1
|
Soltani M, Soltani M, Karami-Mohajeri S, Mohadesi A, Ranjbar M, Oghabian Z, Mehrpour O, Khosravi F. An interdisciplinary approach to assessing the toxicity reduction of cerium oxide nanoparticles coated with polyethylene glycol and polyvinylpyrrolidone polymers: An in vitro study. Toxicol In Vitro 2025; 105:106022. [PMID: 39986636 DOI: 10.1016/j.tiv.2025.106022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/18/2025] [Accepted: 02/07/2025] [Indexed: 02/24/2025]
Abstract
OBJECTIVE This study combines toxicology, analytical chemistry, and nanotechnology to develop cerium oxide nanoparticles, both uncoated and coated with Polyethylene Glycol and Polyvinylpyrrolidone polymers. The objective is to assess their toxicity reduction using cell-based assays. METHODS Nanoparticles were synthesized using the co-precipitation technique. Scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and dynamic light scattering (DLS) were employed to characterize their properties. The MTT assay evaluated cell viability, whereas reactive oxygen species and LPO assays were used to quantify oxidative stress. FINDINGS The chemical analysis of nanoparticles of the study revealed that cerium oxide nanoparticles exhibited better and more regular morphological characteristics compared to nanoparticles coated with PEG and PVP polymers in terms of size. In addition, cerium oxide nanoparticles combined with PVP polymer did not retain the morphology at the nano level. Toxicological studies demonstrated a reduction in the toxicity of cerium oxide nanoparticles when coated with PEG and PVP polymers. DISCUSSION AND CONCLUSION The study found that PEG coating significantly reduces the cytotoxicity of cerium oxide nanoparticles more effectively than PVP coating by mitigating oxidative stress. This approach presents a promising strategy for developing safer cerium oxide-based products for pharmaceutical and medical applications.
Collapse
Affiliation(s)
- Mohadeseh Soltani
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, 76175-14111 Kerman, Iran
| | - Motahareh Soltani
- Pistachio Safety Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Somayyeh Karami-Mohajeri
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran; Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Alireza Mohadesi
- Department of Chemistry, Payame Noor University, Tehran 19395-4697, Iran
| | - Mehdi Ranjbar
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Zohreh Oghabian
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Omid Mehrpour
- Michigan Poison & Drug Information Center, School of Medicine, Wayne State University, Detroit, MI 48202, USA
| | - Farshid Khosravi
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
2
|
Raeisi Estabragh MA, Behnam B, Torkzadeh-Mahani M, Pardakhty A. Niosome as a Drug Delivery Carrier for Sorafenib: Preparation, Investigation of Physicochemical Properties, and In Vitro Effects on HepG2 Cell Line. Adv Pharm Bull 2024; 14:836-845. [PMID: 40190669 PMCID: PMC11970492 DOI: 10.34172/apb.43228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 04/09/2025] Open
Abstract
Purpose Sorafenib is known as one of the oral anti-cancer drugs used in liver cancer. However, its lipophilic nature can lead to side effects, variable pharmacokinetics, and poor absorption. The use of novel drug delivery systems, such as niosomes, may help address these issues and improve the effectiveness of sorafenib. Methods Different niosomal formulations of sorafenib were prepared. The morphology, size analysis, and physical stability were investigated. The encapsulation efficiency percent of the selected formulations was measured using the dialysis method, and the release of sorafenib was checked for four hours using the Franz diffusion cell. The cytotoxicity and in vitro effect on the HepG2 cell line was investigated using the MTT assay and flow cytometry. Results The mean volume diameter of Span 60/Tween 60/cholesterol (45/45/10 mole%) niosomal formulation was 6 µm with minimal size changes and good stability over six months of storage. The encapsulation efficiency percent of this formulation was 66.40±1.11, and 61.43±1.42 percent of the drug was released within 4 hours. In vitro release followed Higuchi kinetics. Cytotoxicity tests showed an IC50 of 7.5 µg/mL for the niosomal formulation, compared to 15.96 µg/mL for the sorafenib solution. Conclusion Niosomes containing Span 60/ Tween 60/ cholesterol (45/45/10 mole%) are promising for loading and sustained release of sorafenib. The use of niosome as a carrier can enhance the effectiveness of sorafenib on the HepG2 cell line. This niosomal formulation of sorafenib shows potential for future studies.
Collapse
Affiliation(s)
- Mohammad Amin Raeisi Estabragh
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Behzad Behnam
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoud Torkzadeh-Mahani
- Department of Biotechnology, Institute of Science, High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
3
|
Mohamed Azar KAH, Ezhilarasan D, Shree Harini K. Coleus vettiveroides ethanolic root extract induces cytotoxicity by intrinsic apoptosis in HepG2 cells. J Appl Toxicol 2024; 44:245-259. [PMID: 37661188 DOI: 10.1002/jat.4536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 09/05/2023]
Abstract
Hepatocellular carcinoma (HCC) contributes to more than 80% of all primary cancers globally and ranks fourth in cancer-related deaths, due to the lack of an effective, definite therapeutic drug. Coleus vettiveroides (CV) has been used in Indian traditional medicine to treat diabetes, liver ailments, skin diseases, leukoderma, and leprosy. This study investigates the anticancer effect of CV ethanolic root extract in HepG2 cells. HepG2 cells were treated with CV extract, and its cytotoxicity was analyzed by MTT assay. AO/EB staining, propidium iodide staining, DCFH-DA assay, phalloidine staining, flow cytometry, and qPCR studies were performed for ROS expression, apoptosis and cell cycle analysis. The phytochemical analysis confirmed the presence of quercetin and galangin in CV root extract. The results showed that CV inhibited the proliferation of HepG2 cells, with altered cellular and nuclear morphology. CV was also found to increase intracellular ROS levels and oxidative stress markers in HepG2 cells. CV significantly altered the actin microfilament distribution in HepG2 cells and caused cell cycle arrest at the sub G0 -G1 phase. CV also induced mitochondria-mediated apoptosis, as evidenced by increased expression of p53, Bax, cytochrome C, Apaf-1, PARP, caspase-3 and caspase-9, and downregulated Bcl-2 expression. Therefore, CV exerts its anticancer effect by inducing mitochondrial dysfunction, oxidative stress, cytoskeletal disorganization, cell cycle arrest, and mitochondria-mediated apoptosis, and it could be a potent therapeutic option for HCC.
Collapse
Affiliation(s)
- Kadmad Abdul Hameed Mohamed Azar
- Department of Pharmacology, Koppal Institute of Medical Sciences, Koppal, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Devaraj Ezhilarasan
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Karthik Shree Harini
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| |
Collapse
|
4
|
Farkhondeh T, Zardast M, Rajabi S, Abdollahi-Karizno M, Roshanravan B, Havangi J, Aschner M, Samarghandian S. Neuroprotective Effects of Curcumin against Chronic Chlorpyrifos- Induced Oxidative Damage in Rat Brain Tissue. Curr Aging Sci 2024; 17:205-209. [PMID: 38347791 DOI: 10.2174/0118746098244014240119112706] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 09/10/2024]
Abstract
BACKGROUND Chlorpyrifos (CPF) is an organophosphate pesticide that inhibits acetylcholinesterase (AChE) activity. Investigations have also focused on its neurotoxicity, which is independent of AChE inhibition. Here, we evaluated the effect of CPF on oxidative indices in the brain tissue and explored the protective effect of curcumin (Cur) against its toxicity. METHODS Forty male Wistar rats were divided into five groups, each consisting of eight rats (n = 8) per group. Animals were administrated by oral gavage for 90 days with the following treatments: control (C), CPF, CPF + CUR 25 mg/kg, CPF + CUR50, and CPF + cur 100 received olive oil, CPF, CPF plus 25 mg/kg of CUR, CPF plus 50 mg/kg of CUR, and CPF plus 100 mg/kg of CUR, respectively. After anesthetization, animal brain tissues were obtained for assessment of oxidative stress indices. RESULTS The concentration of MDA significantly increased in the brains of the CPF group as compared to the control group (p < 0.01). Also, a significant decrease in MDA concentrations was observed in the brains of rats in the CPF + Cur 100 group compared to the CPF group (p < 0.05). A significant decrease was noted in the GSH concentration in the brains of the CPF group compared to the control group (p < 0.05). Treatment with Cur at 100 mg/kg exhibited a significant increase in GSH concentrations in the brains of the CPF-exposed group compared to the CPF group without Cur administration (p < 0.05). The concentration of NO exhibited a significant increase in the brains of the CPF group when compared to the control group (p < 0.05). Also, a significant decrease in NO concentration was observed in the brain tissue of the CPF + Cur 100 group compared to the CPF group (p < 0.05). CONCLUSION Our data establish that chronic exposure to CPF induced oxidative stress in brain tissue, which was reversed by CUR administration. Additional experimental and clinical investigations are needed to validate the efficacy of CUR as a potential antidote for CPF poisoning.
Collapse
Affiliation(s)
- Tahereh Farkhondeh
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahmoud Zardast
- Department of Pathology, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Shahnaz Rajabi
- Department of Pathology, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Babak Roshanravan
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Jalal Havangi
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
5
|
Fghihi-Zarandi A, Dabaghzadeh F, Vaziri A, Karami-Mohajeri S, Ghorbaninejad B, Zamani A, Rahimi-Sadegh K. Occupational risk assessment of organophosphates with an emphasis on psychological and oxidative stress factors. Toxicol Ind Health 2022; 38:342-350. [PMID: 35513771 DOI: 10.1177/07482337221096315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Organophosphate pesticides (OPPs) are widely used all over the world in domestic and industrial settings, but these chemicals affect the nervous system, induce suicidal thoughts, depression and anxiety, and impair sleep quality. The purpose of this study was to investigate the relationship between the main toxicity mechanisms of OPPs, oxidative stress and cholinesterase inhibition, and psychological parameters in chronic exposure to OPPs. This cross-sectional study was conducted on 56 male OPPs factory workers as the worker group and 47 unexposed individuals within the same age range as the control group. Psychological factors were assessed using validated questionnaires. The activity of plasma cholinesterase and oxidative stress biomarkers, total antioxidant capacity of plasma, lipid peroxidation (LPO), and protein carbonylation were determined in blood samples by spectrophotometer. Sleep quality score in the factory workers was lower, and depression and suicidal ideation scores were higher than those in the control group. These factory workers showed 35% lower levels of plasma cholinesterase activity than did the controls. Compared to the control group, a significant impairment in oxidative stress biomarkers was also observed in the workers. Meanwhile, there was a significant relationship between the duration of employment and the level of LPO as well as a significant correlation between the quality of sleep and plasma cholinesterase in the workers. In conclusion, long-term exposure to OPPs could cause oxidative damages and neurobehavioral effects. The close monitoring of workplace exposure to organophosphates pesticides and also their respective solvents along with the reduction of working hours are of the necessities to avoid the adverse impacts of exposure to these pesticides.
Collapse
Affiliation(s)
- Ali Fghihi-Zarandi
- Department of Occupational Health Engineering, School of Public Health, 48463Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Dabaghzadeh
- Pharmaceutics Research Center, Institute of Neuropharmacology, 48463Kerman University of Medical Sciences, Kerman, Iran.,Departments of Toxicology and Pharmacology, School of Pharmacy, 48463Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Vaziri
- Department of Chemical and Petroleum Engineering, 68106Science and Research Branch of Islamic Azad, Tehran, Iran
| | - Somayyeh Karami-Mohajeri
- Departments of Toxicology and Pharmacology, School of Pharmacy, 48463Kerman University of Medical Sciences, Kerman, Iran.,Department of Chemical and Petroleum Engineering, 68106Science and Research Branch of Islamic Azad, Tehran, Iran
| | - Behnam Ghorbaninejad
- Departments of Toxicology and Pharmacology, School of Pharmacy, 48463Kerman University of Medical Sciences, Kerman, Iran
| | - Ahmadreza Zamani
- Vice_chancellery of Health, 48463Kerman University of Medical Sciences, Kerman, Iran
| | | |
Collapse
|