1
|
Cheng X, Yang J, Zhang C, Tang T, Zhao X, Ye Q. Carbon-14 labeled transformation of atrazine in soils: Comparison of superabsorbent hydrogel coating and technical material. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175584. [PMID: 39155004 DOI: 10.1016/j.scitotenv.2024.175584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Atrazine exhibits adverse effects on diverse organisms in both terrestrial and aquatic environments, even though it effectively targets specific organisms. This study employed superabsorbent hydrogels to coat 14C-atrazine coupled with a four-compartment model to determine the fate of this herbicide in three oxic soils over a 100-day incubation period. Mineralization of atrazine was limited in all soils, with rates remaining below 3.5 %. The encapsulation treatment reduced mineralization of atrazine in soil A and soil B. Bound residues ranged from 26.1 to 43.6 % at 100 d. The encapsulation treatment enhanced the degradation of atrazine and reduced the content of deethylatrazine in soil A, but significantly increased the content of deisopropylatrazine in soil A and hydroxyatrazine in soil C. Using the obtained data, we also constructed a four-compartment model to clarify the relationships among the parent compound, degradation products, bound residues, and mineralization. This model accurately fits the fate of atrazine in the present work. Additionally, the correlation study suggested that both soil parameters and superabsorbent hydrogels played significant roles in influencing atrazine transformation. These findings serve as a reference for evaluating the environmental impact of superabsorbent hydrogels in atrazine pollution reduction and offer a foundational model approach for a comprehensive understanding of organic pollutants.
Collapse
Affiliation(s)
- Xi Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China.
| | - Jingying Yang
- Radiolabeled DMPK & BA Laboratory, Pharmaron (Ningbo) Technology Development Co. Ltd., Ningbo 315336, PR China.
| | - Chunrong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Tao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China.
| | - Xueping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China.
| | - Qingfu Ye
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
2
|
Hu Y, Jiang Z, Hou A, Wang X, Zhou Z, Qin B, Cao B, Zhang Y. Impact of atrazine on soil microbial properties: A meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121337. [PMID: 36841420 DOI: 10.1016/j.envpol.2023.121337] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Atrazine is a biotoxic long-residing herbicide whose toxic effects on soil microorganisms have attracted widespread attention. However, previous studies on the effects of atrazine on soil microorganisms have yielded highly variable results. Therefore, a meta-analysis using a database containing 1141 data points from 39 peer-reviewed papers was conducted to illustrate the response of soil microorganisms to the application of atrazine. The results showed that the application of atrazine significantly increased soil microbial biomass and respiration by 8.9% and 26.77%, respectively, and decreased soil microbial diversity and enzyme activity by 4.87% and 24.04%, respectively. In addition, mixed-effect models were used to explain the influence of moderator variables, including water holding capacity, temperature, pH, organic carbon content, atrazine concentration, duration, and soil texture, on the results to help account for inconsistent conclusions. It was found that soil microbial biomass was significantly positively correlated with temperature, organic carbon content, atrazine concentration, clay content and silt content, while it was negatively correlated with pH and sand content. Soil microbial respiration was negatively correlated with pH and positively correlated with atrazine concentration. Soil microbial diversity was positively correlated with water holding capacity, pH, silt content and sand content, and negatively correlated with organic carbon content and clay content. Soil enzyme activity, the indicator that showed the largest decrease after atrazine application, was significantly positively correlated with water holding capacity, temperature, organic carbon content, and herbicide concentration; it was negatively correlated with soil pH. On the basis of these analysis results, we recommend that atrazine should not be allowed to persist in alkaline sandy soil for long periods of time, as this can result in atrazine having a significant negative impact on soil microorganisms.
Collapse
Affiliation(s)
- Yang Hu
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zhao Jiang
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Anqi Hou
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xiaodong Wang
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ziqian Zhou
- College of Life Science, Northeast Forestry University, Harbin, 150040, PR China
| | - Bo Qin
- College of Life Science, Northeast Forestry University, Harbin, 150040, PR China
| | - Bo Cao
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ying Zhang
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
3
|
Alberto D, Couée I, Sulmon C, Gouesbet G. Root-level exposure reveals multiple physiological toxicity of triazine xenobiotics in Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2017; 212:105-114. [PMID: 28282526 DOI: 10.1016/j.jplph.2017.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 06/06/2023]
Abstract
Herbicides are pollutants of great concern due to environmental ubiquity resulting from extensive use in modern agriculture and persistence in soil and water. Studies at various spatial scales have also highlighted frequent occurrences of major herbicide breakdown products in the environment. Analysis of plant behavior toward such molecules and their metabolites under conditions of transient or persistent soil pollution is important for toxicity evaluation in the context of environmental risk assessment. In order to understand the mechanisms underlying the action of such environmental contaminants, the model plant Arabidopsis thaliana, which has been shown to be highly responsive to pesticides and other xenobiotics, was confronted with varying levels of the widely-used herbicide atrazine and of two of its metabolites, desethylatrazine and hydroxyatrazine, which are both frequently detected in water streams of agriculturally-intensive areas. After 24h of exposure to varying concentrations covering the range of triazine concentrations detected in the environment, root-level contaminations of atrazine, desethylatrazine and hydroxyatrazine were found to affect early growth and development in various dose-dependent and differential manners. Moreover, these differential effects of atrazine, desethylatrazine and hydroxyatrazine pointed to the involvement of distinct mechanisms directly affecting respiration and root development. The consequences of the identification of additional targets, in addition to the canonical photosystem II target, are discussed in relation with the ecotoxicological assessment of environmental xenobiotic contamination.
Collapse
Affiliation(s)
- Diana Alberto
- Université de Rennes 1, Centre National de la Recherche Scientifique, UMR CNRS 6553 ECOBIO, Campus de Beaulieu, bâtiment 14A, 263 avenue du Général Leclerc, F-35042 Rennes Cedex, France
| | - Ivan Couée
- Université de Rennes 1, Centre National de la Recherche Scientifique, UMR CNRS 6553 ECOBIO, Campus de Beaulieu, bâtiment 14A, 263 avenue du Général Leclerc, F-35042 Rennes Cedex, France
| | - Cécile Sulmon
- Université de Rennes 1, Centre National de la Recherche Scientifique, UMR CNRS 6553 ECOBIO, Campus de Beaulieu, bâtiment 14A, 263 avenue du Général Leclerc, F-35042 Rennes Cedex, France.
| | - Gwenola Gouesbet
- Université de Rennes 1, Centre National de la Recherche Scientifique, UMR CNRS 6553 ECOBIO, Campus de Beaulieu, bâtiment 14A, 263 avenue du Général Leclerc, F-35042 Rennes Cedex, France
| |
Collapse
|
4
|
Yale RL, Sapp M, Sinclair CJ, Moir JWB. Microbial changes linked to the accelerated degradation of the herbicide atrazine in a range of temperate soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:7359-7374. [PMID: 28108915 PMCID: PMC5383679 DOI: 10.1007/s11356-017-8377-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 01/03/2017] [Indexed: 05/11/2023]
Abstract
Accelerated degradation is the increased breakdown of a pesticide upon its repeated application, which has consequences for the environmental fate of pesticides. The herbicide atrazine was repeatedly applied to soils previously untreated with s-triazines for >5 years. A single application of atrazine, at an agriculturally relevant concentration, was sufficient to induce its rapid dissipation. Soils, with a range of physico-chemical properties and agricultural histories, showed similar degradation kinetics, with the half-life of atrazine decreasing from an average of 25 days after the first application to <2 days after the second. A mathematical model was developed to fit the atrazine-degrading kinetics, which incorporated the exponential growth of atrazine-degrading organisms. Despite the similar rates of degradation, the repertoire of atrazine-degrading genes varied between soils. Only a small portion of the bacterial community had the capacity for atrazine degradation. Overall, the microbial community was not significantly affected by atrazine treatment. One soil, characterised by low pH, did not exhibit accelerated degradation, and atrazine-degrading genes were not detected. Neutralisation of this soil restored accelerated degradation and the atrazine-degrading genes became detectable. This illustrates the potential for accelerated degradation to manifest when conditions become favourable. Additionally, the occurrence of accelerated degradation under agriculturally relevant concentrations supports the consideration of the phenomena in environmental risk assessments.
Collapse
Affiliation(s)
- R. L. Yale
- CRD, Mallard House, 3 Peasholme Green, York, YO1 7PX UK
- Department of Biology, University of York, Heslington, York, YO10 5DD UK
- FERA Science Ltd., Sand Hutton, York, YO41 1LZ UK
| | - M. Sapp
- FERA Science Ltd., Sand Hutton, York, YO41 1LZ UK
- Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, NRW Germany
| | | | - J. W. B. Moir
- Department of Biology, University of York, Heslington, York, YO10 5DD UK
| |
Collapse
|
5
|
Khandarkhaeva MS, Aseev DG, Sizykh MR, Batoeva AA. Oxidation of atrazine by photoactivated potassium persulfate in aqueous solutions. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2016. [DOI: 10.1134/s003602441611011x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Bioremediation strategies for removal of residual atrazine in the boreal groundwater zone. Appl Microbiol Biotechnol 2015; 99:10249-59. [DOI: 10.1007/s00253-015-6828-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/02/2015] [Accepted: 07/07/2015] [Indexed: 10/23/2022]
|
7
|
Choi HJ, Kim D, Lee TJ. Photochemical degradation of atrazine in UV and UV/H2O2 process: pathways and toxic effects of products. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2013; 48:927-34. [PMID: 23998304 DOI: 10.1080/03601234.2013.816587] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The degradation of atrazine in aqueous solution by UV or UV/H2O2 processes, and the toxic effects of the degradation products were explored. The mineralization of atrazine was not observed in the UV irradiation process, resulting in the production of hydroxyatrazine (OIET) as the final product. In the UV/H2O2 process, the final product was ammeline (OAAT), which was obtained by two different pathways of reaction: dechlorination followed by hydroxylation, and the de-alkylation of atrazine. The by-products of the reaction of dechlorination followed by hydroxylation were OIET and hydroxydeethyl atrazine (OIAT), and those of de-alkylation were deisopropyl atrazine (CEAT), deethyl atrazine (CIAT), and deethyldeisopropyl atrazine (CAAT). OIAT and OAAT appeared to be quite stable in the degradation of atrazine by the UV/H2O2 process. In a toxicity test using Daphnia magna, the acute toxic unit (TUa) was less than 1 of TUa (100/EC50, %) in the UV/H2O2 process after 30 min of reaction time, while 1.2 to 1.3 of TUa was observed in the UV process. The TUa values of atrazine and the degradation products have the following decreasing order: OIET> Atrazine> CEAT≈CIAT> CAAT. OIAT and OAAT did not show any toxic effects.
Collapse
Affiliation(s)
- Hyun-Jin Choi
- Research Strategy & Planning Division, National Institute of Environmental Research, Incheon, Republic of Korea
| | | | | |
Collapse
|