1
|
Fracchiolla F, Widesott L, Righetto R, Algranati C, Amelio D, Trianni A, Sterpin E, Lorentini S. Development and clinical application of a probabilistic robustness evaluation tool for pencil beam scanning proton therapy treatments. Phys Med 2025; 131:104938. [PMID: 39946953 DOI: 10.1016/j.ejmp.2025.104938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/22/2025] [Accepted: 02/10/2025] [Indexed: 03/09/2025] Open
Abstract
PURPOSE to implement a probabilistic-Robustness-Evaluation (pRE) tool for proton therapy treatments and to correlate these results with the worst-case approach (wRE) implemented in commercial TPS for clinical applications. MATERIALS AND METHODS 12 skull base patients were planned with a robust multiple field optimization (MFO) approach. 10 years of machine QA were analysed to derive the uncertainties of our treatment system (beam delivery and patient positioning system). For a large cohort of patients, post-treatment imaging was acquired to determine the intra-fraction uncertainty. The pRE, considered explicitly all these uncertainties, the fractionation and range uncertainty. For each plan a wRE with different combinations of range and setup uncertainties was simulated. wRE results were then compared, in terms of target coverage and OAR dose limits, with pRE results. RESULTS 43,400 dose distributions were analysed. pRE simulations lasted 18.6 h (±11.5 h). The results showed that the combination of wRE uncertainty parameters that surrogated the best pRE results with a confidence level of 95 % were (1.0 mm/3.5 %). The median OAR's dose indexes difference (D1/D1cc) between pRE and wRE was 1.90 (±1.49) GyRBE, while for target D98 and D95 it was -0.66(±0.95) and -0.67 (±0.52) GyRBE, respectively. CONCLUSION A tool able to explicitly simulate the source of treatment uncertainties and the effect of the fractionation was implemented to have a more realistic evaluation of plan robustness. This tool was used to find the best wRE parameters that surrogate the pRE results while maintaining clinically acceptable timing. These results are now used in our clinical workflow.
Collapse
Affiliation(s)
| | - Lamberto Widesott
- U.O. Fisica Sanitaria Trento Hospital APSS Proton Therapy Department Trento Italy
| | - Roberto Righetto
- U.O. Fisica Sanitaria Trento Hospital APSS Proton Therapy Department Trento Italy
| | - Carlo Algranati
- U.O. Fisica Sanitaria Trento Hospital APSS Proton Therapy Department Trento Italy
| | - Dante Amelio
- U.O. Protonterapia Trento Hospital APSS Proton Therapy Department Trento Italy
| | - Annalisa Trianni
- U.O. Fisica Sanitaria Trento Hospital APSS Proton Therapy Department Trento Italy
| | - Edmond Sterpin
- KU Leuven Department of Oncology Laboratory of Experimental Radiotherapy Leuven Belgium; Université catholique de Louvain Center of Molecular Imaging Radiotherapy and Oncology (MIRO) Brussels Belgium; Particle Therapy Interuniversity Center Leuven PARTICLE Leuven Belgium
| | - Stefano Lorentini
- U.O. Fisica Sanitaria Trento Hospital APSS Proton Therapy Department Trento Italy
| |
Collapse
|
2
|
Wagenaar D, Langendijk JA, Both S. Linear approximation of variable relative biological effectiveness models for proton therapy. Phys Imaging Radiat Oncol 2025; 33:100691. [PMID: 39885905 PMCID: PMC11780161 DOI: 10.1016/j.phro.2024.100691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 02/01/2025] Open
Abstract
The McNamara (MCN) and Wedenberg (WED) RBE weighted dose (DRBE), dose and dose-weighted average LET (LETd) were calculated in twenty brain cancer patients. A linear approximation was made for each RBE model to give best agreement to clinically relevant dosimetric parameters. Additional evaluations were done on twenty head and neck and twenty breast cancer patients.The R2 of the fits was ≥0.94 and ≥0.91 for MCN and WED respectively for α/β values ≥1.0 Gy. The graphs derived in this work can be used to convert RBE-LET slopes derived from clinical data to α/β values in the MCN or WED models.
Collapse
Affiliation(s)
- Dirk Wagenaar
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Johannes A. Langendijk
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Stefan Both
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
3
|
Sterpin E, Widesott L, Poels K, Hoogeman M, Korevaar EW, Lowe M, Molinelli S, Fracchiolla F. Robustness evaluation of pencil beam scanning proton therapy treatment planning: A systematic review. Radiother Oncol 2024; 197:110365. [PMID: 38830538 DOI: 10.1016/j.radonc.2024.110365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 04/30/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
Compared to conventional radiotherapy using X-rays, proton therapy, in principle, allows better conformity of the dose distribution to target volumes, at the cost of greater sensitivity to physical, anatomical, and positioning uncertainties. Robust planning, both in terms of plan optimization and evaluation, has gained high visibility in publications on the subject and is part of clinical practice in many centers. However, there is currently no consensus on the methods and parameters to be used for robust optimization or robustness evaluation. We propose to overcome this deficiency by following the modified Delphi consensus method. This method first requires a systematic review of the literature. We performed this review using the PubMed and Web Of Science databases, via two different experts. Potential conflicts were resolved by a third expert. We then explored the different methods before focusing on clinical studies that evaluate robustness on a significant number of patients. Many robustness assessment methods are proposed in the literature. Some are more successful than others and their implementation varies between centers. Moreover, they are not all statistically or mathematically equivalent. The most sophisticated and rigorous methods have seen more limited application due to the difficulty of their implementation and their lack of widespread availability.
Collapse
Affiliation(s)
- E Sterpin
- KU Leuven - Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium; UCLouvain - Institution de Recherche Expérimentale et Clinique, Center of Molecular Imaging Radiotherapy and Oncology (MIRO), Brussels, Belgium; Particle Therapy Interuniversity Center Leuven - PARTICLE, Leuven, Belgium.
| | - L Widesott
- Proton Therapy Center - UO Fisica Sanitaria, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - K Poels
- Particle Therapy Interuniversity Center Leuven - PARTICLE, Leuven, Belgium; UZ Leuven, Department of Radiation Oncology, Leuven, Belgium
| | - M Hoogeman
- Erasmus Medical Center, Cancer Institute, Department of Radiotherapy, Rotterdam, the Netherlands; HollandPTC, Delft, the Netherlands
| | - E W Korevaar
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, the Netherlands
| | - M Lowe
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - S Molinelli
- Fondazione CNAO - Medical Physics Unit, Pavia, Italy
| | - F Fracchiolla
- Proton Therapy Center - UO Fisica Sanitaria, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| |
Collapse
|
4
|
Rana S, Manthala Padannayil N, Tran L, Rosenfeld AB, Saeed H, Kasper M. Quantifying the Dosimetric Impact of Proton Range Uncertainties on RBE-Weighted Dose Distributions in Intensity-Modulated Proton Therapy for Bilateral Head and Neck Cancer. Curr Oncol 2024; 31:3690-3697. [PMID: 39057144 PMCID: PMC11275331 DOI: 10.3390/curroncol31070272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND In current clinical practice, intensity-modulated proton therapy (IMPT) head and neck cancer (HNC) plans are generated using a constant relative biological effectiveness (cRBE) of 1.1. The primary goal of this study was to explore the dosimetric impact of proton range uncertainties on RBE-weighted dose (RWD) distributions using a variable RBE (vRBE) model in the context of bilateral HNC IMPT plans. METHODS The current study included the computed tomography (CT) datasets of ten bilateral HNC patients who had undergone photon therapy. Each patient's plan was generated using three IMPT beams to deliver doses to the CTV_High and CTV_Low for doses of 70 Gy(RBE) and 54 Gy(RBE), respectively, in 35 fractions through a simultaneous integrated boost (SIB) technique. Each nominal plan calculated with a cRBE of 1.1 was subjected to the range uncertainties of ±3%. The McNamara vRBE model was used for RWD calculations. For each patient, the differences in dosimetric metrices between the RWD and nominal dose distributions were compared. RESULTS The constrictor muscles, oral cavity, parotids, larynx, thyroid, and esophagus showed average differences in mean dose (Dmean) values up to 6.91 Gy(RBE), indicating the impact of proton range uncertainties on RWD distributions. Similarly, the brachial plexus, brain, brainstem, spinal cord, and mandible showed varying degrees of the average differences in maximum dose (Dmax) values (2.78-10.75 Gy(RBE)). The Dmean and Dmax to the CTV from RWD distributions were within ±2% of the dosimetric results in nominal plans. CONCLUSION The consistent trend of higher mean and maximum doses to the OARs with the McNamara vRBE model compared to cRBE model highlighted the need for consideration of proton range uncertainties while evaluating OAR doses in bilateral HNC IMPT plans.
Collapse
Affiliation(s)
- Suresh Rana
- Department of Radiation Oncology, Lynn Cancer Institute, Boca Raton Regional Hospital, Baptist Health South Florida, Boca Raton, FL 33486, USA
- Department of Radiation Oncology, Florida International University, Miami, FL 33199, USA
| | - Noufal Manthala Padannayil
- Department of Radiation Oncology, Lynn Cancer Institute, Boca Raton Regional Hospital, Baptist Health South Florida, Boca Raton, FL 33486, USA
| | - Linh Tran
- Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, NSW 2522, Australia
| | - Anatoly B. Rosenfeld
- Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, NSW 2522, Australia
| | - Hina Saeed
- Department of Radiation Oncology, Lynn Cancer Institute, Boca Raton Regional Hospital, Baptist Health South Florida, Boca Raton, FL 33486, USA
- Department of Radiation Oncology, Florida International University, Miami, FL 33199, USA
| | - Michael Kasper
- Department of Radiation Oncology, Lynn Cancer Institute, Boca Raton Regional Hospital, Baptist Health South Florida, Boca Raton, FL 33486, USA
| |
Collapse
|
5
|
Iglesias S, Munarriz PM, Saceda J, Catalán-Uribarrena G, Miranda P, Vidal JM, Fustero D, Giménez-Pando J, Rius F. Multicentric and collaborative study of Spanish neurosurgical management of pediatric craniopharyngiomas: S-PedCPG.co. NEUROCIRUGIA (ENGLISH EDITION) 2023; 34:67-74. [PMID: 36754754 DOI: 10.1016/j.neucie.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/19/2022] [Indexed: 02/08/2023]
Abstract
PURPOSE To present a descriptive analysis of pediatric craniopharyngiomas (PedCPG) treated in various Spanish hospitals, defining factors related to recurrence and performing a critical analysis of the results. METHODS We undertook a multicenter retrospective review of PedCPG treated between 2000 and 2017. Data collected included epidemiological variables, clinical and radiological characteristics, goal of first surgery, rate of recurrence and its approach, adjuvant treatment, complications and permanent morbidity. Associations were studied between progression and number of progressions and independent variables. RESULTS The study involved 69 children from 8 Spanish hospitals. Most of the tumors invaded several intracranial compartments at diagnosis, with the hypothalamus involved in 41.3% of cases. The first treatment strategy was usually gross total resection (GTR) (71%), with some patients treated with radiotherapy or intracystic chemotherapy. The progression rate after first surgery was 53% in a mean follow-up of 88.2 months (range 7-357). In the GTR group 38.8% of tumors recurred, 40% in the group of subtotal resection or biopsy and 93.3% in the cyst fenestration±Ommaya reservoir group. Mortality was 7.2%. Follow-up period, size of the tumor and goal of first surgery were significantly related with progression. CONCLUSIONS Our results in terms of disease control, hormonal or visual impairment and mortality were acceptable, but there are several areas for improvement. Our short-term goals should be to create a national register of PedCPG, reach a consensus about a treatment algorithm, and improve diagnosis of hypothalamic dysfunction to avoid preventable morbidity.
Collapse
Affiliation(s)
- Sara Iglesias
- Neurosurgery Department, Hospital Regional Universitario de Málaga, Málaga, Spain.
| | - Pablo M Munarriz
- Neurosurgery Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Javier Saceda
- Neurosurgery Department, Hospital Universitario La Paz, Madrid, Spain
| | | | - Pablo Miranda
- Neurosurgery Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Juana M Vidal
- Neurosurgery Department, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - David Fustero
- Neurosurgery Department, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | | | | |
Collapse
|
6
|
Ramesh P, Lyu Q, Gu W, Ruan D, Sheng K. Reformulated McNamara RBE-weighted beam orientation optimization for intensity modulated proton therapy. Med Phys 2022; 49:2136-2149. [PMID: 35181892 PMCID: PMC9894336 DOI: 10.1002/mp.15552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 02/01/2022] [Accepted: 02/13/2022] [Indexed: 02/04/2023] Open
Abstract
PURPOSE Empirical relative biological effectiveness (RBE) models have been used to estimate the biological dose in proton therapy but do not adequately capture the factors influencing RBE values for treatment planning. We reformulate the McNamara RBE model such that it can be added as a linear biological dose fidelity term within our previously developed sensitivity-regularized and heterogeneity-weighted beam orientation optimization (SHBOO) framework. METHODS Based on our SHBOO framework, we formulated the biological optimization problem to minimize total McNamara RBE dose to OARs. We solve this problem using two optimization algorithms: FISTA (McNam-FISTA) and Chambolle-Pock (McNam-CP). We compare their performances with a physical dose optimizer assuming RBE = 1.1 in all structures (PHYS-FISTA) and an LET-weighted dose model (LET-FISTA). Three head and neck patients were planned with the four techniques and compared on dosimetry and robustness. RESULTS Compared to Phys-FISTA, McNam-CP was able to match CTV [HI, Dmax, D95%, D98%] by [0.00, 0.05%, 1.4%, 0.8%]. McNam-FISTA and McNam-CP were able to significantly improve overall OAR [Dmean, Dmax] by an average of [36.1%,26.4%] and [29.6%, 20.3%], respectively. Regarding CTV robustness, worst [Dmax, V95%, D95%, D98%] improvement of [-6.6%, 6.2%, 6.0%, 4.8%] was reported for McNam-FISTA and [2.7%, 2.7%, 5.3%, -4.3%] for McNam-CP under combinations of range and setup uncertainties. For OARs, worst [Dmax, Dmean] were improved by McNam-FISTA and McNam-CP by an average of [25.0%, 19.2%] and [29.5%, 36.5%], respectively. McNam-FISTA considerably improved dosimetry and CTV robustness compared to LET-FISTA, which achieved better worst-case OAR doses. CONCLUSION The four optimization techniques deliver comparable biological doses for the head and neck cases. Besides modest CTV coverage and robustness improvement, OAR biological dose and robustness were substantially improved with both McNam-FISTA and McNam-CP, showing potential benefit for directly incorporating McNamara RBE in proton treatment planning.
Collapse
Affiliation(s)
- Pavitra Ramesh
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Qihui Lyu
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Wenbo Gu
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dan Ruan
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ke Sheng
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
7
|
Multicentric and collaborative study of Spanish neurosurgical management of pediatric craniopharyngiomas: S-PedCPG.co. Neurocirugia (Astur) 2022. [DOI: 10.1016/j.neucir.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Smith EAK, Winterhalter C, Underwood TSA, Aitkenhead AH, Richardson JC, Merchant MJ, Kirkby NF, Kirby KJ, Mackay RI. A Monte Carlo study of different LET definitions and calculation parameters for proton beam therapy. Biomed Phys Eng Express 2021; 8. [PMID: 34874308 DOI: 10.1088/2057-1976/ac3f50] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/02/2021] [Indexed: 12/19/2022]
Abstract
The strongin vitroevidence that proton Relative Biological Effectiveness (RBE) varies with Linear Energy Transfer (LET) has led to an interest in applying LET within treatment planning. However, there is a lack of consensus on LET definition, Monte Carlo (MC) parameters or clinical methodology. This work aims to investigate how common variations of LET definition may affect potential clinical applications. MC simulations (GATE/GEANT4) were used to calculate absorbed dose and different types of LET for a simple Spread Out Bragg Peak (SOBP) and for four clinical PBT plans covering a range of tumour sites. Variations in the following LET calculation methods were considered: (i) averaging (dose-averaged LET (LETd) & track-averaged LET); (ii) scoring (LETdto water, to medium and to mass density); (iii) particle inclusion (LETdto all protons, to primary protons and to particles); (iv) MC settings (hit type and Maximum Step Size (MSS)). LET distributions were compared using: qualitative comparison, LET Volume Histograms (LVHs), single value criteria (maximum and mean values) and optimised LET-weighted dose models. Substantial differences were found between LET values in averaging, scoring and particle type. These differences depended on the methodology, but for one patient a difference of ∼100% was observed between the maximum LETdfor all particles and maximum LETdfor all protons within the brainstem in the high isodose region (4 keVμm-1and 8 keVμm-1respectively). An RBE model using LETdincluding heavier ions was found to predict substantially different LET-weighted dose compared to those using other LET definitions. In conclusion, the selection of LET definition may affect the results of clinical metrics considered in treatment planning and the results of an RBE model. The authors' advocate for the scoring of dose-averaged LET to water for primary and secondary protons using a random hit type and automated MSS.
Collapse
Affiliation(s)
- Edward A K Smith
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.,Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Carla Winterhalter
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.,The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Tracy S A Underwood
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.,The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Adam H Aitkenhead
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.,Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Jenny C Richardson
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.,Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Michael J Merchant
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.,The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Norman F Kirkby
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.,The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Karen J Kirby
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.,The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Ranald I Mackay
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.,Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
9
|
Garbacz M, Cordoni FG, Durante M, Gajewski J, Kisielewicz K, Krah N, Kopeć R, Olko P, Patera V, Rinaldi I, Rydygier M, Schiavi A, Scifoni E, Skóra T, Tommasino F, Rucinski A. Study of relationship between dose, LET and the risk of brain necrosis after proton therapy for skull base tumors. Radiother Oncol 2021; 163:143-149. [PMID: 34461183 DOI: 10.1016/j.radonc.2021.08.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 07/27/2021] [Accepted: 08/21/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE We investigated the relationship between RBE-weighted dose (DRBE) calculated with constant (cRBE) and variable RBE (vRBE), dose-averaged linear energy transfer (LETd) and the risk of radiographic changes in skull base patients treated with protons. METHODS Clinical treatment plans of 45 patients were recalculated with Monte Carlo tool FRED. Radiographic changes (i.e. edema and/or necrosis) were identified by MRI. Dosimetric parameters for cRBE and vRBE were computed. Biological margin extension and voxel-based analysis were employed looking for association of DRBE(vRBE) and LETd with brain edema and/or necrosis. RESULTS When using vRBE, Dmax in the brain was above the highest dose limits for 38% of patients, while such limit was never exceeded assuming cRBE. Similar values of Dmax were observed in necrotic regions, brain and temporal lobes. Most of the brain necrosis was in proximity to the PTV. The voxel-based analysis did not show evidence of an association with high LETd values. CONCLUSIONS When looking at standard dosimetric parameters, the higher dose associated with vRBE seems to be responsible for an enhanced risk of radiographic changes. However, as revealed by a voxel-based analysis, the large inter-patient variability hinders the identification of a clear effect for high LETd.
Collapse
Affiliation(s)
- Magdalena Garbacz
- Institute of Nuclear Physics Polish Academy of Sciences, 31342 Krakow, Poland.
| | - Francesco Giuseppe Cordoni
- University of Verona, Department of Computer Science, Verona, Italy; Trento Institute for Fundamental Physics and Applications, TIFPA-INFN, Trento, Italy
| | - Marco Durante
- GSI Helmholtzzentrum fur Schwerionenforschung, Darmstadt, Germany; The Technical University of Darmstadt, Germany
| | - Jan Gajewski
- Institute of Nuclear Physics Polish Academy of Sciences, 31342 Krakow, Poland
| | - Kamil Kisielewicz
- National Oncology Institute, National Research Institute, Krakow Branch, Krakow, Poland
| | - Nils Krah
- University of Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1, Centre Léon Bérard, France; University of Lyon, Université Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, UMR 5822, Villeurbanne, France
| | - Renata Kopeć
- Institute of Nuclear Physics Polish Academy of Sciences, 31342 Krakow, Poland
| | - Paweł Olko
- Institute of Nuclear Physics Polish Academy of Sciences, 31342 Krakow, Poland
| | - Vincenzo Patera
- INFN - Section of Rome, Italy; Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Italy
| | - Ilaria Rinaldi
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Marzena Rydygier
- Institute of Nuclear Physics Polish Academy of Sciences, 31342 Krakow, Poland
| | - Angelo Schiavi
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Italy
| | - Emanuele Scifoni
- Trento Institute for Fundamental Physics and Applications, TIFPA-INFN, Trento, Italy
| | - Tomasz Skóra
- National Oncology Institute, National Research Institute, Krakow Branch, Krakow, Poland
| | - Francesco Tommasino
- Trento Institute for Fundamental Physics and Applications, TIFPA-INFN, Trento, Italy; Department of Physics, University of Trento, Trento, Italy
| | - Antoni Rucinski
- Institute of Nuclear Physics Polish Academy of Sciences, 31342 Krakow, Poland
| |
Collapse
|
10
|
Köthe A, van Luijk P, Safai S, Kountouri M, Lomax AJ, Weber DC, Fattori G. Combining Clinical and Dosimetric Features in a PBS Proton Therapy Cohort to Develop a NTCP Model for Radiation-Induced Optic Neuropathy. Int J Radiat Oncol Biol Phys 2021; 110:587-595. [DOI: 10.1016/j.ijrobp.2020.12.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/30/2020] [Accepted: 12/31/2020] [Indexed: 01/17/2023]
|
11
|
Guardiola C, Bachiller-Perea D, Prieto-Pena J, Jiménez-Ramos MC, García López J, Esnault C, Fleta C, Quirion D, Gómez F. Microdosimetry in low energy proton beam at therapeutic-equivalent fluence rate with silicon 3D-cylindrical microdetectors. Phys Med Biol 2021; 66. [PMID: 33853055 DOI: 10.1088/1361-6560/abf811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/14/2021] [Indexed: 11/11/2022]
Abstract
In this work we show the first microdosimetry measurements on a low energy proton beam with therapeutic-equivalent fluence rates by using the second generation of 3D-cylindrical microdetectors. The sensors belong to an improved version of a novel silicon-based 3D-microdetector design with electrodes etched inside silicon, which were manufactured at the National Microelectronics Centre (IMB-CNM, CSIC) in Spain. A new microtechnology has been employed using quasi-toroid electrodes of 25μm diameter and a depth of 20μm within the silicon bulk, resulting in a well-defined cylindrical radiation sensitive volume. These detectors were tested at the 18 MeV proton beamline of the cyclotron at the National Accelerator Centre (CNA, Spain). They were assembled into an in-house low-noise readout electronics to assess their performance at a therapeutic-equivalent fluence rate. Microdosimetry spectra of lineal energy were recorded at several proton energies starting from 18 MeV by adding 50μm thick tungsten foils gradually at the exit-window of the cyclotron external beamline, which corresponds to different depths along the Bragg curve. The experimentalyF¯values in silicon cover from (5.7 ± 0.9) to (8.5 ± 0.4) keV μm-1in the entrance to (27.4 ± 2.3) keV μm-1in the distal edge. Pulse height energy spectra were crosschecked with Monte Carlo simulations and an excellent agreement was obtained. This work demonstrates the capability of the second generation 3D-microdetectors to assess accurate microdosimetric distributions at fluence rates as high as those used in clinical centers in proton therapy.
Collapse
Affiliation(s)
- C Guardiola
- Université Paris-Saclay, CNRS/IN2P3, IJCLab, F-91405 Orsay, France.,Université de Paris, IJCLab, F-91405 Orsay France
| | - D Bachiller-Perea
- Université Paris-Saclay, CNRS/IN2P3, IJCLab, F-91405 Orsay, France.,Université de Paris, IJCLab, F-91405 Orsay France
| | - J Prieto-Pena
- Departamento de Física de Partículas, Universidad de Santiago de Compostela, E-15782, Spain
| | | | - J García López
- Centro Nacional de Aceleradores, E-41092 Sevilla, Spain.,Departamento de Física Atómica, Molecular y Nuclear, University of Sevilla, E-41080, Sevilla, Spain
| | - C Esnault
- Université Paris-Saclay, CNRS/IN2P3, IJCLab, F-91405 Orsay, France.,Université de Paris, IJCLab, F-91405 Orsay France
| | - C Fleta
- Centro Nacional de Microelectrónica (IMB-CNM, CSIC), Bellaterra, E-08193, Spain
| | - D Quirion
- Centro Nacional de Microelectrónica (IMB-CNM, CSIC), Bellaterra, E-08193, Spain
| | - F Gómez
- Departamento de Física de Partículas, Universidad de Santiago de Compostela, E-15782, Spain
| |
Collapse
|
12
|
Yahya N, Manan HA. Neurocognitive impairment following proton therapy for paediatric brain tumour: a systematic review of post-therapy assessments. Support Care Cancer 2020; 29:3035-3047. [PMID: 33040284 DOI: 10.1007/s00520-020-05808-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/30/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Proton therapy (PT), frequently utilised to treat paediatric brain tumour (PBT) patients, eliminates exit dose and minimises dose to healthy tissues that theoretically can mitigate treatment-related effects including cognitive deficits. As clinical outcome data are emerging, we aimed to systematically review current evidence of cognitive changes following PT of PBT. MATERIALS AND METHODS We searched PubMed and Scopus electronic databases to identify eligible reports on cognitive changes following PT of PBT according to PRISMA guidelines. Reports were extracted for information on demographics and cognitive outcomes. Then, they were systematically reviewed based on three themes: (1) comparison with photon therapy, (2) comparison with baseline cognitive measures, to population normative mean or radiotherapy-naïve PBT patients and (3) effects of dose distribution to cognition. RESULTS Thirteen reports (median size (range): 70 (12-144)) were included. Four reports compared the cognitive outcome between PBT patients treated with proton to photon therapy and nine compared with baseline/normative mean/radiotherapy naïve from which two reported the effects of dose distribution. Reports found significantly poorer cognitive outcome among patients treated with photon therapy compared with proton therapy especially in general cognition and working memory. Craniospinal irradiation (CSI) was consistently associated with poorer cognitive outcome while focal therapy was associated with minor cognitive change/difference. In limited reports available, higher doses to the hippocampus and temporal lobes were implicated to larger cognitive change. CONCLUSION Available evidence suggests that PT causes less cognitive deficits compared with photon therapy. Children who underwent focal therapy with proton were consistently shown to have low risk of cognitive deficit suggesting the need for future studies to separate them from CSI. Evidence on the effect of dose distribution to cognition in PT is yet to mature.
Collapse
Affiliation(s)
- Noorazrul Yahya
- Diagnostic Imaging and Radiotherapy, CODTIS, Faculty of Health Sciences, National University of Malaysia, Jalan Raja Muda Aziz, 50300, Kuala Lumpur, Malaysia.
| | - Hanani Abdul Manan
- Functional Image Processing Laboratory, Department of Radiology, Universiti Kebangsaan Malaysia Medical Centre, Cheras, 56000, Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Toma-Dasu I, Dasu A, Vestergaard A, Witt Nyström P, Nyström H. RBE for proton radiation therapy - a Nordic view in the international perspective. Acta Oncol 2020; 59:1151-1156. [PMID: 33000988 DOI: 10.1080/0284186x.2020.1826573] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND This paper presents an insight into the critical discussions and the current strategies of the Nordic countries for handling the variable proton relative biological effectiveness (RBE) as presented at The Nordic Collaborative Workshop for Particle Therapy that took place at the Skandion Clinic on 14th and 15th of November 2019. MATERIAL AND METHODS In the current clinical practice at the two proton centres in operation at the date, Skandion Clinic, and the Danish Centre for Particle Therapy, a constant proton RBE of 1.1 is applied. The potentially increased effectiveness at the end of the particle range is however considered at the stage of treatment planning at both places based on empirical observations and knowledge. More elaborated strategies to evaluate the plans and mitigate the problem are intensely investigated internationally as well at the two centres. They involve the calculation of the dose-averaged linear energy transfer (LETd) values and the assessment of their distributions corroborated with the distribution of the dose and the location of the critical clinical structures. RESULTS Methods and tools for LETd calculations are under different stages of development as well as models to account for the variation of the RBE with LETd, dose per fraction, and type of tissue. The way they are currently used for evaluation and optimisation of the plans and their robustness are summarised. A critical but not exhaustive discussion of their potential future implementation in the clinical practice is also presented. CONCLUSIONS The need for collaboration between the clinical proton centres in establishing common platforms and perspectives for treatment planning evaluation and optimisation is highlighted as well as the need of close interaction with the research academic groups that could offer a complementary perspective and actively help developing methods and tools for clinical implementation of the more complex metrics for considering the variable effectiveness of the proton beams.
Collapse
Affiliation(s)
- Iuliana Toma-Dasu
- Department of Physics, Medical Radiation Physics, Stockholm University, Stockholm, Sweden
- Department of Oncology and Pathology, Medical Radiation Physics, Karolinska Institutet, Stockholm, Sweden
| | - Alexandru Dasu
- The Skandion Clinic, Uppsala, Sweden
- Medical Radiation Sciences, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | - Petra Witt Nyström
- The Skandion Clinic, Uppsala, Sweden
- Danish Centre for Particle Therapy, Aarhus, Denmark
| | | |
Collapse
|
14
|
De Marzi L, Patriarca A, Scher N, Thariat J, Vidal M. Exploiting the full potential of proton therapy: An update on the specifics and innovations towards spatial or temporal optimisation of dose delivery. Cancer Radiother 2020; 24:691-698. [PMID: 32753235 DOI: 10.1016/j.canrad.2020.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023]
Abstract
Prescription and delivery of protons are somewhat different compared to photons and may influence outcomes (tumour control and toxicity). These differences should be taken into account to fully exploit the clinical potential of proton therapy. Innovations in proton therapy treatment are also required to widen the therapeutic window and determine appropriate populations of patients that would benefit from new treatments. Therefore, strategies are now being developed to reduce side effects to critical normal tissues using alternative treatment configurations and new spatial or temporal-driven optimisation approaches. Indeed, spatiotemporal optimisation (based on flash, proton minibeam radiation therapy or hypofractionated delivery methods) has been gaining some attention in proton therapy as a mean of improving (biological and physical) dose distribution. In this short review, the main differences in planning and delivery between protons and photons, as well as some of the latest developments and methodological issues (in silico modelling) related to providing scientific evidence for these new techniques will be discussed.
Collapse
Affiliation(s)
- L De Marzi
- Institut Curie, centre de protonthérapie d'Orsay, campus universitaire, bâtiment 101, 91898 Orsay, France; Université PSL (Paris Sciences & Lettres), 60, rue Mazarine, 75006 Paris, France; Université Paris-Saclay, route de l'Orme-aux-Merisiers, RD 128, 91190 Saint-Aubin, France; Inserm U1021, centre universitaire, bâtiment 110, rue Henri-Becquerel, 91405 Orsay cedex, France; CNRS, UMR 3347, centre universitaire, bâtiment 110, rue Henri-Becquerel, 91405 Orsay cedex, France.
| | - A Patriarca
- Institut Curie, centre de protonthérapie d'Orsay, campus universitaire, bâtiment 101, 91898 Orsay, France; Université PSL (Paris Sciences & Lettres), 60, rue Mazarine, 75006 Paris, France
| | - N Scher
- Institut Curie, centre de protonthérapie d'Orsay, campus universitaire, bâtiment 101, 91898 Orsay, France; Université PSL (Paris Sciences & Lettres), 60, rue Mazarine, 75006 Paris, France
| | - J Thariat
- Service de radiothérapie oncologique, centre François-Baclesse, 3, avenue General-Harris, 14000 Caen, France; Laboratoire de physique corpusculaire de Caen, 6, boulevard du Maréchal-Juin, 14050 Caen cedex, France; Institut national de physique nucléaire et physique des particules (IN2P3), 6, boulevard du Maréchal-Juin, 14050 Caen cedex, France; EnsiCaen, 6, boulevard du Maréchal-Juin, 14050 Caen cedex, France; CNRS, UMR6534, 6, boulevard du Maréchal-Juin, 14050 Caen cedex, France; Unicaen, 6, boulevard du Maréchal-Juin, 14050 Caen cedex, France; Normandie Université, 6, boulevard du Maréchal-Juin, 14050 Caen cedex, France
| | - M Vidal
- Centre Antoine-Lacassagne, 33, avenue Valombrose, 06000 Nice, France
| |
Collapse
|