based evaluation tools can be complemented by the use of P+,BEUD diagrams.
Collapse
Affiliation(s)
- Panayiotis Mavroidis
- Department of Medical Radiation PhysicsKarolinska Institutet and Stockholm UniversityStockholmSweden
- Department of Medical PhysicsLarissa University HospitalLarissaGreece
| | - Sotirios Stathakis
- Department of Radiological SciencesUniversity of Texas Health Sciences CenterSan AntonioTXUSA
| | - Alonso Gutierrez
- Department of Radiological SciencesUniversity of Texas Health Sciences CenterSan AntonioTXUSA
| | - Carlos Esquivel
- Department of Radiological SciencesUniversity of Texas Health Sciences CenterSan AntonioTXUSA
| | - Chenyu Shi
- Department of Radiological SciencesUniversity of Texas Health Sciences CenterSan AntonioTXUSA
| | - Nikos Papanikolaou
- Department of Radiological SciencesUniversity of Texas Health Sciences CenterSan AntonioTXUSA
| |
Collapse
|
47
|
Wang JZ, Huang Z, Mayr NA, Yuh WTC. Behind : In Response to Drs. Mavroidis and Lind. Acta Oncol 2009. [DOI: 10.1080/02841860902795265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
48
|
Adamus-Górka M, Brahme A, Mavroidis P, Lind BK. Variation in radiation sensitivity and repair kinetics in different parts of the spinal cord. Acta Oncol 2009; 47:928-36. [PMID: 18568487 DOI: 10.1080/02841860701864668] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND The spinal cord, known for its strongly serial character and high sensitivity to radiation even when a small segment is irradiated, is one of the most critical organs at risk to be spared during radiation therapy. To compare the sensitivity of different parts of the spinal cord, data for radiation myelopathy have been used. MATERIAL AND METHODS In the present study, the relative seriality model was fitted to two different datasets of clinical radiation myelitis concerning cervical spinal cord after treating 248 patients for head and neck cancer and thoracic spinal cord after treating 43 patients with lung carcinoma. The maximum likelihood method was applied to fit the clinical data. The model parameters and their 68% confidence intervals were calculated for each dataset. The alpha/beta ratio for the thoracic cord was also was also found to be 0.9 (0-3.0) Gy. RESULTS The dose-response curve for the more sensitive cervical myelopathy is well described by the parameters D(50)=55.9 (54.8-57.1) Gy, gamma=6.9 (5.0-9.2), s=0.13 (0.07-0.24), whereas the thoracic myelopathy is described by the parameters D(50)=75.5 (70.5-80.8) Gy, gamma=1.1 (0.6-1.6), s=36 (3.3-infinity). DISCUSSION AND CONCLUSIONS Large differences in radiation response between the cervical and thoracic region of spinal cord are thus observed: cervical myelopathy seems to be characterized by medium seriality, while thoracic spinal cord is characterized by a highly serial dose-response. The much steeper dose-response curve for cervical spinal cord myelopathy can be interpreted as a higher number of functional subunits consistent with a higher amount of white matter close to the brain.
Collapse
|
49
|
Tsougos I, Grout I, Theodorou K, Kappas C. A free software for the evaluation and comparison of dose response models in clinical radiotherapy (DORES). Int J Radiat Biol 2009; 85:227-37. [DOI: 10.1080/09553000902748567] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
50
|
Mavroidis P, Ferreira BC, Shi C, Delichas MG, Lind BK, Papanikolaou N. Comparison of the helical tomotherapy and MLC-based IMRT radiation modalities in treating brain and cranio-spinal tumors. Technol Cancer Res Treat 2009; 8:3-14. [PMID: 19166237 DOI: 10.1177/153303460900800102] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The investigation of the clinical efficacy and effectiveness of Intensity Modulated Radiotherapy (IMRT) using Multileaf Collimators (MLC) and Helical Tomotherapy (HT) has been an issue of increasing interest over the past few years. In order to assess the suitability of a treatment plan, dosimetric criteria such as dose-volume histograms (DVH), maximum, minimum, mean, and standard deviation of the dose distribution are typically used. Nevertheless, the radiobiological parameters of the different tumors and normal tissues are often not taken into account. The use of the biologically effective uniform dose (D=) together with the complication-free tumor control probability (P(+)) were applied to evaluate the two radiation modalities. Two different clinical cases of brain and cranio-spinal axis cancers have been investigated by developing a linac MLC-based step-and-shoot IMRT plan and a Helical Tomotherapy plan. The treatment plans of the MLC-based IMRT were developed on the Philips treatment planning station using the Pinnacle 7.6 software release while the dedicated Tomotherapy treatment planning station was used for the HT plan. With the use of the P(+) index and the D(=) concept as the common prescription point, the different treatment plans were compared based on radiobiological measures. The tissue response probabilities were plotted against D(=) for a range of prescription doses. The applied plan evaluation method shows that in the brain cancer, the HT treatment gives slightly better results than the MLC-based IMRT in terms of optimum expected clinical outcome (P(+) of 66.1% and 63.5% for a D(=) to the PTV of 63.0 Gy and 62.0 Gy, respectively). In the cranio-spinal axis cancer, the HT plan is significantly better compared to the MLC-based IMRT plan over the clinically useful dose prescription range (P(+) of 84.1% and 28.3% for a D(=) to the PTV of 50.6 Gy and 44.0 Gy, respectively). If a higher than 5% risk for complications could be allowed, the complication-free tumor control could be increased by almost 30% compared to the initial dose prescription. In comparison to MLC based-IMRT, HT can better encompass the often large PTV while minimizing the volume of the OARs receiving high dose. A radiobiological treatment plan evaluation can provide a closer association of the delivered treatment with the clinical outcome by taking into account the dose-response relations of the irradiated tumors and normal tissues. The use of P - (D=) diagrams can complement the traditional tools of evaluation such as DVHs, in order to compare and effectively evaluate different treatment plans.
Collapse
Affiliation(s)
- Panayiotis Mavroidis
- Department of Medical Radiation Physics, Karolinska Institutet and Stockholm University, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|