1
|
Danceanu-Zara CM, Petrovici A, Labusca L, Minuti AE, Stavila C, Plamadeala P, Tiron CE, Aniţă D, Aniţă A, Lupu N. Collection, Establishment and Assessment of Complex Human Osteocartilaginous Explants for Modeling Osteoarthritis. Biomedicines 2024; 12:2406. [PMID: 39457719 PMCID: PMC11504061 DOI: 10.3390/biomedicines12102406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
With the increasing burden of osteoarthritis worldwide, cost efficient and reliable models are needed to enable the development of innovative therapies or therapeutic interventions. Ex vivo models have been identified as valuable modalities in translational research, bridging the gap between in vitro and in vivo models. Osteocartilaginous explants from Osteoarthritis (OA) patients offer an exquisite opportunity for studying OA progression and testing novel therapies. We describe the protocol for establishing human osteocartilaginous explants with or without co-culture of homologous synovial tissue. Furthermore, a detailed protocol for the assessment of explanted tissue in terms of protein content using Western blot and immunohistochemistry is provided. Commentaries regarding the technique of choice, possible variations and expected results are inserted.
Collapse
Affiliation(s)
- Camelia-Mihaela Danceanu-Zara
- National Institute of Research and Development in Technical Physics, 700050 Iasi, Romania; (C.-M.D.-Z.); (A.E.M.); (C.S.); (N.L.)
- Transcend Center Regional Oncology Institute, 700483 Iasi, Romania;
| | - Adriana Petrovici
- Regional Center of Advanced Research for Emerging Diseases, Zoonoses and Food Safety, Faculty of Veterinary Medicine, Iași University of Life Sciences (IULS), 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania; (A.P.); (D.A.); (A.A.)
| | - Luminita Labusca
- National Institute of Research and Development in Technical Physics, 700050 Iasi, Romania; (C.-M.D.-Z.); (A.E.M.); (C.S.); (N.L.)
- Orthopedics and Trauma Clinic, County Emergency Hospital, 700111 Iasi, Romania
| | - Anca Emanuela Minuti
- National Institute of Research and Development in Technical Physics, 700050 Iasi, Romania; (C.-M.D.-Z.); (A.E.M.); (C.S.); (N.L.)
| | - Cristina Stavila
- National Institute of Research and Development in Technical Physics, 700050 Iasi, Romania; (C.-M.D.-Z.); (A.E.M.); (C.S.); (N.L.)
| | - Petru Plamadeala
- Pathology Department, Saint Mary‘s Children Hospital, 700309 Iasi, Romania;
| | | | - Dragoş Aniţă
- Regional Center of Advanced Research for Emerging Diseases, Zoonoses and Food Safety, Faculty of Veterinary Medicine, Iași University of Life Sciences (IULS), 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania; (A.P.); (D.A.); (A.A.)
| | - Adriana Aniţă
- Regional Center of Advanced Research for Emerging Diseases, Zoonoses and Food Safety, Faculty of Veterinary Medicine, Iași University of Life Sciences (IULS), 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania; (A.P.); (D.A.); (A.A.)
| | - Nicoleta Lupu
- National Institute of Research and Development in Technical Physics, 700050 Iasi, Romania; (C.-M.D.-Z.); (A.E.M.); (C.S.); (N.L.)
| |
Collapse
|
2
|
Yin H, Mao K, Huang Y, Guo A, Shi L. Tendon stem/progenitor cells are promising reparative cell sources for multiple musculoskeletal injuries of concomitant articular cartilage lesions associated with ligament injuries. J Orthop Surg Res 2023; 18:869. [PMID: 37968672 PMCID: PMC10647040 DOI: 10.1186/s13018-023-04313-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/23/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Trauma-related articular cartilage lesions usually occur in conjunction with ligament injuries. Torn ligaments are frequently reconstructed with tendon autograft and has been proven to achieve satisfactory clinical outcomes. However, treatments for the concomitant articular cartilage lesions are still very insufficient. The current study was aimed to evaluate whether stem cells derived from tendon tissue can be considered as an alternative reparative cell source for cartilage repair. METHODS Primary human tendon stem/progenitor cells (hTSPCs) were isolated from 4 male patients (32 ± 8 years) who underwent ACL reconstruction surgery with autologous semitendinosus and gracilis tendons. The excessive tendon tissue after graft preparation was processed for primary cell isolation with an enzyme digestion protocol. Decellularization cartilage matrix (DCM) was used to provide a chondrogenic microenvironment for hTSPCs. Cell viability, cell morphology on the DCM, as well as their chondrogenic differentiation were evaluated. RESULTS DAPI staining and DNA quantitative analysis (61.47 μg per mg dry weight before and 2.64 μg/mg after decellularization) showed that most of the cells in the cartilage lacuna were removed after decellularization process. Whilst, the basic structure of the cartilage tissue was preserved and the main ECM components, collagen type II and sGAG were retained after decellularization, which were revealed by DMMB assay and histology. Live/dead staining and proliferative assay demonstrated that DCM supported attachment, survival and proliferation of hTSPCs with an excellent biocompatibility. Furthermore, gene expression analysis indicated that chondrogenic differentiation of hTSPC was induced by the DCM microenvironment, with upregulation of chondrogenesis-related marker genes, COL 2 and SOX9, without the use of exogenous growth factors. CONCLUSION DCM supported hTSPCs attachment and proliferation with high biocompatibility. Moreover, TSPCs underwent a distinct chondrogenesis after the induction of a chondrogenic microenvironment provided by DCM. These results indicated that TSPCs are promising reparative cell sources for promoting cartilage repair. Particularly, in the cohort that articular cartilage lesions occur in conjunction with ligament injuries, autologous TSPCs can be isolated from a portion of the tendon autograph harvested for ligaments reconstruction. In future clinical practice, combined ligament reconstruction with TSPCs- based therapy for articular cartilage repair can to be considered to achieve superior repair of these associated injuries, in which autologous TSPCs can be isolated from a portion of the tendon autograph harvested for ligaments reconstruction.
Collapse
Affiliation(s)
- Heyong Yin
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100053, China
| | - Kelei Mao
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100053, China
| | - Yufu Huang
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100053, China
| | - Ai Guo
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100053, China.
| | - Lin Shi
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
3
|
McCreery KP, Luetkemeyer CM, Calve S, Neu CP. Hyperelastic characterization reveals proteoglycans drive the nanoscale strain-stiffening response in hyaline cartilage. J Biomech 2023; 146:111397. [PMID: 36469996 PMCID: PMC9922104 DOI: 10.1016/j.jbiomech.2022.111397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/23/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022]
Abstract
Degenerative diseases such as osteoarthritis (OA) result in deterioration of cartilage extracellular matrix (ECM) components, significantly compromising tissue function. For measurement of mechanical properties at micron resolution, atomic force microscopy (AFM) is a leading technique in biomaterials research, including in the study of OA. It is common practice to determine material properties by applying classical Hertzian contact theory to AFM data. However, errors are consequential because the application of a linear elastic contact model to tissue ignores the fact that soft materials exhibit nonlinear properties even at small strains, influencing the biological conclusions of clinically-relevant studies. Additionally, nonlinear material properties are not well characterized, limiting physiological relevance of Young's modulus. Here, we probe the ECM of hyaline cartilage with AFM and explore the application of Hertzian theory in comparison to five hyperelastic models: NeoHookean, Mooney-Rivlin, Arruda-Boyce, Fung, and Ogden. The Fung and Ogden models achieved the best fits of the data, but the Fung model demonstrated robust sensitivity during model validation, demonstrating its ideal application to cartilage ECM and potentially other connective tissues. To develop a biological understanding of the Fung nonlinear parameter, we selectively degraded ECM components to target collagens (purified collagenase), hyaluronan (bacterial hyaluronidase), and glycosaminoglycans (chondroitinase ABC). We found significant differences in both Fung parameters in response to enzymatic treatment, indicating that proteoglycans drive the nonlinear response of cartilage ECM, and validating biological relevance of these phenomenological parameters. Our findings add value to the biomechanics community of using two-parameter material models for microindentation of soft biomaterials.
Collapse
Affiliation(s)
- Kaitlin P McCreery
- Paul M. Rady Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA; Biomedical Engineering Program, University of Colorado, Boulder, CO, USA
| | - Callan M Luetkemeyer
- Paul M. Rady Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA.
| | - Sarah Calve
- Paul M. Rady Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA; Biomedical Engineering Program, University of Colorado, Boulder, CO, USA
| | - Corey P Neu
- Paul M. Rady Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA; Biomedical Engineering Program, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
4
|
Fabrication of Tissue-Engineered Cartilage Using Decellularized Scaffolds and Chondrocytes. Polymers (Basel) 2022; 14:polym14142848. [PMID: 35890624 PMCID: PMC9316171 DOI: 10.3390/polym14142848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/25/2022] [Accepted: 07/04/2022] [Indexed: 02/07/2023] Open
Abstract
In this paper, we aim to explore the application value of tissue engineering for the construction of artificial cartilage in vitro. Chondrocytes from healthy porcine articular cartilage tissue were seeded on articular cartilage extracellular matrix (ACECM) scaffolds and cultivated. Type II collagen immunofluorescent staining was used to assess secretion from the extracellular matrix. Chondrocytes, which were mainly polygonal and cobblestone-shaped, were inoculated on ACECM-oriented scaffolding for 7 days, and the neo-tissue showed translucent shape and toughness. Using inverted and fluorescence microscopy, we found that chondrocytes on the scaffolds performed well in terms of adhesion and growth, and they secreted collagen type II. Moreover, the porcine ACECM scaffolds had good biocompatibility. The inflammatory cell detection, cellular immune response assay and humoral immune response assay showed porcine ACECM scaffolds were used for xenotransplantation without significant immune inflammatory response. All these findings reveal that ACECM-oriented scaffold is an ideal natural biomaterial for cartilage tissue engineering.
Collapse
|
5
|
Marchini A, Gelain F. Synthetic scaffolds for 3D cell cultures and organoids: applications in regenerative medicine. Crit Rev Biotechnol 2021; 42:468-486. [PMID: 34187261 DOI: 10.1080/07388551.2021.1932716] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Three-dimensional (3D) cell cultures offer an unparalleled platform to recreate spatial arrangements of cells in vitro. 3D cell culture systems have gained increasing interest due to their evident advantages in providing more physiologically relevant information and more predictive data compared to their two-dimensional (2D) counterpart. Design and well-established fabrication of organoids (a particular type of 3D cell culture system) are nowadays considered a pivotal achievement for their ability to replicate in vitro cytoarchitecture and the functionalities of an organ. In this condition, pluripotent stem cells self-organize into 3D structures mimicking the in vivo microenvironments, architectures and multi-lineage differentiation. Scaffolds are key supporting elements in these 3D constructs, and Matrigel is the most commonly used matrix despite its relevant translation limitations including animal-derived sources, non-defined composition, batch-to-batch variability and poorly tailorable properties. Alternatively, 3D synthetic scaffolds, including self-assembling peptides, show promising biocompatibility and biomimetic properties, and can be tailored on specific target tissue/cells. In this review, we discuss the recent advances on 3D cell culture systems and organoids, promising tools for tissue engineering and regenerative medicine applications. For this purpose, we will describe the current state-of-the-art on 3D cell culture systems and organoids based on currently available synthetic-based biomaterials (including tailored self-assembling peptides) either tested in in vivo animal models or developed in vitro with potential application in the field of tissue engineering, with the aim to inspire researchers to take on such promising platforms for clinical applications in the near future.
Collapse
Affiliation(s)
- Amanda Marchini
- Tissue Engineering Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies-ISBReMIT, Fondazione IRCSS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Fabrizio Gelain
- Tissue Engineering Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies-ISBReMIT, Fondazione IRCSS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.,Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| |
Collapse
|
6
|
McCreery KP, Xu X, Scott AK, Fajrial AK, Calve S, Ding X, Neu CP. Nuclear Stiffness Decreases with Disruption of the Extracellular Matrix in Living Tissues. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006699. [PMID: 33470544 PMCID: PMC7891867 DOI: 10.1002/smll.202006699] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/04/2020] [Indexed: 05/04/2023]
Abstract
Reciprocal interactions between the cell nucleus and the extracellular matrix lead to macroscale tissue phenotype changes. However, little is known about how the extracellular matrix environment affects gene expression and cellular phenotype in the native tissue environment. Here, it is hypothesized that enzymatic disruption of the tissue matrix results in a softer tissue, affecting the stiffness of embedded cell and nuclear structures. The aim is to directly measure nuclear mechanics without perturbing the native tissue structure to better understand nuclear interplay with the cell and tissue microenvironments. To accomplish this, an atomic force microscopy needle-tip probe technique that probes nuclear stiffness in cultured cells to measure the nuclear envelope and cell membrane stiffness within native tissue is expanded. This technique is validated by imaging needle penetration and subsequent repair of the plasma and nuclear membranes of HeLa cells stably expressing the membrane repair protein CHMP4B-GFP. In the native tissue environment ex vivo, it is found that while enzymatic degradation of viable cartilage tissues with collagenase 3 (MMP-13) and aggrecanase-1 (ADAMTS-4) decreased tissue matrix stiffness, cell and nuclear membrane stiffness is also decreased. Finally, the capability for cell and nucleus elastography using the AFM needle-tip technique is demonstrated. These results demonstrate disruption of the native tissue environment that propagates to the plasma membrane and interior nuclear envelope structures of viable cells.
Collapse
Affiliation(s)
- Kaitlin P. McCreery
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA
| | - Xin Xu
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA
| | - Adrienne K. Scott
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA
| | - Apresio K. Fajrial
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA
| | - Sarah Calve
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Xiaoyun Ding
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA
| | - Corey P. Neu
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA
- Address correspondence to
| |
Collapse
|
7
|
Ocken AR, Ku MM, Kinzer-Ursem TL, Calve S. Perlecan Knockdown Significantly Alters Extracellular Matrix Composition and Organization During Cartilage Development. Mol Cell Proteomics 2020; 19:1220-1235. [PMID: 32381549 PMCID: PMC7338092 DOI: 10.1074/mcp.ra120.001998] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/05/2020] [Indexed: 02/05/2023] Open
Abstract
Perlecan is a critical proteoglycan found in the extracellular matrix (ECM) of cartilage. In healthy cartilage, perlecan regulates cartilage biomechanics and we previously demonstrated perlecan deficiency leads to reduced cellular and ECM stiffness in vivo This change in mechanics may lead to the early onset osteoarthritis seen in disorders resulting from perlecan knockdown such as Schwartz-Jampel syndrome (SJS). To identify how perlecan knockdown affects the material properties of developing cartilage, we used imaging and liquid chromatography-tandem mass spectrometry (LC-MS/MS) to study the ECM in a murine model of SJS, Hspg2C1532Y-Neo Perlecan knockdown led to defective pericellular matrix formation, whereas the abundance of bulk ECM proteins, including many collagens, increased. Post-translational modifications and ultrastructure of collagens were not significantly different; however, LC-MS/MS analysis showed more protein was secreted by Hspg2C1532Y-Neo cartilage in vitro, suggesting that the incorporation of newly synthesized ECM was impaired. In addition, glycosaminoglycan deposition was atypical, which may explain the previously observed decrease in mechanics. Overall, these findings provide insight into the influence of perlecan on functional cartilage assembly and the progression of osteoarthritis in SJS.
Collapse
Affiliation(s)
- Alexander R Ocken
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Madeline M Ku
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | | | - Sarah Calve
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana.
| |
Collapse
|