1
|
Overgaard CB, Reaz F, Poulsen P, Spejlborg H, Overgaard J, Grau C, Bassler N, Sørensen BS. The fractionation effect on proton RBE in a late normal tissue damage model in vivo. Radiother Oncol 2025; 206:110792. [PMID: 39954865 DOI: 10.1016/j.radonc.2025.110792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND AND PURPOSE A constant relative biological effectiveness (RBE) of 1.1 is used in clinical proton therapy (PT) to convert prescribed photon doses into isoeffective proton doses. However, the RBE is not constant; it is a dynamic parameter highly influenced by factors such as linear energy transfer, tissue type, biological endpoint, and dose/fraction. Preclinical in vivo proton RBE studies using fractionated doses and late damage endpoints are almost nonexistent. The aim is to test the hypotheses that the RBE varies between single and fractionated doses and that the late damage development differs between proton and photon irradiation using a 6 MV linac as a reference modality in a murine leg model. MATERIALS AND METHODS The right hindlimb of unanesthetized mice was irradiated with single or four fractions of protons or 6 MV photons. Over one year after treatment, the mice were analyzed every fourteenth day using a joint contracture assay to investigate severe radiation-induced late damage. RESULTS The results indicated a higher RBE for severe late damage endpoint of 1.25 ± 0.06 (1.13-1.36) for fractionated doses than single doses, exhibiting an RBE of 1.16 ± 0.08 (1.00-1.31). The onset of late damage is earlier for protons than photons for doses higher than 47 Gy and fractionated doses above 50 Gy (12.5 Gy per fraction). CONCLUSION The findings demonstrate that fractionated doses enhance the RBE for a late damage endpoint and lead to an earlier onset of severe late effects than its photon counterpart in vivo.
Collapse
Affiliation(s)
- Cathrine Bang Overgaard
- Aarhus University Hospital, Experimental Clinical Oncology, Department of Oncology, Entrance C, Level 1, C106, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus N, Denmark.
| | - Fardous Reaz
- Danish Center for Particle Therapy, Aarhus University Hospital, Denmark
| | - Per Poulsen
- Danish Center for Particle Therapy, Aarhus University Hospital, Denmark; Department of Clinical Medicine, Aarhus University Hospital, Denmark
| | - Harald Spejlborg
- Department of Clinical Medicine, Aarhus University Hospital, Denmark
| | - Jens Overgaard
- Aarhus University Hospital, Experimental Clinical Oncology, Department of Oncology, Entrance C, Level 1, C106, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus N, Denmark; Department of Clinical Medicine, Aarhus University Hospital, Denmark
| | - Cai Grau
- Danish Center for Particle Therapy, Aarhus University Hospital, Denmark
| | - Niels Bassler
- Aarhus University Hospital, Experimental Clinical Oncology, Department of Oncology, Entrance C, Level 1, C106, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus N, Denmark; Danish Center for Particle Therapy, Aarhus University Hospital, Denmark
| | - Brita Singers Sørensen
- Aarhus University Hospital, Experimental Clinical Oncology, Department of Oncology, Entrance C, Level 1, C106, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus N, Denmark; Danish Center for Particle Therapy, Aarhus University Hospital, Denmark
| |
Collapse
|
2
|
Overgaard CB, Reaz F, Ankjærgaard C, Andersen CE, Sitarz M, Poulsen P, Spejlborg H, Johansen JG, Overgaard J, Grau C, Bassler N, Sørensen BS. The proton RBE and the distal edge effect for acute and late normal tissue damage in vivo. Radiother Oncol 2025; 203:110668. [PMID: 39675573 DOI: 10.1016/j.radonc.2024.110668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/01/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND AND PURPOSE In proton therapy, a relative biological effectiveness (RBE) of 1.1 is used toreach an isoeffective biological response between photon and proton doses. However, the RBE varies with biological endpoints and linear energy transfer (LET), two key parameters in radiotherapy. Few in vivo studies have investigated the increasing RBE with increasing LET. This study aims to test the hypothesis that the RBE varies between endpoints and has a distal edge effect in vivo. MATERIALS AND METHODS Unanesthetized micewere restrainedin jigs where their right hind legs were irradiated with a single dose of protons at the center (LET, all = 5.3 keV/μm) and distal edge (LET, all = 7.6 keV/μm) of a spread-out Bragg peak (SOBP). 6 MV photons were used as reference. The acute damage and skin toxicity were scored daily until day 30, and the late damage was evaluated using a joint contracture assay for one year after treatment. RESULTS An acute damage RBE of 1.06 ± 0.02(1.02-1.10) and late damage RBE of 1.16 ± 0.08(1.00-1.32) were found, displaying an enhanced RBE for late damage in the center SOBP. The distal edge RBE for acute and late damage was 1.15 ± 0.02(1.10-1.19) and 1.26 ± 0.09(1.07-1.43), showing a similar center-to-distal edge RBE enhancement of 8 % and 9 % for acute and late damage. CONCLUSION The findings demonstrate an increased RBE for late damage than acute damage and the distal edge effect is evident with increased RBE at the distal end of the proton SOBP in vivo.
Collapse
Affiliation(s)
| | - Fardous Reaz
- Danish Center for Particle Therapy, Aarhus University Hospital, Denmark
| | | | | | - Mateusz Sitarz
- Danish Center for Particle Therapy, Aarhus University Hospital, Denmark
| | - Per Poulsen
- Danish Center for Particle Therapy, Aarhus University Hospital, Denmark; Department of Clinical Medicine, Aarhus University Hospital, Denmark
| | - Harald Spejlborg
- Department of Clinical Medicine, Aarhus University Hospital, Denmark
| | - Jacob G Johansen
- Danish Center for Particle Therapy, Aarhus University Hospital, Denmark; Department of Clinical Medicine, Aarhus University Hospital, Denmark
| | - Jens Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark; Department of Clinical Medicine, Aarhus University Hospital, Denmark
| | - Cai Grau
- Danish Center for Particle Therapy, Aarhus University Hospital, Denmark; Department of Clinical Medicine, Aarhus University Hospital, Denmark
| | - Niels Bassler
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark; Danish Center for Particle Therapy, Aarhus University Hospital, Denmark
| | - Brita Singers Sørensen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark; Danish Center for Particle Therapy, Aarhus University Hospital, Denmark; Department of Clinical Medicine, Aarhus University Hospital, Denmark
| |
Collapse
|
3
|
Lægdsmand P, Matysiak W, Muren LP, Lassen-Ramshad Y, Maduro JH, Vestergaard A, Righetto R, Pettersson E, Kristensen I, Dutheil P, Demoor-Goldschmidt C, Charlwood F, Whitfield G, Feijoo MM, Vela A, Missohou F, Vennarini S, Mirandola A, Orlandi E, Rombi B, Goedgebeur A, Van Beek K, Bannink-Gawryszuk A, Campoo FC, Engellau J, Toussaint L. Variations in linear energy transfer distributions within a European proton therapy planning comparison of paediatric posterior fossa tumours. Phys Imaging Radiat Oncol 2024; 32:100675. [PMID: 39803348 PMCID: PMC11718416 DOI: 10.1016/j.phro.2024.100675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/10/2024] [Accepted: 11/12/2024] [Indexed: 01/16/2025] Open
Abstract
Background and Purpose Radiotherapy for paediatric posterior fossa tumours may cause complications in the brainstem and upper spinal cord due to high doses. With proton therapy (PT) this risk may increase due to higher relative biological effectiveness (RBE) from elevated linear energy transfer (LET). This study assesses variations in LET in the brainstem and spinal cord in proton treatment plans from European centres. Materials and Methods Ten European PT centres using spot-scanning PT planned two paediatric posterior fossa cases: One overlapping partly with the brainstem and upper spinal cord, prescribed 54 Gy(RBE), and the second wrapping around these organs, prescribed 59.4 Gy(RBE). Dose-averaged LET distributions were assessed in volumes of the brainstem and spinal cord irradiated to over 50 Gy(RBE = 1.1). The maximum hinge angle effect on near-maximum RBE-weighted doses using the Unkelbach RBE model was also investigated. Results In the first case, the mean LET in brainstem volumes receiving more than 50 Gy(RBE = 1.1) ranged from 2.8 keV/µm to 3.6 keV/µm across centres (median: 3.3 keV/µm). In the second case, treatment plans showed a narrower range of mean LET in the brainstem, from 2.5 keV/µm to 2.8 keV/µm (median: 2.7 keV/µm). There was no statistically significant impact of the maximum hinge angle. Conclusions LET distributions vary across centres due to different techniques but are also influenced significantly by factors like shape and position of the target volume.
Collapse
Affiliation(s)
- Peter Lægdsmand
- Aarhus University Hospital, Danish Centre for Particle Therapy, Aarhus N, Denmark
- Aarhus University, Department of Clinical Medicine, Aarhus N, Denmark
| | - Witold Matysiak
- University of Groningen, University Medical Centre Groningen, Department of Radiation Oncology, Groningen, Netherlands
| | - Ludvig P. Muren
- Aarhus University Hospital, Danish Centre for Particle Therapy, Aarhus N, Denmark
- Aarhus University, Department of Clinical Medicine, Aarhus N, Denmark
| | | | - John H. Maduro
- University of Groningen, University Medical Centre Groningen, Department of Radiation Oncology, Groningen, Netherlands
| | - Anne Vestergaard
- Aarhus University Hospital, Danish Centre for Particle Therapy, Aarhus N, Denmark
| | | | - Erik Pettersson
- Sahlgrenska University Hospital, Department of Therapeutic Radiation Physics, Gothenburg, Sweden
- University of Gothenburg, Department of Medical Radiation Sciences, Gothenburg, Sweden
| | - Ingrid Kristensen
- Skåne University Hospital, Hematology, Oncology and Radiation Physics, Lund, Sweden
| | - Pauline Dutheil
- Centre Regional Francois Baclesse, Department of Radiation Oncology, Caen, France
| | - Charlotte Demoor-Goldschmidt
- Centre Regional Francois Baclesse, Department of Radiation Oncology, Caen, France
- Angers University Hospital, Department of Paediatric Oncology, Angers, France
| | - Frances Charlwood
- The Christie Proton Beam Therapy Centre, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Gillian Whitfield
- The Christie Proton Beam Therapy Centre, The Christie NHS Foundation Trust, Manchester, United Kingdom
- University of Manchester, Royal Manchester Children’s Hospital, The Children’s Brain Tumour Research Network, Manchester, United Kingdom
| | | | - Anthony Vela
- Centre Regional Francois Baclesse, Department of Radiation Oncology, Caen, France
| | - Fernand Missohou
- Centre Regional Francois Baclesse, Department of Radiation Oncology, Caen, France
| | - Sabina Vennarini
- Fondazione IRCCS Instituto Nazionale Tumori, Paediatric Radiotherapy Unit, Milano, Italy
| | - Alfredo Mirandola
- CNAO National Center for Oncological Hadrontherapy, Medical Physics Unit, Clinical Department, Pavia, Italy
| | - Ester Orlandi
- CNAO National Center for Oncological Hadrontherapy, Clinical Department, Pavia, Italy
- University of Pavia, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, Pavia, Italy
| | - Barbara Rombi
- Proton Therapy Centre, Hospital S. Chiara, APSS, Trento, Italy
| | | | - Karen Van Beek
- Particle UZLeuven, Department of Radiation Oncology, Leuven, Belgium
| | - Agata Bannink-Gawryszuk
- University of Groningen, University Medical Centre Groningen, Department of Radiation Oncology, Groningen, Netherlands
| | | | - Jacob Engellau
- Skåne University Hospital, Hematology, Oncology and Radiation Physics, Lund, Sweden
| | - Laura Toussaint
- Aarhus University Hospital, Danish Centre for Particle Therapy, Aarhus N, Denmark
- Aarhus University, Department of Clinical Medicine, Aarhus N, Denmark
| |
Collapse
|
4
|
Overgaard CB, Reaz F, Sitarz M, Poulsen P, Overgaard J, Bassler N, Grau C, Sørensen BS. An experimental setup for proton irradiation of a murine leg model for radiobiological studies. Acta Oncol 2023; 62:1566-1573. [PMID: 37603112 DOI: 10.1080/0284186x.2023.2246641] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND The purpose of this study was to introduce an experimental radiobiological setup used for in vivo irradiation of a mouse leg target in multiple positions along a proton beam path to investigate normal tissue- and tumor models with varying linear energy transfer (LET). We describe the dosimetric characterizations and an acute- and late-effect assay for normal tissue damage. METHODS The experimental setup consists of a water phantom that allows the right hind leg of three to five mice to be irradiated at the same time. Absolute dosimetry using a thimble (Semiflex) and a plane parallel (Advanced Markus) ionization chamber and Monte Carlo simulations using Geant4 and SHIELD-HIT12A were applied for dosimetric validation of positioning along the spread-out Bragg peak (SOBP) and at the distal edge and dose fall-off. The mice were irradiated in the center of the SOBP delivered by a pencil beam scanning system. The SOBP was 2.8 cm wide, centered at 6.9 cm depth, with planned physical single doses from 22 to 46 Gy. The biological endpoint was acute skin damage and radiation-induced late damage (RILD) assessed in the mouse leg. RESULTS The dose-response curves illustrate the percentage of mice exhibiting acute skin damage, and at a later point, RILD as a function of physical doses (Gy). Each dose-response curve represents a specific severity score of each assay, demonstrating a higher ED50 (50% responders) as the score increases. Moreover, the results reveal the reversible nature of acute skin damage as a function of time and the irreversible nature of RILD as time progresses. CONCLUSIONS We want to encourage researchers to report all experimental details of their radiobiological setups, including experimental protocols and model descriptions, to facilitate transparency and reproducibility. Based on this study, more experiments are being performed to explore all possibilities this radiobiological experimental setup permits.
Collapse
Affiliation(s)
- Cathrine Bang Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Fardous Reaz
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Danish Centre for Particle Therapy, Aarhus University Hospital, Denmark
| | - Mateusz Sitarz
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Danish Centre for Particle Therapy, Aarhus University Hospital, Denmark
| | - Per Poulsen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Danish Centre for Particle Therapy, Aarhus University Hospital, Denmark
| | - Jens Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Niels Bassler
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Danish Centre for Particle Therapy, Aarhus University Hospital, Denmark
| | - Cai Grau
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Danish Centre for Particle Therapy, Aarhus University Hospital, Denmark
| | - Brita Singers Sørensen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Danish Centre for Particle Therapy, Aarhus University Hospital, Denmark
| |
Collapse
|
5
|
Henthorn NT, Gardner LL, Aitkenhead AH, Rowland BC, Shin J, Smith EAK, Merchant MJ, Mackay RI, Kirkby KJ, Chaudhary P, Prise KM, McMahon SJ, Underwood TSA. Proposing a Clinical Model for RBE Based on Proton Track-End Counts. Int J Radiat Oncol Biol Phys 2023; 116:916-926. [PMID: 36642109 DOI: 10.1016/j.ijrobp.2022.12.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023]
Abstract
PURPOSE In proton therapy, the clinical application of linear energy transfer (LET) optimization remains contentious, in part because of challenges associated with the definition and calculation of LET and its exact relationship with relative biological effectiveness (RBE) because of large variation in experimental in vitro data. This has raised interest in other metrics with favorable properties for biological optimization, such as the number of proton track ends in a voxel. In this work, we propose a novel model for clinical calculations of RBE, based on proton track end counts. METHODS AND MATERIALS We developed an effective dose concept to translate between the total proton track-end count per unit mass in a voxel and a proton RBE value. Dose, track end, and dose-averaged LET (LETd) distributions were simulated using Monte Carlo models for a series of water phantoms, in vitro radiobiological studies, and patient treatment plans. We evaluated the correlation between track ends and regions of elevated biological effectiveness in comparison to LETd-based models of RBE. RESULTS Track ends were found to correlate with biological effects in in vitro experiments with an accuracy comparable to LETd. In patient simulations, our track end model identified the same biological hotspots as predicted by LETd-based radiobiological models of proton RBE. CONCLUSIONS These results suggest that, for clinical optimization and evaluation, an RBE model based on proton track end counts may match LETd-based models in terms of information provided while also offering superior statistical properties.
Collapse
Affiliation(s)
- Nicholas T Henthorn
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom; Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Manchester, United Kingdom.
| | - Lydia L Gardner
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| | - Adam H Aitkenhead
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom; Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Benjamin C Rowland
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom; Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Jungwook Shin
- Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts
| | - Edward A K Smith
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom; Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Michael J Merchant
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom; Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Ranald I Mackay
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom; Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Karen J Kirkby
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom; Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Pankaj Chaudhary
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| | - Kevin M Prise
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| | - Stephen J McMahon
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| | - Tracy S A Underwood
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom; Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Manchester, United Kingdom; Leo Cancer Care Ltd, Unit 1 Woodbridge House, Chapel Rd, Smallfield, Horley RH6 9NW, United Kingdom
| |
Collapse
|
6
|
Schneider M, Bodenstein E, Bock J, Dietrich A, Gantz S, Heuchel L, Krause M, Lühr A, von Neubeck C, Nexhipi S, Schürer M, Tillner F, Beyreuther E, Suckert T, Müller JR. Combined proton radiography and irradiation for high-precision preclinical studies in small animals. Front Oncol 2022; 12:982417. [PMID: 36419890 PMCID: PMC9677333 DOI: 10.3389/fonc.2022.982417] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/02/2022] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND AND PURPOSE Proton therapy has become a popular treatment modality in the field of radiooncology due to higher spatial dose conformity compared to conventional radiotherapy, which holds the potential to spare normal tissue. Nevertheless, unresolved research questions, such as the much debated relative biological effectiveness (RBE) of protons, call for preclinical research, especially regarding in vivo studies. To mimic clinical workflows, high-precision small animal irradiation setups with image-guidance are needed. MATERIAL AND METHODS A preclinical experimental setup for small animal brain irradiation using proton radiographies was established to perform planning, repositioning, and irradiation of mice. The image quality of proton radiographies was optimized regarding the resolution, contrast-to-noise ratio (CNR), and minimal dose deposition in the animal. Subsequently, proof-of-concept histological analysis was conducted by staining for DNA double-strand breaks that were then correlated to the delivered dose. RESULTS The developed setup and workflow allow precise brain irradiation with a lateral target positioning accuracy of<0.26mm for in vivo experiments at minimal imaging dose of<23mGy per mouse. The custom-made software for image registration enables the fast and precise animal positioning at the beam with low observer-variability. DNA damage staining validated the successful positioning and irradiation of the mouse hippocampus. CONCLUSION Proton radiography enables fast and effective high-precision lateral alignment of proton beam and target volume in mouse irradiation experiments with limited dose exposure. In the future, this will enable irradiation of larger animal cohorts as well as fractionated proton irradiation.
Collapse
Affiliation(s)
- Moritz Schneider
- OncoRay, National Center for Radiation Research in Oncology- Faculty of Medicine and University Hospital Carl Gustav Carus- Technische Universitat Dresden-Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Dresden, Germany
| | - Elisabeth Bodenstein
- OncoRay, National Center for Radiation Research in Oncology- Faculty of Medicine and University Hospital Carl Gustav Carus- Technische Universitat Dresden-Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Johanna Bock
- OncoRay, National Center for Radiation Research in Oncology- Faculty of Medicine and University Hospital Carl Gustav Carus- Technische Universitat Dresden-Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Antje Dietrich
- OncoRay, National Center for Radiation Research in Oncology- Faculty of Medicine and University Hospital Carl Gustav Carus- Technische Universitat Dresden-Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- German Cancer Consortium Deutsches Konsortium für Translationale Krebsforschung (DKTK), partner site Dresden- German Cancer Research Center DKFZ, Heidelberg, Germany
| | - Sebastian Gantz
- OncoRay, National Center for Radiation Research in Oncology- Faculty of Medicine and University Hospital Carl Gustav Carus- Technische Universitat Dresden-Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Lena Heuchel
- Technical University (TU) Dortmund- Faculty of Physics, Medical Physics and Radiotherapy, Dortmund, Germany
| | - Mechthild Krause
- OncoRay, National Center for Radiation Research in Oncology- Faculty of Medicine and University Hospital Carl Gustav Carus- Technische Universitat Dresden-Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
- German Cancer Consortium Deutsches Konsortium für Translationale Krebsforschung (DKTK), partner site Dresden- German Cancer Research Center DKFZ, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universitat Dresden, Dresden, Germany
| | - Armin Lühr
- OncoRay, National Center for Radiation Research in Oncology- Faculty of Medicine and University Hospital Carl Gustav Carus- Technische Universitat Dresden-Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
- Technical University (TU) Dortmund- Faculty of Physics, Medical Physics and Radiotherapy, Dortmund, Germany
| | - Cläre von Neubeck
- OncoRay, National Center for Radiation Research in Oncology- Faculty of Medicine and University Hospital Carl Gustav Carus- Technische Universitat Dresden-Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- German Cancer Consortium Deutsches Konsortium für Translationale Krebsforschung (DKTK), partner site Dresden- German Cancer Research Center DKFZ, Heidelberg, Germany
- Department of Particle Therapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sindi Nexhipi
- OncoRay, National Center for Radiation Research in Oncology- Faculty of Medicine and University Hospital Carl Gustav Carus- Technische Universitat Dresden-Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Michael Schürer
- OncoRay, National Center for Radiation Research in Oncology- Faculty of Medicine and University Hospital Carl Gustav Carus- Technische Universitat Dresden-Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
| | - Falk Tillner
- OncoRay, National Center for Radiation Research in Oncology- Faculty of Medicine and University Hospital Carl Gustav Carus- Technische Universitat Dresden-Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universitat Dresden, Dresden, Germany
| | - Elke Beyreuther
- OncoRay, National Center for Radiation Research in Oncology- Faculty of Medicine and University Hospital Carl Gustav Carus- Technische Universitat Dresden-Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Dresden, Germany
| | - Theresa Suckert
- OncoRay, National Center for Radiation Research in Oncology- Faculty of Medicine and University Hospital Carl Gustav Carus- Technische Universitat Dresden-Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- German Cancer Consortium Deutsches Konsortium für Translationale Krebsforschung (DKTK), partner site Dresden- German Cancer Research Center DKFZ, Heidelberg, Germany
| | - Johannes Richard Müller
- OncoRay, National Center for Radiation Research in Oncology- Faculty of Medicine and University Hospital Carl Gustav Carus- Technische Universitat Dresden-Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Deutsche Forschungsgemeinschaft Cluster of Excellence 'Physics of Life', Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
7
|
Suckert T, Nexhipi S, Dietrich A, Koch R, Kunz-Schughart LA, Bahn E, Beyreuther E. Models for Translational Proton Radiobiology-From Bench to Bedside and Back. Cancers (Basel) 2021; 13:4216. [PMID: 34439370 PMCID: PMC8395028 DOI: 10.3390/cancers13164216] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 12/25/2022] Open
Abstract
The number of proton therapy centers worldwide are increasing steadily, with more than two million cancer patients treated so far. Despite this development, pending questions on proton radiobiology still call for basic and translational preclinical research. Open issues are the on-going discussion on an energy-dependent varying proton RBE (relative biological effectiveness), a better characterization of normal tissue side effects and combination treatments with drugs originally developed for photon therapy. At the same time, novel possibilities arise, such as radioimmunotherapy, and new proton therapy schemata, such as FLASH irradiation and proton mini-beams. The study of those aspects demands for radiobiological models at different stages along the translational chain, allowing the investigation of mechanisms from the molecular level to whole organisms. Focusing on the challenges and specifics of proton research, this review summarizes the different available models, ranging from in vitro systems to animal studies of increasing complexity as well as complementing in silico approaches.
Collapse
Affiliation(s)
- Theresa Suckert
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sindi Nexhipi
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01309 Dresden, Germany
| | - Antje Dietrich
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Robin Koch
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany; (R.K.); (E.B.)
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Leoni A. Kunz-Schughart
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
| | - Emanuel Bahn
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany; (R.K.); (E.B.)
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ), Clinical Cooperation Unit Radiation Oncology, 69120 Heidelberg, Germany
| | - Elke Beyreuther
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- Helmholtz-Zentrum Dresden—Rossendorf, Institute of Radiation Physics, 01328 Dresden, Germany
| |
Collapse
|
8
|
Otterlei OM, Indelicato DJ, Toussaint L, Ytre-Hauge KS, Pilskog S, Fjaera LF, Rørvik E, Pettersen HES, Muren LP, Lassen-Ramshad Y, Di Pinto M, Stokkevåg CH. Variation in relative biological effectiveness for cognitive structures in proton therapy of pediatric brain tumors. Acta Oncol 2021; 60:267-274. [PMID: 33131367 DOI: 10.1080/0284186x.2020.1840626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Clinically, a constant value of 1.1 is used for the relative biological effectiveness (RBE) of protons, whereas in vitro the RBE has been shown to vary depending on physical dose, tissue type, and linear energy transfer (LET). As the LET increases at the distal end of the proton beam, concerns exist for an elevated RBE in normal tissues. The aim of this study was therefore to investigate the heterogeneity of RBE to brain structures associated with cognition (BSCs) in pediatric suprasellar tumors. MATERIAL AND METHODS Intensity-modulated proton therapy (IMPT) plans for 10 pediatric craniopharyngioma patients were re-calculated using 11 phenomenological and two plan-based variable RBE models. Based on LET, tissue dependence and number of data points used to fit the models, the three RBE models considered the most relevant for the studied endpoint were selected. Thirty BSCs were investigated in terms of RBE and dose/volume parameters. RESULTS For a representative patient, the median (range) dose-weighted mean RBE (RBEd) across all BSCs from the plan-based models was among the lowest (1.09 (1.02-1.52) vs. the phenomenological models at 1.21 (0.78-2.24)). Omitting tissue dependency resulted in RBEd at 1.21 (1.04-2.24). Across all patients, the narrower RBE model selection gave median RBEd values from 1.22 to 1.30. CONCLUSION For all BSCs, there was a systematic model-dependent variation in RBEd, mirroring the uncertainty in biological effects of protons. According to a refined selection of in vitro models, the RBE variation across BSCs was in effect underestimated when using a fixed RBE of 1.1.
Collapse
Affiliation(s)
| | | | - Laura Toussaint
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark
| | | | - Sara Pilskog
- Department of Physics and Technology, University of Bergen, Bergen, Norway
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | | | - Eivind Rørvik
- Department of Physics and Technology, University of Bergen, Bergen, Norway
| | | | - Ludvig P. Muren
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark
| | | | - Marcos Di Pinto
- Department of Radiation Oncology, University of Florida, Jacksonville, FL, USA
| | - Camilla H. Stokkevåg
- Department of Physics and Technology, University of Bergen, Bergen, Norway
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|