1
|
Xu J, Zhong M, Peng W, Wu M, Wang R, Tan S. Correlation study of functional magnetic resonance index and clinicopathological features of rectal cancer. Abdom Radiol (NY) 2024; 49:2368-2386. [PMID: 38872052 DOI: 10.1007/s00261-024-04375-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 06/15/2024]
Abstract
PURPOSE To investigate the correlation between DCE-MRI, R2*, IVIM, and clinicopathological features of rectal cancer. METHODS This was a prospective study, enrolling 42 patients with rectal cancer, 20 of whom underwent rectal mesorectal excision. Dynamic contrast-enhanced magnetic resonance imaging scanning was performed preoperatively in all patients, and additional preoperative scanning of R2* imaging and intravoxel incoherent motion was performed in those who underwent surgery. Artificially delineate the ROI around the tumor. Functional magnetic resonance index parameters Ktrans, Ve, R2*, D, D*, and f were estimated by computer software to analyze postoperative pathological reports of patients undergoing total mesenteric resection. Correlation and significance analyses of imaging metrics and pathologic features were performed by GraphPad Prism 9 to assess statistical significance. RESULTS DEC-MRI, R2*, and IVIM have certain application values in the distance from the lower margin of the tumor to the anorectal ring, imaging T stage and N stage, tumor markers CEA and CA199, immunohistochemical indexes Ki-76 and P53, lymph node cancer metastasis, and rectal fascia status (P < 0.05). CONCLUSION DEC-MRI, R2*, and IVIM provide reliable quantitative parameters for preoperative clinicopathological evaluation of patients with rectal cancer.
Collapse
Affiliation(s)
- Jiaqian Xu
- Medical College, Guizhou University, No.24 Xiahui Road, Guiyang, 550025, Guizhou, China
| | - Ming Zhong
- Department of Radiology, The People's Hospital of Guizhou Province, Guiyang, 550001, Guizhou, China
| | - Wen Peng
- Department of Oncology, The People's Hospital of Guizhou Province, Guiyang, 550001, Guizhou, China
| | - Mingfeng Wu
- Department of Radiology, The People's Hospital of Guizhou Province, Guiyang, 550001, Guizhou, China
| | - Rongpin Wang
- Department of Radiology, The People's Hospital of Guizhou Province, Guiyang, 550001, Guizhou, China
| | - Shisheng Tan
- Medical College, Guizhou University, No.24 Xiahui Road, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
2
|
Khayat S, Choudhary K, Claude Nshimiyimana J, Gurav J, Hneini A, Nazir A, Chaito H, Wojtara M, Uwishema O. Pancreatic cancer: from early detection to personalized treatment approaches. Ann Med Surg (Lond) 2024; 86:2866-2872. [PMID: 38694319 PMCID: PMC11060269 DOI: 10.1097/ms9.0000000000002011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/19/2024] [Indexed: 05/04/2024] Open
Abstract
Pancreatic cancer is notorious for its persistently poor prognosis and health outcomes, so some of the questions that may be begged are "Why is it mostly diagnosed at end stage?", "What could we possibly do with the advancing technology in today's world to detect early pancreatic cancer and intervene?", and "Are there any implementation of the existing novel imaging technologies?". Well, to start with, this is in part because the majority of patients presented would already have reached a locally advanced or metastatic stage at the time of diagnosis due to its highly aggressive characteristics and lack of symptoms. Due to this striking disparity in survival, advancements in early detection and intervention are likely to significantly increase patients' survival. Presently, screening is frequently used in high-risk individuals in order to obtain an early pancreatic cancer diagnosis. Having a thorough understanding of the pathogenesis and risk factors of pancreatic cancer may enable us to identify individuals at high risk, diagnose the disease early, and begin treatment promptly. In this review, the authors outline the clinical hurdles to early pancreatic cancer detection, describe high-risk populations, and discuss current screening initiatives for high-risk individuals. The ultimate goal of this current review is to study the roles of both traditional and novel imaging modalities for early pancreatic cancer detection. A lot of the novel imaging techniques mentioned seem promising, but they need to be put to the test on a large scale and may need to be combined with other non-invasive biomarkers before they can be widely used.
Collapse
Affiliation(s)
| | | | | | | | - Asmaa Hneini
- Faculty of Medicine, Beirut Arab University, Beirut, Lebanon
| | - Abubakar Nazir
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Department of Medicine, King Edward Medical University, Lahore, Pakistan
| | - Hassan Chaito
- Faculty of Medicine, Beirut Arab University, Beirut, Lebanon
| | - Magda Wojtara
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
| | - Olivier Uwishema
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
3
|
Schmidt P, Lindemeyer J, Raut P, Schütz M, Saniternik S, Jönsson J, Endepols H, Fischer T, Quaas A, Schlößer HA, Thelen M, Grüll H. Multiparametric Characterization of the DSL-6A/C1 Pancreatic Cancer Model in Rats. Cancers (Basel) 2024; 16:1535. [PMID: 38672617 PMCID: PMC11049193 DOI: 10.3390/cancers16081535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The DSL-6A/C1 murine pancreatic ductal adenocarcinoma (PDAC) tumor model was established in Lewis rats and characterized through a comprehensive multiparametric analysis to compare it to other preclinical tumor models and explore potential diagnostic and therapeutical targets. DSL-6A/C1 tumors were histologically analyzed to elucidate PDAC features. The tumor microenvironment was studied for immune cell prevalence. Multiparametric MRI and PET imaging were utilized to characterize tumors, and 68Ga-FAPI-46-targeting cancer-associated fibroblasts (CAFs), were used to validate the histological findings. The histology confirmed typical PDAC characteristics, such as malformed pancreatic ductal malignant cells and CAFs. Distinct immune landscapes were identified, revealing an increased presence of CD8+ T cells and a decreased CD4+ T cell fraction within the tumor microenvironment. PET imaging with 68Ga-FAPI tracers exhibited strong tracer uptake in tumor tissues. The MRI parameters indicated increasing intralesional necrosis over time and elevated contrast media uptake in vital tumor areas. We have demonstrated that the DSL-6A/C1 tumor model, particularly due to its high tumorigenicity, tumor size, and 68Ga-FAPI-46 sensitivity, is a suitable alternative to established small animal models for many forms of preclinical analyses and therapeutic studies of PDAC.
Collapse
Affiliation(s)
- Patrick Schmidt
- Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, University of Cologne, 50937 Cologne, Germany; (P.S.); (J.L.); (P.R.); (M.S.); (S.S.); (J.J.)
| | - Johannes Lindemeyer
- Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, University of Cologne, 50937 Cologne, Germany; (P.S.); (J.L.); (P.R.); (M.S.); (S.S.); (J.J.)
| | - Pranali Raut
- Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, University of Cologne, 50937 Cologne, Germany; (P.S.); (J.L.); (P.R.); (M.S.); (S.S.); (J.J.)
| | - Markus Schütz
- Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, University of Cologne, 50937 Cologne, Germany; (P.S.); (J.L.); (P.R.); (M.S.); (S.S.); (J.J.)
- Faculty of Mathematics and Natural Sciences, Department of Chemistry, University of Cologne, 50937 Cologne, Germany
| | - Sven Saniternik
- Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, University of Cologne, 50937 Cologne, Germany; (P.S.); (J.L.); (P.R.); (M.S.); (S.S.); (J.J.)
- Faculty of Mathematics and Natural Sciences, Department of Chemistry, University of Cologne, 50937 Cologne, Germany
| | - Jannika Jönsson
- Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, University of Cologne, 50937 Cologne, Germany; (P.S.); (J.L.); (P.R.); (M.S.); (S.S.); (J.J.)
| | - Heike Endepols
- Faculty of Medicine and University Hospital of Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, University of Cologne, 50937 Cologne, Germany;
- Faculty of Medicine and University Hospital of Cologne, Department of Nuclear Medicine, University of Cologne, 50937 Cologne, Germany;
- Nuclear Chemistry, Institute of Neuroscience and Medicine (INM-5), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Thomas Fischer
- Faculty of Medicine and University Hospital of Cologne, Department of Nuclear Medicine, University of Cologne, 50937 Cologne, Germany;
| | - Alexander Quaas
- Faculty of Medicine and University Hospital of Cologne, Institute of Pathology, University of Cologne, 50937 Cologne, Germany;
| | - Hans Anton Schlößer
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (H.A.S.); (M.T.)
- Department of General, Visceral, Cancer and Transplantation Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Martin Thelen
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (H.A.S.); (M.T.)
| | - Holger Grüll
- Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, University of Cologne, 50937 Cologne, Germany; (P.S.); (J.L.); (P.R.); (M.S.); (S.S.); (J.J.)
- Faculty of Mathematics and Natural Sciences, Department of Chemistry, University of Cologne, 50937 Cologne, Germany
| |
Collapse
|
4
|
Wang L, Li M, Dong T, Li Y, Yin C, Nie F. Pancreatic Ductal Adenocarcinoma: The Characteristics of Contrast-Enhanced Ultrasound Are Correlated with the Hypoxic Microenvironment. Diagnostics (Basel) 2023; 13:3270. [PMID: 37892091 PMCID: PMC10606620 DOI: 10.3390/diagnostics13203270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
A hypoxic microenvironment is associated with an increased risk of metastasis, treatment resistance and poor prognosis of pancreatic ductal adenocarcinoma (PDAC). This study aimed to identify contrast-enhanced ultrasound (CEUS) characteristics that could predict the hypoxic microenvironment of PDAC. A total of 102 patients with surgically resected PDAC who underwent CEUS were included. CEUS qualitative and quantitative characteristics were analyzed. The expression of hypoxia-inducible factor-1α (HIF-1) and glucose transporter-1 (GLUT1) were demonstrated by immunohistochemistry. The associations between CEUS characteristics and the HIF-1α and GLUT1 expression of PDACs were evaluated. We found that HIF-1α-high PDACs and GLUT1-high PDACs had a larger tumor size and were more prone to lymph node metastasis. There was a significant positive linear correlation between the expression of HIF-1α and GLUT1. CEUS qualitative characteristics including completeness of enhancement and peak enhancement degree (PED) were related to the expression of HIF-1α and GLUT1. A logistic regression analysis showed that tumor size, lymph node metastasis, incomplete enhancement and iso-enhancement of PED were independent predictors for HIF-1α-high PDACs and GLUT1-high PDACs. As for quantitative characteristics, HIF-1α-high PDACs and GLUT1-high PDACs showed higher peak enhancement (PE) and wash-in rate (WIR). CEUS can effectively reflect the hypoxia microenvironment of PDAC, which may become a noninvasive imaging biomarker for prognosis prediction and individualized treatment.
Collapse
Affiliation(s)
- Lan Wang
- Ultrasound Medical Center, Lanzhou University Second Hospital, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China; (L.W.); (M.L.); (T.D.); (Y.L.); (C.Y.)
| | - Ming Li
- Ultrasound Medical Center, Lanzhou University Second Hospital, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China; (L.W.); (M.L.); (T.D.); (Y.L.); (C.Y.)
| | - Tiantian Dong
- Ultrasound Medical Center, Lanzhou University Second Hospital, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China; (L.W.); (M.L.); (T.D.); (Y.L.); (C.Y.)
- Gansu Province Clinical Research Center for Ultrasonography, Lanzhou 730030, China
| | - Yuanyuan Li
- Ultrasound Medical Center, Lanzhou University Second Hospital, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China; (L.W.); (M.L.); (T.D.); (Y.L.); (C.Y.)
| | - Ci Yin
- Ultrasound Medical Center, Lanzhou University Second Hospital, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China; (L.W.); (M.L.); (T.D.); (Y.L.); (C.Y.)
| | - Fang Nie
- Ultrasound Medical Center, Lanzhou University Second Hospital, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China; (L.W.); (M.L.); (T.D.); (Y.L.); (C.Y.)
- Gansu Province Clinical Research Center for Ultrasonography, Lanzhou 730030, China
| |
Collapse
|
5
|
Su MC, Nethi SK, Dhanyamraju PK, Prabha S. Nanomedicine Strategies for Targeting Tumor Stroma. Cancers (Basel) 2023; 15:4145. [PMID: 37627173 PMCID: PMC10452920 DOI: 10.3390/cancers15164145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
The tumor stroma, or the microenvironment surrounding solid tumors, can significantly impact the effectiveness of cancer therapies. The tumor microenvironment is characterized by high interstitial pressure, a consequence of leaky vasculature, and dense stroma created by excessive deposition of various macromolecules such as collagen, fibronectin, and hyaluronic acid (HA). In addition, non-cancerous cells such as cancer-associated fibroblasts (CAFs) and the extracellular matrix (ECM) itself can promote tumor growth. In recent years, there has been increased interest in combining standard cancer treatments with stromal-targeting strategies or stromal modulators to improve therapeutic outcomes. Furthermore, the use of nanomedicine, which can improve the delivery and retention of drugs in the tumor, has been proposed to target the stroma. This review focuses on how different stromal components contribute to tumor progression and impede chemotherapeutic delivery. Additionally, this review highlights recent advancements in nanomedicine-based stromal modulation and discusses potential future directions for developing more effective stroma-targeted cancer therapies.
Collapse
Affiliation(s)
- Mei-Chi Su
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Susheel Kumar Nethi
- Nanovaccine Institute, Department of Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA;
| | - Pavan Kumar Dhanyamraju
- Fels Cancer Institute of Personalized Medicine, Lewis-Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Swayam Prabha
- Fels Cancer Institute of Personalized Medicine, Lewis-Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Temple University, Philadelphia, PA 19111, USA
| |
Collapse
|
6
|
Farr KP, Moses D, Haghighi KS, Phillips PA, Hillenbrand CM, Chua BH. Imaging Modalities for Early Detection of Pancreatic Cancer: Current State and Future Research Opportunities. Cancers (Basel) 2022; 14:cancers14102539. [PMID: 35626142 PMCID: PMC9139708 DOI: 10.3390/cancers14102539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary While survival rates for many cancers have improved dramatically over the last 20 years, patients with pancreatic cancer have persistently poor outcomes. The majority of patients with pancreatic cancer are not suitable for potentially curative surgery due to locally advanced or metastatic disease stage at diagnosis. Therefore, early detection would potentially improve survival of pancreatic cancer patients through earlier intervention. Here, we present clinical challenges in the early detection of pancreatic cancer, characterise high risk groups for pancreatic cancer and current screening programs in high-risk individuals. The aim of this scoping review is to investigate the role of both established and novel imaging modalities for early detection of pancreatic cancer. Furthermore, we investigate innovative imaging techniques for early detection of pancreatic cancer, but its widespread application requires further investigation and potentially a combination with other non-invasive biomarkers. Abstract Pancreatic cancer, one of the most lethal malignancies, is increasing in incidence. While survival rates for many cancers have improved dramatically over the last 20 years, people with pancreatic cancer have persistently poor outcomes. Potential cure for pancreatic cancer involves surgical resection and adjuvant therapy. However, approximately 85% of patients diagnosed with pancreatic cancer are not suitable for potentially curative therapy due to locally advanced or metastatic disease stage. Because of this stark survival contrast, any improvement in early detection would likely significantly improve survival of patients with pancreatic cancer through earlier intervention. This comprehensive scoping review describes the current evidence on groups at high risk for developing pancreatic cancer, including individuals with inherited predisposition, pancreatic cystic lesions, diabetes, and pancreatitis. We review the current roles of imaging modalities focusing on early detection of pancreatic cancer. Additionally, we propose the use of advanced imaging modalities to identify early, potentially curable pancreatic cancer in high-risk cohorts. We discuss innovative imaging techniques for early detection of pancreatic cancer, but its widespread application requires further investigation and potentially a combination with other non-invasive biomarkers.
Collapse
Affiliation(s)
- Katherina P. Farr
- School of Clinical Medicine, Faculty of Medicine & Health, UNSW, Sydney, NSW 2052, Australia; (K.S.H.); (B.H.C.)
- Correspondence:
| | - Daniel Moses
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia;
| | - Koroush S. Haghighi
- School of Clinical Medicine, Faculty of Medicine & Health, UNSW, Sydney, NSW 2052, Australia; (K.S.H.); (B.H.C.)
- Department of General Surgery, Prince of Wales Hospital, Sydney, NSW 2052, Australia
| | - Phoebe A. Phillips
- Pancreatic Cancer Translational Research Group, School of Clinical Medicine, Lowy Cancer Research Centre, UNSW, Sydney, NSW 2052, Australia;
| | - Claudia M. Hillenbrand
- Research Imaging NSW, Division of Research & Enterprise, UNSW, Sydney, NSW 2052, Australia;
| | - Boon H. Chua
- School of Clinical Medicine, Faculty of Medicine & Health, UNSW, Sydney, NSW 2052, Australia; (K.S.H.); (B.H.C.)
- Nelune Comprehensive Cancer Centre, Prince of Wales Hospital, Sydney, NSW 2052, Australia
| |
Collapse
|
7
|
Zabel WJ, Allam N, Foltz WD, Flueraru C, Taylor E, Vitkin IA. Bridging the macro to micro resolution gap with angiographic optical coherence tomography and dynamic contrast enhanced MRI. Sci Rep 2022; 12:3159. [PMID: 35210476 PMCID: PMC8873467 DOI: 10.1038/s41598-022-07000-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/09/2022] [Indexed: 11/25/2022] Open
Abstract
Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is emerging as a valuable tool for non-invasive volumetric monitoring of the tumor vascular status and its therapeutic response. However, clinical utility of DCE-MRI is challenged by uncertainty in its ability to quantify the tumor microvasculature (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mu \mathrm{m}$$\end{document}μm scale) given its relatively poor spatial resolution (mm scale at best). To address this challenge, we directly compared DCE-MRI parameter maps with co-registered micron-scale-resolution speckle variance optical coherence tomography (svOCT) microvascular images in a window chamber tumor mouse model. Both semi and fully quantitative (Toft’s model) DCE-MRI metrics were tested for correlation with microvascular svOCT biomarkers. svOCT’s derived vascular volume fraction (VVF) and the mean distance to nearest vessel (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\overline{\mathrm{DNV} }$$\end{document}DNV¯) metrics were correlated with DCE-MRI vascular biomarkers such as time to peak contrast enhancement (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$r=-0.81$$\end{document}r=-0.81 and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$0.83$$\end{document}0.83 respectively, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$P<0.0001$$\end{document}P<0.0001 for both), the area under the gadolinium-time concentration curve (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$r=0.50$$\end{document}r=0.50 and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$-0.48$$\end{document}-0.48 respectively, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$P<0.0001$$\end{document}P<0.0001 for both) and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${k}_{trans}$$\end{document}ktrans (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$r=0.64$$\end{document}r=0.64 and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$-0.61$$\end{document}-0.61 respectively, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$P<0.0001$$\end{document}P<0.0001 for both). Several other correlated micro–macro vascular metric pairs were also noted. The microvascular insights afforded by svOCT may help improve the clinical utility of DCE-MRI for tissue functional status assessment and therapeutic response monitoring applications.
Collapse
Affiliation(s)
- W Jeffrey Zabel
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.
| | - Nader Allam
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Warren D Foltz
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Costel Flueraru
- National Research Council Canada, Information Communication Technology, Ottawa, Canada
| | - Edward Taylor
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - I Alex Vitkin
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Kishimoto S, Brender JR, Chandramouli GVR, Saida Y, Yamamoto K, Mitchell JB, Krishna MC. Hypoxia-Activated Prodrug Evofosfamide Treatment in Pancreatic Ductal Adenocarcinoma Xenografts Alters the Tumor Redox Status to Potentiate Radiotherapy. Antioxid Redox Signal 2021; 35:904-915. [PMID: 32787454 PMCID: PMC8568781 DOI: 10.1089/ars.2020.8131] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aims: In hypoxic tumor microenvironments, the strongly reducing redox environment reduces evofosfamide (TH-302) to release a cytotoxic bromo-isophosphoramide (Br-IPM) moiety. This drug therefore preferentially attacks hypoxic regions in tumors where other standard anticancer treatments such as chemotherapy and radiation therapy are often ineffective. Various combination therapies with evofosfamide have been proposed and tested in preclinical and clinical settings. However, the treatment effect of evofosfamide monotherapy on tumor hypoxia has not been fully understood, partly due to the lack of quantitative methods to assess tumor pO2in vivo. Here, we use quantitative pO2 imaging by electron paramagnetic resonance (EPR) to evaluate the change in tumor hypoxia in response to evofosfamide treatment using two pancreatic ductal adenocarcinoma xenograft models: MIA Paca-2 tumors responding to evofosfamide and Su.86.86 tumors that do not respond. Results: EPR imaging showed that oxygenation improved globally after evofosfamide treatment in hypoxic MIA Paca-2 tumors, in agreement with the ex vivo results obtained from hypoxia staining by pimonidazole and in apparent contrast to the decrease in Ktrans observed in dynamic contrast-enhanced magnetic resonance imaging (DCE MRI). Innovations: The observation that evofosfamide not only kills the hypoxic region of the tumor but also improves oxygenation in the residual tumor regions provides a rationale for combination therapies using radiation and antiproliferatives post evofosfamide for improved outcomes. Conclusion: This study suggests that reoxygenation after evofosfamide treatment is due to decreased oxygen demand rather than improved perfusion. Following the change in pO2 after treatment may therefore yield a way of monitoring treatment response. Antioxid. Redox Signal. 35, 904-915.
Collapse
Affiliation(s)
- Shun Kishimoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey R Brender
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Yu Saida
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kazutoshi Yamamoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - James B Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Murali C Krishna
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Gaustad JV, Rofstad EK. Assessment of Intratumor Heterogeneity in Parametric Dynamic Contrast-Enhanced MR Images: A Comparative Study of Novel and Established Methods. Front Oncol 2021; 11:722773. [PMID: 34621674 PMCID: PMC8490776 DOI: 10.3389/fonc.2021.722773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Intratumor heterogeneity is associated with aggressive disease and poor survival rates in several types of cancer. A novel method for assessing intratumor heterogeneity in medical images, named the spatial gradient method, has been developed in our laboratory. In this study, we measure intratumor heterogeneity in Ktrans maps derived by dynamic contrast-enhanced magnetic resonance imaging using the spatial gradient method, and we compare the performance of the novel method with that of histogram analyses and texture analyses using the Haralick method. Ktrans maps of 58 untreated and sunitinib-treated pancreatic ductal adenocaricoma (PDAC) xenografts from two PDAC models were investigated. Intratumor heterogeneity parameters derived by the spatial gradient method were sensitive to tumor line differences as well as sunitinib-induced changes in intratumor heterogeneity. Furthermore, the parameters provided additional information to the median value and were not severely affected by imaging noise. The parameters derived by histogram analyses were insensitive to spatial heterogeneity and were strongly correlated to the median value, and the Haralick features were severely influenced by imaging noise and did not differentiate between untreated and sunitinib-treated tumors. The spatial gradient method was superior to histogram analyses and Haralick features for assessing intratumor heterogeneity in Ktrans maps of untreated and sunitinib-treated PDAC xenografts, and can possibly be used to assess intratumor heterogeneity in other medical images and to evaluate effects of other treatments as well.
Collapse
Affiliation(s)
- Jon-Vidar Gaustad
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Einar K Rofstad
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
10
|
Longitudinal Monitoring of Simulated Interstitial Fluid Pressure for Pancreatic Ductal Adenocarcinoma Patients Treated with Stereotactic Body Radiotherapy. Cancers (Basel) 2021; 13:cancers13174319. [PMID: 34503129 PMCID: PMC8430878 DOI: 10.3390/cancers13174319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/03/2021] [Accepted: 08/19/2021] [Indexed: 11/25/2022] Open
Abstract
Simple Summary High vessel permeability, poor perfusion, low lymphatic drainage, and dense abundant stroma elevate interstitial fluid pressures (IFP) in pancreatic ductal adenocarcinoma (PDAC). The present study aims to monitor longitudinal changes in simulated tumor IFP and velocity (IFV) values using a dynamic contrast-enhanced (DCE)-MRI-based computational fluid modeling (CFM) approach in PDAC. Nine PDAC patients underwent DCE-MRI acquisition on a 3-Tesla MRI scanner at pre-treatment (TX (0)), immediately after the first fraction of stereotactic body radiotherapy (SBRT, (D1-TX)), and six weeks post-TX (D2-TX). The partial differential equation of IFP formulated from the continuity equation using the Starling Principle of fluid exchange and Darcy velocity–pressure relationship was solved in COMSOL Multiphysics software to generate IFP and IFV parametric maps using relevant tumor tissue physiological parameters. Initial results suggest that after validation, IFP and IFV can be imaging biomarkers of early response to therapy that may guide precision medicine in PDAC. Abstract The present study aims to monitor longitudinal changes in simulated tumor interstitial fluid pressure (IFP) and velocity (IFV) values using dynamic contrast-enhanced (DCE)-MRI-based computational fluid modeling (CFM) in pancreatic ductal adenocarcinoma (PDAC) patients. Nine PDAC patients underwent MRI, including DCE-MRI, on a 3-Tesla MRI scanner at pre-treatment (TX (0)), after the first fraction of stereotactic body radiotherapy (SBRT, (D1-TX)), and six weeks post-TX (D2-TX). The partial differential equation of IFP formulated from the continuity equation, incorporating the Starling Principle of fluid exchange, Darcy velocity, and volume transfer constant (Ktrans), was solved in COMSOL Multiphysics software to generate IFP and IFV maps. Tumor volume (Vt), Ktrans, IFP, and IFV values were compared (Wilcoxon and Spearman) between the time- points. D2-TX Ktrans values were significantly different from pre-TX and D1-TX (p < 0.05). The D1-TX and pre-TX mean IFV values exhibited a borderline significant difference (p = 0.08). The IFP values varying <3.0% between the three time-points were not significantly different (p > 0.05). Vt and IFP values were strongly positively correlated at pre-TX (ρ = 0.90, p = 0.005), while IFV exhibited a strong negative correlation at D1-TX (ρ = −0.74, p = 0.045). Vt, Ktrans, IFP, and IFV hold promise as imaging biomarkers of early response to therapy in PDAC.
Collapse
|
11
|
Prasad S, Chandra A, Cavo M, Parasido E, Fricke S, Lee Y, D'Amone E, Gigli G, Albanese C, Rodriguez O, Del Mercato LL. Optical and magnetic resonance imaging approaches for investigating the tumour microenvironment: state-of-the-art review and future trends. NANOTECHNOLOGY 2021; 32:062001. [PMID: 33065554 DOI: 10.1088/1361-6528/abc208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The tumour microenvironment (TME) strongly influences tumorigenesis and metastasis. Two of the most characterized properties of the TME are acidosis and hypoxia, both of which are considered hallmarks of tumours as well as critical factors in response to anticancer treatments. Currently, various imaging approaches exist to measure acidosis and hypoxia in the TME, including magnetic resonance imaging (MRI), positron emission tomography and optical imaging. In this review, we will focus on the latest fluorescent-based methods for optical sensing of cell metabolism and MRI as diagnostic imaging tools applied both in vitro and in vivo. The primary emphasis will be on describing the current and future uses of systems that can measure intra- and extra-cellular pH and oxygen changes at high spatial and temporal resolution. In addition, the suitability of these approaches for mapping tumour heterogeneity, and assessing response or failure to therapeutics will also be covered.
Collapse
Affiliation(s)
- Saumya Prasad
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Anil Chandra
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Marta Cavo
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Erika Parasido
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
| | - Stanley Fricke
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
- Department of Radiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Yichien Lee
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Eliana D'Amone
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Giuseppe Gigli
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
- Department of Mathematics and Physics 'Ennio De Giorgi', University of Salento, via Arnesano, 73100, Lecce, Italy
| | - Chris Albanese
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
- Department of Radiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Olga Rodriguez
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
| | - Loretta L Del Mercato
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| |
Collapse
|
12
|
Klaassen R, Steins A, Gurney‐Champion OJ, Bijlsma MF, van Tienhoven G, Engelbrecht MRW, van Eijck CHJ, Suker M, Wilmink JW, Besselink MG, Busch OR, de Boer OJ, van de Vijver MJ, Hooijer GKJ, Verheij J, Stoker J, Nederveen AJ, van Laarhoven HWM. Pathological validation and prognostic potential of quantitative MRI in the characterization of pancreas cancer: preliminary experience. Mol Oncol 2020; 14:2176-2189. [PMID: 32285559 PMCID: PMC7463316 DOI: 10.1002/1878-0261.12688] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/19/2020] [Accepted: 04/07/2020] [Indexed: 12/16/2022] Open
Abstract
Patient stratification based on biological variation in pancreatic ductal adenocarcinoma (PDAC) subtypes could help to improve clinical outcome. However, noninvasive assessment of the entire tumor microenvironment remains challenging. In this study, we investigate the biological basis of dynamic contrast-enhanced (DCE), intravoxel incoherent motion (IVIM), and R2*-derived magnetic resonance imaging (MRI) parameters for the noninvasive characterization of the PDAC tumor microenvironment and evaluate their prognostic potential in PDAC patients. Patients diagnosed with treatment-naïve resectable PDAC underwent MRI. After resection, a whole-mount tumor slice was analyzed for collagen fraction, vessel density, and hypoxia and matched to the MRI parameter maps. MRI parameters were correlated to immunohistochemistry-derived tissue characteristics and evaluated for prognostic potential. Thirty patients were included of whom 21 underwent resection with whole-mount histology available in 15 patients. DCE Ktrans and ve , ADC, and IVIM D correlated with collagen fraction. DCE kep and IVIM f correlated with vessel density and R2* with tissue hypoxia. Based on MRI, two main PDAC phenotypes could be distinguished; a stroma-high phenotype demonstrating high vessel density and high collagen fraction and a stroma-low phenotype demonstrating low vessel density and low collagen fraction. Patients with the stroma-high phenotype (high kep and high IVIM D, n = 8) showed longer overall survival (not reached vs. 14 months, P = 0.001, HR = 9.1, P = 0.004) and disease-free survival (not reached vs. 2 months, P < 0.001, HR 9.3, P = 0.003) compared to the other patients (n = 22). Median follow-up was 41 (95% CI: 36-46) months. MRI was able to accurately characterize tumor collagen fraction, vessel density, and hypoxia in PDAC. Based on imaging parameters, a subgroup of patients with significantly better prognosis could be identified. These first results indicate that stratification-based MRI-derived biomarkers could help to tailor treatment and improve clinical outcome and warrant further research.
Collapse
Affiliation(s)
- Remy Klaassen
- Department of Medical OncologyCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamThe Netherlands
- Laboratory for Experimental Oncology and RadiobiologyCenter for Experimental and Molecular MedicineCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamThe Netherlands
| | - Anne Steins
- Department of Medical OncologyCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamThe Netherlands
- Laboratory for Experimental Oncology and RadiobiologyCenter for Experimental and Molecular MedicineCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamThe Netherlands
| | - Oliver J. Gurney‐Champion
- Department of Radiology & Nuclear MedicineCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamThe Netherlands
- Department of Radiation OncologyCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamThe Netherlands
| | - Maarten F. Bijlsma
- Laboratory for Experimental Oncology and RadiobiologyCenter for Experimental and Molecular MedicineCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamThe Netherlands
- Oncode InstituteAmsterdamThe Netherlands
| | - Geertjan van Tienhoven
- Department of Radiation OncologyCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamThe Netherlands
| | - Marc R. W. Engelbrecht
- Department of Radiology & Nuclear MedicineCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamThe Netherlands
| | | | - Mustafa Suker
- Department of SurgeryErasmus Medical CenterRotterdamThe Netherlands
| | - Johanna W. Wilmink
- Department of Medical OncologyCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamThe Netherlands
| | - Marc G. Besselink
- Department of SurgeryCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamThe Netherlands
| | - Olivier R. Busch
- Department of SurgeryCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamThe Netherlands
| | - Onno J. de Boer
- Department of PathologyCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamThe Netherlands
| | - Marc J. van de Vijver
- Department of PathologyCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamThe Netherlands
| | - Gerrit K. J. Hooijer
- Department of PathologyCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamThe Netherlands
| | - Joanne Verheij
- Department of PathologyCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamThe Netherlands
| | - Jaap Stoker
- Department of Radiology & Nuclear MedicineCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamThe Netherlands
| | - Aart J. Nederveen
- Department of Radiology & Nuclear MedicineCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamThe Netherlands
| | | |
Collapse
|
13
|
Gaustad JV, Hauge A, Wegner CS, Simonsen TG, Lund KV, Hansem LMK, Rofstad EK. DCE-MRI of Tumor Hypoxia and Hypoxia-Associated Aggressiveness. Cancers (Basel) 2020; 12:cancers12071979. [PMID: 32698525 PMCID: PMC7409330 DOI: 10.3390/cancers12071979] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/02/2020] [Accepted: 07/13/2020] [Indexed: 01/07/2023] Open
Abstract
Tumor hypoxia is associated with resistance to treatment, aggressive growth, metastatic dissemination, and poor clinical outcome in many cancer types. The potential of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to assess the extent of hypoxia in tumors has been investigated in several studies in our laboratory. Cervical carcinoma, melanoma, and pancreatic ductal adenocarcinoma (PDAC) xenografts have been used as models of human cancer, and the transfer rate constant (Ktrans) and the extravascular extracellular volume fraction (ve) have been derived from DCE-MRI data by using Tofts standard pharmacokinetic model and a population-based arterial input function. Ktrans was found to reflect naturally occurring and treatment-induced hypoxia when hypoxia was caused by low blood perfusion, radiation responsiveness when radiation resistance was due to hypoxia, and metastatic potential when metastasis was hypoxia-induced. Ktrans was also associated with outcome for patients with locally-advanced cervical carcinoma treated with cisplatin-based chemoradiotherapy. Together, the studies imply that DCE-MRI can provide valuable information on the hypoxic status of cervical carcinoma, melanoma, and PDAC. In this communication, we review and discuss the studies and provide some recommendations as to how DCE-MRI data can be analyzed and interpreted to assess tumor hypoxia.
Collapse
Affiliation(s)
- Jon-Vidar Gaustad
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, 0310 Oslo, Norway; (A.H.); (C.S.W.); (T.G.S.); (K.V.L.); (L.M.K.H.); (E.K.R.)
- Correspondence:
| | - Anette Hauge
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, 0310 Oslo, Norway; (A.H.); (C.S.W.); (T.G.S.); (K.V.L.); (L.M.K.H.); (E.K.R.)
| | - Catherine S. Wegner
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, 0310 Oslo, Norway; (A.H.); (C.S.W.); (T.G.S.); (K.V.L.); (L.M.K.H.); (E.K.R.)
| | - Trude G. Simonsen
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, 0310 Oslo, Norway; (A.H.); (C.S.W.); (T.G.S.); (K.V.L.); (L.M.K.H.); (E.K.R.)
| | - Kjersti V. Lund
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, 0310 Oslo, Norway; (A.H.); (C.S.W.); (T.G.S.); (K.V.L.); (L.M.K.H.); (E.K.R.)
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, 0310 Oslo, Norway
| | - Lise Mari K. Hansem
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, 0310 Oslo, Norway; (A.H.); (C.S.W.); (T.G.S.); (K.V.L.); (L.M.K.H.); (E.K.R.)
| | - Einar K. Rofstad
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, 0310 Oslo, Norway; (A.H.); (C.S.W.); (T.G.S.); (K.V.L.); (L.M.K.H.); (E.K.R.)
| |
Collapse
|
14
|
Xie J, Liu H, Liu WS, Li JW. Quantitative shear wave elastography for noninvasive assessment of solid pancreatic masses. Clin Hemorheol Microcirc 2020; 74:179-187. [PMID: 31476148 DOI: 10.3233/ch-190665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE To evaluate the diagnostic value of quantitative shear wave elastography (SWE) for the differential diagnosis of solid pancreatic tumors. MATERIALS AND METHODS A total of 66 solid pancreatic masses were enrolled in this study and all the lesions underwent quantitative SWE. The stiffness of the masses was expressed in shear wave velocity (SWV, m/s). The receiver operating characteristic (ROC) curve was plotted to assess the diagnostic performance of quantitative SWE. The optimal cutoff value for SWV in the differentiation of benign from malignant masses was determined. RESULTS The final diagnoses were 26 benign and 40 malignant masses. The SWVs were statistically higher for pancreatic malignant masses compared with those for benign masses (3.30±1.22 m/s versus 1.31±0.64 m/s; P < 0.001). The area under the curve (AUC, 0.93) was obtained. When the best cut-off point was 1.77 m/s, the accuracy, sensitivity, and specificity were 92.4%, 90.0%, and 96.2%, respectively. CONCLUSIONS Quantitative SWE is a novel technique that can be considered as a quantitative and objective diagnostic tool for prediction of pancreas malignancy.
Collapse
Affiliation(s)
- Juan Xie
- Department of Medical Ultrasound, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hui Liu
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wen-Sheng Liu
- Department of Pancreas Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jia-Wei Li
- Department of Medical Ultrasound, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Taylor E, Zhou J, Lindsay P, Foltz W, Cheung M, Siddiqui I, Hosni A, Amir AE, Kim J, Hill RP, Jaffray DA, Hedley DW. Quantifying Reoxygenation in Pancreatic Cancer During Stereotactic Body Radiotherapy. Sci Rep 2020; 10:1638. [PMID: 32005829 PMCID: PMC6994660 DOI: 10.1038/s41598-019-57364-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/18/2019] [Indexed: 02/05/2023] Open
Abstract
Hypoxia, the state of low oxygenation that often arises in solid tumours due to their high metabolism and irregular vasculature, is a major contributor to the resistance of tumours to radiation therapy (RT) and other treatments. Conventional RT extends treatment over several weeks or more, and nominally allows time for oxygen levels to increase ("reoxygenation") as cancer cells are killed by RT, mitigating the impact of hypoxia. Recent advances in RT have led to an increase in the use stereotactic body radiotherapy (SBRT), which delivers high doses in five or fewer fractions. For cancers such as pancreatic adenocarcinoma for which hypoxia varies significantly between patients, SBRT might not be optimal, depending on the extent to which reoxygenation occurs during its short duration. We used fluoro-5-deoxy-α-D-arabinofuranosyl)-2-nitroimidazole positron-emission tomography (FAZA-PET) imaging to quantify hypoxia before and after 5-fraction SBRT delivered to patient-derived pancreatic cancer xenografts orthotopically implanted in mice. An imaging technique using only the pre-treatment FAZA-PET scan and repeat dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) scans throughout treatment was able to predict the change in hypoxia. Our results support the further testing of this technique for imaging of reoxygenation in the clinic.
Collapse
Affiliation(s)
- Edward Taylor
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, Ontario, M5G 2M9, Canada
| | - Jitao Zhou
- Department of Abdominal Oncology, Cancer Center and Laboratory of Signal Transduction and Molecular Targeting Therapy, West China Hospital, Sichuan University, Chengdu, China
| | - Patricia Lindsay
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, Ontario, M5G 2M9, Canada
| | - Warren Foltz
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, Ontario, M5G 2M9, Canada
| | - May Cheung
- Ontario Cancer Institute, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, Ontario, M5G 2M9, Canada
| | - Iram Siddiqui
- Department of Pathology, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada
| | - Ali Hosni
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, Ontario, M5G 2M9, Canada
| | - Ahmed El Amir
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, Ontario, M5G 2M9, Canada
| | - John Kim
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, Ontario, M5G 2M9, Canada
| | - Richard P Hill
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, Ontario, M5G 2M9, Canada
- Ontario Cancer Institute, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, Ontario, M5G 2M9, Canada
| | - David A Jaffray
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, Ontario, M5G 2M9, Canada
| | - David W Hedley
- Ontario Cancer Institute, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, Ontario, M5G 2M9, Canada.
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, Ontario, M5G 2M9, Canada.
| |
Collapse
|
16
|
Wang N, Gaddam S, Wang L, Xie Y, Fan Z, Yang W, Tuli R, Lo S, Hendifar A, Pandol S, Christodoulou AG, Li D. Six-dimensional quantitative DCE MR Multitasking of the entire abdomen: Method and application to pancreatic ductal adenocarcinoma. Magn Reson Med 2020; 84:928-948. [PMID: 31961967 DOI: 10.1002/mrm.28167] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/09/2019] [Accepted: 12/18/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE To develop a quantitative DCE MRI technique enabling entire-abdomen coverage, free-breathing acquisition, 1-second temporal resolution, and T1 -based quantification of contrast agent concentration and kinetic modeling for the characterization of pancreatic ductal adenocarcinoma (PDAC). METHODS Segmented FLASH readouts following saturation-recovery preparation with randomized 3D Cartesian undersampling was used for incoherent data acquisition. MR Multitasking was used to reconstruct 6-dimensional images with 3 spatial dimensions, 1 T1 recovery dimension for dynamic T1 quantification, 1 respiratory dimension to resolve respiratory motion, and 1 DCE time dimension to capture the contrast kinetics. Sixteen healthy subjects and 14 patients with pathologically confirmed PDAC were recruited for the in vivo studies, and kinetic parameters vp , Ktrans , ve , and Kep were evaluated for each subject. Intersession repeatability of Multitasking DCE was assessed in 8 repeat healthy subjects. One-way unbalanced analysis of variance was performed between control and patient groups. RESULTS In vivo studies demonstrated that vp , Ktrans , and Kep of PDAC were significantly lower compared with nontumoral regions in the patient group (P = .002, .003, .004, respectively) and normal pancreas in the control group (P = .011, <.001, <.001, respectively), while ve was significantly higher than nontumoral regions (P < .001) and healthy pancreas (P < .001). The kinetic parameters showed good in vivo repeatability (interclass correlation coefficient: vp , 0.95; Ktrans , 0.98; ve , 0.96; Kep , 0.99). CONCLUSION The proposed Multitasking DCE is promising for the quantification of vascular properties of PDAC. Quantitative DCE parameters were repeatable in vivo and showed significant differences between normal pancreas and both tumor and nontumoral regions in patients with PDAC.
Collapse
Affiliation(s)
- Nan Wang
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, California
| | - Srinivas Gaddam
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, California
| | - Lixia Wang
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Yibin Xie
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Zhaoyang Fan
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, California
| | - Wensha Yang
- Department of Clinical Radiation Oncology, University of Southern California, Los Angeles, California
| | - Richard Tuli
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Simon Lo
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, California
| | - Andrew Hendifar
- Department of Gastrointestinal Malignancies, Cedars-Sinai Medical Center, Los Angeles, California
| | - Stephen Pandol
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, California
| | | | - Debiao Li
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, California
| |
Collapse
|
17
|
Dynamic contrast-enhanced perfusion parameters in ovarian cancer: Good accuracy in identifying high HIF-1α expression. PLoS One 2019; 14:e0221340. [PMID: 31437208 DOI: 10.1371/journal.pone.0221340] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/05/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Hypoxia significantly influences treatment response and clinical outcome in solid tumors. A noninvasive marker for hypoxia will help physicians in treatment planning and encourage the efficient use of hypoxia targeted therapies. The purpose of this study was to investigate whether pharmacokinetic dynamic contrast-enhanced (DCE) perfusion parameters are associated with a specific marker of hypoxia, hypoxia-inducible factor 1 alpha (HIF-1α) in ovarian cancer (OC). MATERIALS AND METHODS Thirty-eight patients with primary OC were enrolled in this prospective study approved by the local ethical committee. Patients underwent dynamic gadolinium-enhanced 3.0 T MRI as part of their staging investigations. Pharmacokinetic perfusion parameters, including a rate constant for transfer of contrast agent from plasma to extravascular extracellular space (EES) (Ktrans) and a rate constant from EES to plasma (Kep), were measured by drawing two types of regions of interest (ROIs): a large solid lesion (L-ROI) and a solid, most enhancing small area (S-ROI) (NordicICE platform). Tissue samples for immunohistochemical analysis were collected during surgery. Kruskal-Wallis, Mann-Whitney U and Chi-square tests were used in statistical analyses. Receiver Operating Characteristic curve analyzes were done for DCE parameters to discriminate high HIF-1α expression. RESULTS Pharmacokinetic perfusion parameters Ktrans and Kep were inversely associated with HIF-1α expression (Ktrans L-ROI P = 0.021; Ktrans S-ROI P = 0.018 and Kep L-ROI P = 0.032; Kep S-ROI P = 0.033). Ktrans and Kep showed good accuracy in identifying high HIF-1α expression (AUC = 0.832 Ktrans L-ROI; 0.840 Ktrans S-ROI; 0.808 Kep L-ROI and 0.808 Kep L-ROI). CONCLUSION This preliminary study demonstrated that pharmacokinetic DCE-MRI perfusion parameters are associated with the hypoxia specific marker, HIF-1α in OC. DCE-MRI may be a useful supplementary tool in the characterization of OC tumors in a staging investigation.
Collapse
|
18
|
Abstract
Cancers are not composed merely of cancer cells alone; instead, they are complex 'ecosystems' comprising many different cell types and noncellular factors. The tumour stroma is a critical component of the tumour microenvironment, where it has crucial roles in tumour initiation, progression, and metastasis. Most anticancer therapies target cancer cells specifically, but the tumour stroma can promote the resistance of cancer cells to such therapies, eventually resulting in fatal disease. Therefore, novel treatment strategies should combine anticancer and antistromal agents. Herein, we provide an overview of the advances in understanding the complex cancer cell-tumour stroma interactions and discuss how this knowledge can result in more effective therapeutic strategies, which might ultimately improve patient outcomes.
Collapse
|
19
|
Tao R, Ager B, Lloyd S, Torgeson A, Denney M, Gaffney D, Kharofa J, Lin SH, Koong AC, Anzai Y, Hoffman JM. Hypoxia imaging in upper gastrointestinal tumors and application to radiation therapy. J Gastrointest Oncol 2018; 9:1044-1053. [PMID: 30603123 DOI: 10.21037/jgo.2018.09.15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Survival for upper gastrointestinal tumors remains poor, likely in part due to treatment resistance associated with intratumoral hypoxia. In this review, we highlight advances in nuclear medicine imaging that allow for characterization of in vivo tumor hypoxia in esophageal, pancreatic, and liver cancers. Strategies for adaptive radiotherapy in upper gastrointestinal tumors are proposed that would apply information gained through hypoxia imaging to the creation of personalized radiotherapy treatment plans able to overcome hypoxia-induced treatment resistance, minimize treatment-related toxicities, and improve patient outcomes.
Collapse
Affiliation(s)
- Randa Tao
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Bryan Ager
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Shane Lloyd
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Anna Torgeson
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Michelle Denney
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - David Gaffney
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Jordan Kharofa
- Department of Radiation Oncology, University of Cincinnati, Cincinnati, OH, USA
| | - Steven H Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Albert C Koong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yoshimi Anzai
- Department of Radiology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - John M Hoffman
- Center for Quantitative Cancer Imaging, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
20
|
Wegner CS, Hauge A, Simonsen TG, Gaustad JV, Andersen LMK, Rofstad EK. DCE-MRI of Sunitinib-Induced Changes in Tumor Microvasculature and Hypoxia: A Study of Pancreatic Ductal Adenocarcinoma Xenografts. Neoplasia 2018; 20:734-744. [PMID: 29886124 PMCID: PMC6041378 DOI: 10.1016/j.neo.2018.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/16/2018] [Accepted: 05/21/2018] [Indexed: 12/14/2022]
Abstract
The purpose of this study was dual: to investigate (a) whether sunitinib may induce changes in tumor microvasculature and hypoxia in pancreatic ductal adenocarcinoma (PDAC) and (b) whether any changes can be detected by DCE-MRI. Sunitinib-treated and untreated control tumors of two PDAC xenograft models (BxPC-3 and Panc-1) were subjected to DCE-MRI before the imaged tumors were prepared for quantitative analysis of immunohistochemical preparations. Pimonidazole was used as a hypoxia marker, and fraction of hypoxic tissue (HFPim), density of CD31-positive microvessels (MVDCD31), and density of αSMA-positive microvessels (MVDαSMA) were measured. Parametric images of Ktrans and ve were derived from the DCE-MRI data by using the Tofts pharmacokinetic model. BxPC-3 tumors showed increased HFPim, decreased MVDCD31, unchanged MVDαSMA, and increased vessel maturation index (VMI = MVDαSMA/MVDCD31) after sunitinib treatment. The increase in VMI was seen because sunitinib induced selective pruning rather than maturation of αSMA-negative microvessels. Even though the microvessels in sunitinib-treated tumors were less abnormal than those in untreated tumors, this microvessel normalization did not improve the function of the microvascular network or normalize the tumor microenvironment. In Panc-1 tumors, HFPim, MVDCD31, MVDαSMA, and VMI were unchanged after sunitinib treatment. Median Ktrans increased with increasing MVDCD31 and decreased with increasing HFPim, and the correlations were similar for treated and untreated BXPC-3 and Panc-1 tumors. These observations suggest that sunitinib may induce significant changes in the microenvironment of PDACs, and furthermore, that Ktrans may be an adequate measure of tumor vascular density and hypoxia in untreated as well as sunitinib-treated PDACs.
Collapse
Key Words
- αsma, α smooth muscle actin
- angpt/tie, angiopoietin/tyrosine kinase with immunoglobulin-like and epidermal growth factor-like domains
- dce-mri, dynamic contrast-enhanced magnetic resonance imaging
- fov, field of view
- he, hematoxylin and eosin
- hf, hypoxic fraction
- il-8/nf-κb, interleukin-8/nuclear factor-κb
- ktrans, volume transfer constant
- mvd, microvessel density
- pdac, pancreatic ductal adenocarcinoma
- roi, region of interest
- te, echo time
- tr, repetition time
- ve, fractional distribution volume
- vegf/vegf-r, vascular endothelial growth factor/vegf-receptor
Collapse
Affiliation(s)
- Catherine S Wegner
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Anette Hauge
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Trude G Simonsen
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Jon-Vidar Gaustad
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Lise Mari K Andersen
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Einar K Rofstad
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
21
|
Klaassen R, Gurney-Champion OJ, Wilmink JW, Besselink MG, Engelbrecht MRW, Stoker J, Nederveen AJ, van Laarhoven HWM. Repeatability and correlations of dynamic contrast enhanced and T2* MRI in patients with advanced pancreatic ductal adenocarcinoma. Magn Reson Imaging 2018; 50:1-9. [PMID: 29476781 DOI: 10.1016/j.mri.2018.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 02/15/2018] [Accepted: 02/18/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND In current oncological practice of pancreatic ductal adenocarcinoma (PDAC), there is a great demand for response predictors and markers for early treatment evaluation. In this study, we investigated the repeatability and the interaction of dynamic contrast enhanced (DCE) and T2* MRI in patients with advanced PDAC to enable for such evaluation using these techniques. MATERIALS & METHODS 15 PDAC patients underwent two DCE, T2* and anatomical 3 T MRI sessions before start of treatment. Parametric maps were calculated for the transfer constant (Ktrans), rate constant (kep), extracellular extravascular space (ve) and perfusion fraction (vp). Quantitative R2* (1/T2*) maps were obtained from the multi-echo T2* images. Differences between normal and cancerous pancreas were determined using a Wilcoxon matched pairs test. Repeatability was obtained using Bland-Altman analysis and relations between DCE and T2*/R2* were observed by Spearman correlation and voxel-wise binned plots of tumor voxels. RESULTS PDAC Ktrans (p = 0.007), kep (p < 0.001), vp (p = 0.035) were lower and ve (p < 0.001) was higher compared to normal pancreas. The coefficient of variation between sessions was 21.8% for Ktrans, 9.9% for kep, 19.3% for ve, 18.2% for vp and 18.7% for R2*. Variation between patients ranged from 20.2% for kep to 43.6% for Ktrans. In the tumor both Ktrans (r = 0.56, p = 0.030) and ve (r = 0.54, p = 0.037) showed a positive correlation with T2*. Voxel wise analysis showed a steep increase in R2* for tumor voxels with lower Ktrans and ve. CONCLUSION We showed good repeatability of DCE and T2* related MRI parameters in advanced PDAC patients. Furthermore, we have illustrated the relation of DCE Ktrans and ve with tissue T2* and R2* indicating substantial value of these parameters for detecting tumor hypoxia in future studies. The results from our study pave the way for further response evaluation studies and patient selection based on DCE and T2* parameters.
Collapse
Affiliation(s)
- Remy Klaassen
- Cancer Center Amsterdam, Department of Medical Oncology, Academic Medical Center, Amsterdam, The Netherlands; Cancer Center Amsterdam, LEXOR (Laboratory for Experimental Oncology and Radiobiology), Academic Medical Center, Amsterdam, The Netherlands.
| | - Oliver J Gurney-Champion
- Department of Radiology and Nuclear Medicine, Academic Medical Center, Amsterdam, The Netherlands; Department of Radiation Oncology, Academic Medical Center, Amsterdam, The Netherlands
| | - Johanna W Wilmink
- Cancer Center Amsterdam, Department of Medical Oncology, Academic Medical Center, Amsterdam, The Netherlands
| | - Marc G Besselink
- Department of Surgery, Academic Medical Center, Amsterdam, The Netherlands
| | - Marc R W Engelbrecht
- Department of Radiology and Nuclear Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Jaap Stoker
- Department of Radiology and Nuclear Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Aart J Nederveen
- Department of Radiology and Nuclear Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Hanneke W M van Laarhoven
- Cancer Center Amsterdam, Department of Medical Oncology, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Lee HJ, Kadbi M, Bosco G, Ibbott GS. Real-time volumetric relative dosimetry for magnetic resonance-image-guided radiation therapy (MR-IGRT). Phys Med Biol 2018; 63:045021. [PMID: 29384731 DOI: 10.1088/1361-6560/aaac22] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The integration of magnetic resonance imaging (MRI) with linear accelerators (linac) has enabled the use of 3D MR-visible gel dosimeters for real-time verification of volumetric dose distributions. Several iron-based radiochromic 3D gels were created in-house then imaged and irradiated in a pre-clinical 1.5 T-7 MV MR-Linac. MR images were acquired using a range of balanced-fast field echo (b-FFE) sequences during irradiation to assess the contrast and dose response in irradiated regions and to minimize the presence of MR artifacts. Out of four radiochromic 3D gel formulations, the FOX 3D gel was found to provide superior MR contrast in the irradiated regions. The FOX gels responded linearly with respect to real-time dose and the signal remained stable post-irradiation for at least 20 min. The response of the FOX gel also was found to be unaffected by the radiofrequency and gradient fields created by the b-FFE sequence during irradiation. A reusable version of the FOX gel was used for b-FFE sequence optimization to reduce artifacts by increasing the number of averages at the expense of temporal resolution. Regardless of the real-time MR sequence used, the FOX 3D gels responded linearly to dose with minimal magnetic field effects due to the strong 1.5 T field or gradient fields present during imaging. These gels can easily be made in-house using non-reusable and reusable formulations depending on the needs of the clinic, and the results of this study encourage further applications of 3D gels for MR-IGRT applications.
Collapse
Affiliation(s)
- Hannah J Lee
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America. The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States of America. The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, TX 77030, United States of America
| | | | | | | |
Collapse
|