1
|
de Li M, Yang J, Wu X, Chen SS. miR-21-5p Targets PIK3R1 to Regulate the NF- κB Signaling Pathway, Inhibiting the Invasion and Progression of Prolactinoma. Int J Endocrinol 2025; 2025:7741091. [PMID: 39949569 PMCID: PMC11824381 DOI: 10.1155/ije/7741091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 10/15/2024] [Accepted: 11/29/2024] [Indexed: 02/16/2025] Open
Abstract
Prolactinomas (PRLs) are benign tumors with malignant characteristics that can invade the surrounding tissue structures and are challenging to treat. It has been reported that miR-21-5p expression in pituitary adenomas is correlated with tumor invasion and size. However, the mechanism of action of miR-21-5p in PRL remains unclear. Dysregulation of the phosphoinositide-3-kinase (PI3K) regulatory Subunit 1 pathway occurs frequently in cancer and plays an important role in tumor progression as an important component of the PI3K pathway. However, the role of PIK3R1 in PRL and its regulatory mechanism are unknown. In this study, we first explored the effect of miR-21-5p in PRL and then confirmed that PIK3R1 is a direct target of miR-21-5p using bioinformatics and cellular experiments. Subsequent in vitro experiments demonstrated that overexpression of PIK3R1 significantly attenuated the biological effects of miR-21-5p in PRL cells, such as promoting proliferation and invasion. Finally, we explored the mechanism by which PIK3R1 affects PRL progression and found that the inhibition of IκBa degradation by PIK3R1 impacts PRL progression via the miR-21-5p/PIK3R1/MMP pathway.
Collapse
Affiliation(s)
- Min de Li
- Department of Rehabilitation Medicine, Affiliated Rehabilitation Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Juan Yang
- Department of Rehabilitation Medicine, Affiliated Rehabilitation Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xiao Wu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Shang Si Chen
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
2
|
Yamamoto K, Chiba M. MicroRNA‑21‑5p expression in extracellular vesicles is increased in the blood of aging mice and in vascular endothelial cells induced by ionizing radiation. Exp Ther Med 2025; 29:22. [PMID: 39650777 PMCID: PMC11621913 DOI: 10.3892/etm.2024.12772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/25/2024] [Indexed: 12/11/2024] Open
Abstract
In recent years, the Japanese population has been aging and the risk of contracting various age-related diseases has increased. Thus, there is a need to analyze components that are characteristic of aging and examine their association with diseases to detect age-related diseases at an early stage. In the present study, microRNAs (miRNAs/miRs) in serum extracellular vesicles (EVs) of 82-102-week-old mice were analyzed to identify miRNAs characteristic of aging. Increased expression of mmu-miR-21a-5p was observed. These miRNAs may be derived from senescent vascular endothelial cells, and RNA-sequencing data (GSE130727) of HUVECs induced to senesce by 4 Gy of radiation revealed that the miRNAs were involved in the cell cycle and DNA repair. Annotations to senescence-related pathways were also identified. Reduced expression of the miR-21-5p target gene, which has an identical sequence in humans and mice, was confirmed. In HUVECs induced to age under similar conditions, increased senescence-associated β-galactosidase activity and increased intracellular miR-21-5p expression were observed. A portion of the miR-21-5p was secreted extracellularly by internalizing tetraspanin-positive EVs, and miR-21-5p was secreted into the extracellular space. The present study also demonstrated that miR-21-5p expression was upregulated and extracellular secretion of miR-21-5p was enhanced during vascular endothelial cell senescence. These findings suggested that increased serum miR-21-5p represents a biomarker for vascular endothelial cell senescence.
Collapse
Affiliation(s)
- Keisuke Yamamoto
- Department of Bioscience and Laboratory Medicine, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Mitsuru Chiba
- Department of Bioscience and Laboratory Medicine, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
- Research Center for Biomedical Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| |
Collapse
|
3
|
Komitova KS, Dimitrov LD, Stancheva GS, Kyurkchiyan SG, Petkova V, Dimitrov SI, Skelina SP, Kaneva RP, Popov TM. A Critical Review on microRNAs as Prognostic Biomarkers in Laryngeal Carcinoma. Int J Mol Sci 2024; 25:13468. [PMID: 39769234 PMCID: PMC11676902 DOI: 10.3390/ijms252413468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 01/03/2025] Open
Abstract
During the past decade, a vast number of studies were dedicated to unravelling the obscurities of non-coding RNAs in all fields of the medical sciences. A great amount of data has been accumulated, and consequently a natural need for organization and classification in all subfields arises. The aim of this review is to summarize all reports on microRNAs that were delineated as prognostic biomarkers in laryngeal carcinoma. Additionally, we attempt to allocate and organize these molecules according to their association with key pathways and oncogenes affected in laryngeal carcinoma. Finally, we critically analyze the common shortcomings and biases of the methodologies in some of the published papers in this area of research. A literature search was performed using the PubMed and MEDLINE databases with the keywords "laryngeal carcinoma" OR "laryngeal cancer" AND "microRNA" OR "miRNA" AND "prognostic marker" OR "prognosis". Only research articles written in English were included, without any specific restrictions on study type. We have found 43 articles that report 39 microRNAs with prognostic value associated with laryngeal carcinoma, and all of them are summarized along with the major characteristics and methodology of the respective studies. A second layer of the review is structural analysis of the outlined microRNAs and their association with oncogenes and pathways connected with the cell cycle (p53, CCND1, CDKN2A/p16, E2F1), RTK/RAS/PI3K cascades (EGFR, PI3K, PTEN), cell differentiation (NOTCH, p63, FAT1), and cell death (FADD, TRAF3). Finally, we critically review common shortcomings in the methodology of the papers and their possible effect on their results.
Collapse
Affiliation(s)
| | | | | | | | - Veronika Petkova
- Molecular Medicine Center, Medical University, 1000 Sofia, Bulgaria
| | | | | | - Radka P. Kaneva
- Molecular Medicine Center, Medical University, 1000 Sofia, Bulgaria
| | - Todor M. Popov
- Department of ENT, Medical University, 1000 Sofia, Bulgaria
| |
Collapse
|
4
|
Yao Y, Zhou R, Yang G, Ji B, Li Y, Zhang J. Research trends and foci in chondrosarcoma: A bibliometric and network analysis. Medicine (Baltimore) 2024; 103:e40403. [PMID: 39533576 PMCID: PMC11557003 DOI: 10.1097/md.0000000000040403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Chondrosarcoma is 1 of the most common malignant bone tumors, with dedicated research being conducted by scientists worldwide. The purpose of this study was to guide researchers in identifying valuable scholars, institutions, and countries, provide recommendations for journal submissions, and explore research trends and hotspots in chondrosarcoma studies through literature analysis. Data for this study were collected from the Web of Science Core Collection website. The R package bibliometrix was utilized for citation metrics analysis, VOSviewer for network analysis, and CiteSpace for generating keywords citation burst maps. The analysis focused on publications from 2000 to 2023, identifying trends, authorship patterns, and collaboration networks. A total of 2085 articles were initially identified, but after excluding non-English articles and those outside the study's time range, 2022 articles were included. The field comprised 9954 author records, with an average of 6.37 coauthors per document and 13.9% international co-authorships. Publications in chondrosarcoma research have shown an average annual growth rate of 3.9%. The most influential author identified was Tang Chih-Hsin from China Medical University. Significant contributions came from China Medical University and Leiden University, with China showing a dramatic increase in publications while the United States maintained a leading position in the field. The study highlights an increasing trend in chondrosarcoma research publications and identifies key contributors and institutions. Cancer emerged as 1 of the most influential journals in the field. Future research is likely to focus on targeted therapy for refractory chondrosarcomas, indicating a potential new hotspot in the ongoing efforts to understand and treat this malignancy.
Collapse
Affiliation(s)
- Yuming Yao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Geriatrics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ruhao Zhou
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue injury repair, Taiyuan, Shanxi, China
| | - Guang Yang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Geriatrics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bingzhou Ji
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Geriatrics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Geriatrics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jun Zhang
- Department of Orthopedics, Changde Hospital, Xiangya School of Medicine, Central South University (The First People’s Hospital of Changde City), Changde, Hunan, China
| |
Collapse
|
5
|
Zeng H, Zhou Y, Liu Z, Liu W. MiR-21-5p modulates LPS-induced acute injury in alveolar epithelial cells by targeting SLC16A10. Sci Rep 2024; 14:11160. [PMID: 38750066 PMCID: PMC11096310 DOI: 10.1038/s41598-024-61777-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024] Open
Abstract
Sepsis is a systemic inflammatory response syndrome resulting from the invasion of the human body by bacteria and other pathogenic microorganisms. One of its most prevalent complications is acute lung injury, which places a significant medical burden on numerous countries and regions due to its high morbidity and mortality rates. MicroRNA (miRNA) plays a critical role in the body's inflammatory response and immune regulation. Recent studies have focused on miR-21-5p in the context of acute lung injury, but its role appears to vary in different models of this condition. In the LPS-induced acute injury model of A549 cells, there is differential expression, but the specific mechanism remains unclear. Therefore, our aim is to investigate the changes in the expression of miR-21-5p and SLC16A10 in a type II alveolar epithelial cell injury model induced by LPS and explore the therapeutic effects of their targeted regulation. A549 cells were directly stimulated with 10 µg/ml of LPS to construct a model of LPS-induced cell injury. Cells were collected at different time points and the expression of interleukin 1 beta (IL-1β), tumor necrosis factor-α (TNF-α) and miR-21-5p were measured by RT-qPCR and western blot. Then miR-21-5p mimic transfection was used to up-regulate the expression of miR-21-5p in A549 cells and the expression of IL-1β and TNF-α in each group of cells was measured by RT-qPCR and western blot. The miRDB, TargetScan, miRWalk, Starbase, Tarbase and miR Tarbase databases were used to predict the miR-21-5p target genes and simultaneously, the DisGeNet database was used to search the sepsis-related gene groups. The intersection of the two groups was taken as the core gene. Luciferase reporter assay further verified SLC16A10 as the core gene with miR-21-5p. The expression of miR-21-5p and SLC16A10 were regulated by transfection or inhibitors in A549 cells with or without LPS stimulation. And then the expression of IL-1β and TNF-α in A549 cells was tested by RT-qPCR and western blot in different groups, clarifying the role of miR-21-5p-SLC16A10 axis in LPS-induced inflammatory injury in A549 cells. (1) IL-1β and TNF-α mRNA and protein expression significantly increased at 6, 12, and 24 h after LPS stimulation as well as the miR-21-5p expression compared with the control group (P < 0.05). (2) After overexpression of miR-21-5p in A549 cells, the expression of IL-1β and TNF-α was significantly reduced after LPS stimulation, suggesting that miR-21-5p has a protection against LPS-induced injury. (3) The core gene set, comprising 51 target genes of miR-21-5p intersecting with the 1448 sepsis-related genes, was identified. This set includes SLC16A10, TNPO1, STAT3, PIK3R1, and FASLG. Following a literature review, SLC16A10 was selected as the ultimate target gene. Dual luciferase assay results confirmed that SLC16A10 is indeed a target gene of miR-21-5p. (4) Knocking down SLC16A10 expression by siRNA significantly reduced the expression of IL-1β and TNF-α in A549 cells after LPS treatment (P < 0.05). (5) miR-21-5p inhibitor increased the expression levels of IL-1β and TNF-α in A549 cells after LPS stimulation (P < 0.05). In comparison to cells solely transfected with miR-21-5p inhibitor, co-transfection of miR-21-5p inhibitor and si-SLC6A10 significantly reduced the expression of IL-1β and TNF-α (P < 0.05). MiR-21-5p plays a protective role in LPS-induced acute inflammatory injury of A549 cells. By targeting SLC16A10, it effectively mitigates the inflammatory response in A549 cells induced by LPS. Furthermore, SLC16A10 holds promise as a potential target for the treatment of acute lung injury.
Collapse
Affiliation(s)
- Huanan Zeng
- Emergency Department, The First Hospital of China Medical University, No.155 of North Street Nanjing, Heping District, Shenyang, 110001, Liaoning, China
| | - Yuqing Zhou
- Emergency Department, The First Hospital of China Medical University, No.155 of North Street Nanjing, Heping District, Shenyang, 110001, Liaoning, China
| | - Zhi Liu
- Emergency Department, The First Hospital of China Medical University, No.155 of North Street Nanjing, Heping District, Shenyang, 110001, Liaoning, China.
| | - Wei Liu
- Emergency Department, The First Hospital of China Medical University, No.155 of North Street Nanjing, Heping District, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
6
|
Zhao Q, Li D, Feng J, Jinsihan D. MiR-600 mediates EZH2/RUNX3 signal axis to modulate breast cancer cell viability and sorafenib sensitivity. J Biochem Mol Toxicol 2024; 38:e23613. [PMID: 38229326 DOI: 10.1002/jbt.23613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 01/18/2024]
Abstract
Breast cancer (BC) ranks as the most prevalent gynecologic tumor globally. Abnormal expression of miRNAs is concerned with the development of cancers such as BC. However, little is known about the role of miR-600 in BC. This work aimed to explore the role of miR-600 in the malignant progression and sorafenib sensitivity of BC cells. Expression and interaction of miR-600/EZH2/RUNX3 were analyzed by bioinformatics. qRT-PCR was utilized to assay RNA expression of miR-600 and mRNA expression of EZH2/RUNX3. The binding relationship between miR-600 and EZH2 was tested by dual luciferase assay and RNA immunoprecipitation (RIP). The effects of miR-600/EZH2/RUNX3 axis on the malignant behavior and sorafenib sensitivity of BC cells were detected by CCK-8 and colony formation assay. Low expression of miR-600 and RUNX3 in BC was found by bioinformatics and molecular assays. High expression of EZH2 in BC was negatively correlated with RUVX3. Dual luciferase assay and RIP demonstrated that MiR-600 could bind to EZH2. Cell assays displayed that miR-600 knockdown could foster the malignant progression of BC cells and reduce the sensitivity of BC cells to sorafenib. EZH2 knockdown or RUNX3 overexpression could offset the effect of miR-600 inhibitor on the malignant behavior and sorafenib sensitivity of BC cells. MiR-600 can hinder the malignant behavior of BC cells and foster sensitivity of BC cells to sorafenib via EZH2/RUNX3 axis, exhibiting the miR-600/EZH2/RUNX3 axis as a feasible therapeutic target for BC patients.
Collapse
Affiliation(s)
- Qian Zhao
- Department of Breast Surgery, The Affiliated Tumor Hospital of Xinjiang, Urumqi, China
| | - Dan Li
- Department of Breast Surgery, The Affiliated Tumor Hospital of Xinjiang, Urumqi, China
| | - Jinchun Feng
- Department of Breast Surgery, The Affiliated Tumor Hospital of Xinjiang, Urumqi, China
| | - Dilixiati Jinsihan
- Department of Breast Surgery, The Affiliated Tumor Hospital of Xinjiang, Urumqi, China
| |
Collapse
|
7
|
Xiang B, Li Y, Li J, Zhang B, Li J, Jiang H, Zhang Q. MiR-21 regulated hair follicle cycle development in Cashmere goats by targeting FGF18 and SMAD7. Anim Biotechnol 2023; 34:4695-4702. [PMID: 36897050 DOI: 10.1080/10495398.2023.2186891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Increasing Cashmere production can add value because it is the primary product of Cashmere goats. Recent years, peoples find miRNAs are crucial in regulating the development of hair follicle. Following Solexa sequencing, many miRNAs were distinguishingly expressed in telogen skin samples of goats and sheep in earlier study. But the method through which miR-21 controls the growth of hair follicles is still ambiguous. Bioinformatics analysis was used to predict the target genes of miR-21. The mRNA level of miR-21 in telogen Cashmere goat skins was higher than in anagen, according to the results of qRT-PCR, and the target genes expressed similarly with miR-21. Western blot showed similar trend, the protein expression of FGF18 and SMAD7 were lower in anagen samples. The Dual-Luciferase reporter assay confirmed miRNA-21's relationship with its target gene, and the consequences indicated found FGF18 and SMAD7 have positive correlations with miR-21. Western blot and qRT-PCR distinguished the expression of protein and mRNA in miR-21 and its target genes. According to the consequence, we found that target genes expression was increased by miR-21 in HaCaT cells. This study identified that miR-21 might take part in the development of Cashmere goat's hair follicles by targeting FGF18 and SMAD7.
Collapse
Affiliation(s)
- Ba Xiang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yumei Li
- College of Animal Science and Technology, Jilin University, Changchun, China
| | - Jianping Li
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, China
| | - Baoyu Zhang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianyu Li
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - HuaiZhi Jiang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - QiaoLing Zhang
- College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
8
|
Astragalus polysaccharides combined with Codonopsis pilosula polysaccharides modulates the physiological characteristics of trophoblasts via miR-92a-1–5p/CCR7 axis. Tissue Cell 2022; 77:101827. [DOI: 10.1016/j.tice.2022.101827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 11/19/2022]
|
9
|
Sadrkhanloo M, Entezari M, Orouei S, Ghollasi M, Fathi N, Rezaei S, Hejazi ES, Kakavand A, Saebfar H, Hashemi M, Goharrizi MASB, Salimimoghadam S, Rashidi M, Taheriazam A, Samarghandian S. STAT3-EMT axis in tumors: Modulation of cancer metastasis, stemness and therapy response. Pharmacol Res 2022; 182:106311. [PMID: 35716914 DOI: 10.1016/j.phrs.2022.106311] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/08/2022] [Accepted: 06/12/2022] [Indexed: 02/07/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) mechanism is responsible for metastasis of tumor cells and their spread to various organs and tissues of body, providing undesirable prognosis. In addition to migration, EMT increases stemness and mediates therapy resistance. Hence, pathways involved in EMT regulation should be highlighted. STAT3 is an oncogenic pathway that can elevate growth rate and migratory ability of cancer cells and induce drug resistance. The inhibition of STAT3 signaling impairs cancer progression and promotes chemotherapy-mediated cell death. Present review focuses on STAT3 and EMT interaction in modulating cancer migration. First of all, STAT3 is an upstream mediator of EMT and is able to induce EMT-mediated metastasis in brain tumors, thoracic cancers and gastrointestinal cancers. Therefore, STAT3 inhibition significantly suppresses cancer metastasis and improves prognosis of patients. EMT regulators such as ZEB1/2 proteins, TGF-β, Twist, Snail and Slug are affected by STAT3 signaling to stimulate cancer migration and invasion. Different molecular pathways such as miRNAs, lncRNAs and circRNAs modulate STAT3/EMT axis. Furthermore, we discuss how STAT3 and EMT interaction affects therapy response of cancer cells. Finally, we demonstrate targeting STAT3/EMT axis by anti-tumor agents and clinical application of this axis for improving patient prognosis.
Collapse
Affiliation(s)
- Mehrdokht Sadrkhanloo
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sima Orouei
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Marzieh Ghollasi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Nikoo Fathi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shamin Rezaei
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elahe Sadat Hejazi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Saebfar
- European University Association, League of European Research Universities, University of Milan, Italy
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
10
|
Mirzaei S, Saghari S, Bassiri F, Raesi R, Zarrabi A, Hushmandi K, Sethi G, Tergaonkar V. NF-κB as a regulator of cancer metastasis and therapy response: A focus on epithelial-mesenchymal transition. J Cell Physiol 2022; 237:2770-2795. [PMID: 35561232 DOI: 10.1002/jcp.30759] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/24/2022] [Accepted: 04/19/2022] [Indexed: 12/13/2022]
Abstract
Metastasis of tumor cells is a complex challenge and significantly diminishes the overall survival and prognosis of cancer patients. The epithelial-to-mesenchymal transition (EMT) is a well-known mechanism responsible for the invasiveness of tumor cells. A number of molecular pathways can regulate the EMT mechanism in cancer cells and nuclear factor-kappaB (NF-κB) is one of them. The nuclear translocation of NF-κB p65 can induce the transcription of several genes involved in EMT induction. The present review describes NF-κB and EMT interaction in cancer cells and their association in cancer progression. Due to the oncogenic role NF-κB signaling, its activation enhances metastasis of tumor cells via EMT induction. This has been confirmed in various cancers including brain, breast, lung and gastric cancers, among others. The ZEB1/2, transforming growth factor-β, and Slug as inducers of EMT undergo upregulation by NF-κB to promote metastasis of tumor cells. After EMT induction driven by NF-κB, a significant decrease occurs in E-cadherin levels, while N-cadherin and vimentin levels undergo an increase. The noncoding RNAs can potentially also function as upstream mediators and modulate NF-κB/EMT axis in cancers. Moreover, NF-κB/EMT axis is involved in mediating drug resistance in tumor cells. Thus, suppressing NF-κB/EMT axis can also promote the sensitivity of cancer cells to chemotherapeutic agents.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sam Saghari
- Department of Health Services Management, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Farzaneh Bassiri
- Department of Biology, Fars Science and Research Branch, Islamic Azad University, Fars, Iran.,Department of Biology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Rasoul Raesi
- PhD in Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology and Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Yong Loo Lin School of Medicine, NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
11
|
Allawe QH, Abed MQ, Abdullah HN. The possible effect of expressive plasma level of miRNA-21-5P on the serum level of IL-23 in with and without lupus nephritis patients. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2021.101422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Liu YP, Yang YD, Mou FF, Zhu J, Li H, Zhao TT, Zhao Y, Shao SJ, Cui GH, Guo HD. Exosome-Mediated miR-21 Was Involved in the Promotion of Structural and Functional Recovery Effect Produced by Electroacupuncture in Sciatic Nerve Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7530102. [PMID: 35132352 PMCID: PMC8817850 DOI: 10.1155/2022/7530102] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/24/2021] [Accepted: 01/05/2022] [Indexed: 12/11/2022]
Abstract
PURPOSE Our study is aimed at investigating the mechanism by which electroacupuncture (EA) promoted nerve regeneration by regulating the release of exosomes and exosome-mediated miRNA-21 (miR-21) transmission. Furthermore, the effects of Schwann cells- (SC-) derived exosomes on the overexpression of miR-21 for the treatment of PNI were investigated. METHODS A sciatic nerve injury model of rat was constructed, and the expression of miR-21 in serum exosomes and damaged local nerves was detected using RT-qPCR after EA treatment. The exosomes were identified under a transmission electron microscope and using western blotting analysis. Then, the exosome release inhibitor, GW4869, and the miR-21-5p-sponge used for the knockdown of miR-21 were used to clarify the effects of exosomal miR-21 on nerve regeneration promoted by EA. The nerve conduction velocity recovery rate, sciatic nerve function index, and wet weight ratio of gastrocnemius muscle were determined to evaluate sciatic nerve function recovery. SC proliferation and the level of neurotrophic factors were assessed using immunofluorescence staining, and the expression levels of SPRY2 and miR-21 were detected using RT-qPCR analysis. Subsequently, the transmission of exosomal miR-21 from SC to the axon was verified in vitro. Finally, the exosomes derived from the SC infected with the miR-21 overexpression lentivirus were collected and used to treat the rat SNI model to explore the therapeutic role of SC-derived exosomes overexpressing miR-21. RESULTS We found that EA inhibited the release of serum exosomal miR-21 in a PNI model of rats during the early stage of PNI, while it promoted its release during later stages. EA enhanced the accumulation of miR-21 in the injured nerve and effectively promoted the recovery of nerve function after PNI. The treatment effect of EA was attenuated when the release of circulating exosomes was inhibited or when miR-21 was downregulated in local injury tissue via the miR-21-5p-sponge. Normal exosomes secreted by SC exhibited the ability to promote the recovery of nerve function, while the overexpression of miR-21 enhanced the effects of the exosomes. In addition, exosomal miR-21 secreted by SC could promote neurite outgrowth in vitro. CONCLUSION Our results demonstrated the mechanism of EA on PNI from the perspective of exosome-mediated miR-21 transport and provided a theoretical basis for the use of exosomal miR-21 as a novel strategy for the treatment of PNI.
Collapse
Affiliation(s)
- Yu-pu Liu
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yi-duo Yang
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fang-fang Mou
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jing Zhu
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Han Li
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tian-tian Zhao
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yue Zhao
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shui-jin Shao
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guo-hong Cui
- Department of Neurology, Shanghai No. 9 People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Hai-dong Guo
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
13
|
Ge J, Yao Y, Jia H, Li P, Sun W. Inhibition of miR-21 ameliorates LPS-induced acute lung injury through increasing B cell lymphoma-2 expression. Innate Immun 2020; 26:693-702. [PMID: 32727244 PMCID: PMC7787552 DOI: 10.1177/1753425920942574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/06/2020] [Accepted: 06/22/2020] [Indexed: 02/02/2023] Open
Abstract
The aberrant expression of microRNAs (miRNAs) is associated with the pathogenesis of inflammation-related diseases. However, the biological functions of miR-21 in acute lung injury (ALI) remain largely unknown. In this study, the level of miR-21 was obviously increased, but B cell lymphoma-2 (Bcl-2) expression was markedly decreased in LPS-treated human pulmonary alveolar epithelial cells (HPAEpiC). Suppression of miR-21 attenuated LPS-induced apoptosis and inflammation in HPAEpiC and promoted the survival of mice with ALI by decreasing the inflammatory cell count, release of cytokines and permeability in lung tissues. Importantly, Bcl-2 was a direct target of miR-21, and its expression was significantly inhibited by miR-21 mimics at a post-transcriptional level. Besides, Bcl-2 over-expression reversed miR-21-induced apoptosis and inflammation status and showed synergic effects with miR-21 inhibitor in LPS-treated HPAEpiC. In conclusion, inhibition of miR-21 could ameliorate apoptosis and inflammation by restoring the expression of Bcl-2 in LPS-induced HPAEpiC and mice, which might provide therapeutic strategies for the treatment of ALI.
Collapse
Affiliation(s)
- Junke Ge
- Department of Intensive Care Unit, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, PR China
| | - Yanfen Yao
- Department of Intensive Care Unit, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, PR China
| | - Haiyan Jia
- Department of Intensive Care Unit, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, PR China
| | - Pibao Li
- Department of Intensive Care Unit, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, PR China
| | - Wei Sun
- Department of Intensive Care Unit, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, PR China
| |
Collapse
|