1
|
Himanshu, Behera B, Kumari N, Maruthi M, Singh RK, Saini JK. Appraisal of malachite green biodegradation and detoxification potential of laccase from Trametes cubensis. BIORESOURCE TECHNOLOGY 2025; 417:131869. [PMID: 39581477 DOI: 10.1016/j.biortech.2024.131869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
The laccase from the newly isolated Trametes cubensis was investigated for its potential to degrade malachite green (MG) dye. Optimized solid-substrate fermentation enhanced laccase production by 8.8-fold, reaching an activity of 6577.0 ± 14.3 U/g. Proteomic characterization identified enzyme with 4 % sequence coverage, molecular weight of 43.1 kDa, and alignment with multicopper oxidases. Using one-factor-at-a-time optimization, MG decolorization was maximized at 89 % under optimal conditions: 20 U/mL enzyme dose, 0.1 mg/mL dye concentration, pH 5.0, and 2 h incubation at 50 °C. Crosslinking the laccase onto chitosan beads resulted in 82 % immobilization efficiency, with high recyclability and reusability, retaining over 52 % activity after 7 cycles and demonstrating similar (p < 0.05) dye degradation potential. MG degradation products exhibited significantly reduced phyto-, cyto-, and microbial toxicity. The degradation pathway was elucidated using gas chromatography-mass spectrometry analysis. Thus, both free and immobilized laccase from T. cubensis offer sustainable tool for effective MG degradation with reduced toxicity.
Collapse
Affiliation(s)
- Himanshu
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana 123029, India
| | - Baishali Behera
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana 123029, India
| | - Neetu Kumari
- Department of Biochemistry, Central University of Haryana, Mahendergarh, Haryana 123029, India
| | - Mulaka Maruthi
- Department of Biochemistry, Central University of Haryana, Mahendergarh, Haryana 123029, India
| | - R K Singh
- Department of Botany, Rajiv Gandhi University, Doimukh, Arunachal Pradesh, India
| | - J K Saini
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana 123029, India.
| |
Collapse
|
2
|
Backes E, Alnoch RC, Contato AG, Castoldi R, de Souza CGM, Kato CG, Peralta RA, Peralta Muniz Moreira RDF, Polizeli MDLTM, Bracht A, Peralta RM. Properties and kinetic behavior of free and immobilized laccase from Oudemansiella canarii: Emphasis on the effects of NaCl and Na 2SO 4 on catalytic activities. Int J Biol Macromol 2024; 281:136565. [PMID: 39406328 DOI: 10.1016/j.ijbiomac.2024.136565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/21/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
Studies have highlighted the great potential of Oudemansiella canarii laccase in degrading synthetic dyes for reducing their toxicity. Immobilization of enzymes improves usability in degradation processes and the present work succeeded in immobilizing this laccase onto MANAE-agarose. Immobilization improved pH, thermal, and storage stabilities. Both, free and immobilized enzymes presented Michaelis-Menten kinetics with the substrate 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) with Km values of 0.056 ± 0.003 and 0.195 ± 0.022 mM, respectively. Immobilization increased Vmax 1.27-fold. NaCl caused incomplete (hyperbolic) inhibition, which was satisfactorily described by the one-substrate one-modifier mechanism. Immobilization reduced the maximal inhibition by NaCl from 80.2 to 55.7 %. The effect of Na2SO4 was predominantly stimulation, but inhibition of the free enzyme occurred at high substrate concentrations. Stimulation of the immobilized enzyme by Na2SO4 was much more pronounced. It strongly depended on the substrate concentration and was much stronger (up to 300 %) at low substrate concentrations. The combined effects of substrate and sulfate on the immobilized laccase could be satisfactorily described by the one-substrate one-modifier mechanism. The modified response of the immobilized O. canarii laccase to NaCl and Na2SO4 considerably favors its use as a tool in bioremediation processes because environmental contamination by salts frequently represents a strong operational challenge.
Collapse
Affiliation(s)
- Emanueli Backes
- Post-Graduate Program in Food Sciences, State University of Maringá, Maringá, PR, Brazil
| | | | - Alex Graça Contato
- Department of Biology, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rafael Castoldi
- Post-Graduate Program in Biochemistry, State University of Maringá, Maringá, PR, Brazil
| | | | - Camila Gabriel Kato
- School of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Rosely Aparecida Peralta
- Post-Graduate Program in Chemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | | | | | - Adelar Bracht
- Post-Graduate Program in Food Sciences, State University of Maringá, Maringá, PR, Brazil; Post-Graduate Program in Biochemistry, State University of Maringá, Maringá, PR, Brazil
| | - Rosane Marina Peralta
- Post-Graduate Program in Food Sciences, State University of Maringá, Maringá, PR, Brazil; Post-Graduate Program in Biochemistry, State University of Maringá, Maringá, PR, Brazil; School of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil.
| |
Collapse
|
3
|
Kalia S, Samuchiwal S, Dalvi V, Malik A. Exploring fungal-mediated solutions and its molecular mechanistic insights for textile dye decolorization. CHEMOSPHERE 2024; 360:142370. [PMID: 38763399 DOI: 10.1016/j.chemosphere.2024.142370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/29/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Decolorization of textile dyes and study of their intermediate compounds is necessary to comprehend the mechanism of dye degradation. In the present study, different fungal mediated solutions were explored to provide an alternative to treat the reactive dyes. Growing biomass of Pleurotus sajor caju showed 83% decolorization (249.99 mg L-1 removal) of Reactive Blue 13 (RB 13) and 63% decolorization (188.83 mg L-1) of Reactive Black 5 (RB 5) at 300 mg L-1 initial concentration on 8 d. Higher laccase activity was positively correlated with increase in decolorization. However, increasing dye concentration has inhibitory effect on fungal biomass due to increase in toxicity. In laccase mediated decolorization, laccase produced from P. sajor caju using carbon rich waste material as substrate showed 89% decolorization (276.36 mg L-1 removal) of RB 13 and 33% decolorization (105.37 mg L-1 removal) of RB 5 at 300 mg L-1 initial dye concentration in 100 min at 30 °C and pH 3.0'. Comparing the two methods, laccase-mediated decolorization shows better decolorization in less time and does not produce sludge. Further, the present work also attempted to study the dye degradation pathway for Reactive blue 13 via laccase mediated process. Fourier-transform infrared spectroscopy (FTIR), high-performance liquid chromatography (HPLC), and gas chromatography-mass spectrometry (GC-MS) were utilized to identify the degraded products. The GC-MS analysis showed the formation of naphthalene, naphthalene 2-ol, benzene,1-2, dicarboxylic acid, 4, amino, 6,chloro, 1-3-5, triazin-2-ol as the final degraded products after enzymatic degradation of RB 13. These findings provide in-depth study of laccase-mediated textile dye degradation mechanism.
Collapse
Affiliation(s)
- Shweta Kalia
- Applied Microbiology Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, 110016, India.
| | - Saurabh Samuchiwal
- Applied Microbiology Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, 110016, India.
| | - Vivek Dalvi
- Applied Microbiology Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, 110016, India.
| | - Anushree Malik
- Applied Microbiology Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, 110016, India.
| |
Collapse
|
4
|
Umar A, Abid I, Antar M, Dufossé L, Hajji-Hedfi L, Elshikh MS, Shahawy AE, Abdel-Azeem AM. Electricity generation and oxidoreductase potential during dye discoloration by laccase-producing Ganoderma gibbosum in fungal fuel cell. Microb Cell Fact 2023; 22:258. [PMID: 38098010 PMCID: PMC10720082 DOI: 10.1186/s12934-023-02258-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Color chemicals contaminate pure water constantly discharged from different points and non-point sources. Physical and chemical techniques have certain limitations and complexities for bioenergy production, which motivated the search for a novel sustainable production approaches during dye wastewater treatment. The emerging environmental problem of dye decolorization has attracted scientist's attention to a new, cheap, and economical way to treat dye wastewater and power production via fungal fuel cells. Ganoderma gibbosum was fitted in the cathodic region with laccase secretion in the fuel cell. At the same time, dye water was placed in the anodic region to move electrons and produce power. This study treated wastewater using the oxidoreductase enzymes released extracellularly from Ganoderma gibbosum for dye Remazol Brilliant Blue R (RBBR) degradation via fungal-based fuel cell. The maximum power density of 14.18 mW/m2 and the maximum current density of 35 mA/m2 were shown by the concentration of 5 ppm during maximum laccase activity and decolorization of RBBR. The laccase catalysts have gained considerable attention because of eco-friendly and alternative easy handling approaches to chemical methods. Fungal Fuel Cells (FFCs) are efficiently used in dye treatment and electricity production. This article also highlighted the construction of fungal catalytic cells and the enzymatic performance of fungal species in energy production during dye water treatment.
Collapse
Affiliation(s)
- Aisha Umar
- Institute of Botany, University of the Punjab, Lahore, 54590, Pakistan.
| | - Islem Abid
- Department of Botany and Microbiology, College of Science, King Saud University, 2455, 11451, Riyadh, Saudi Arabia
| | - Mohammed Antar
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, Montreal, Quebec, H9X 3V9, Canada
| | - Laurent Dufossé
- Laboratoire CHEMBIOPRO (Chimie et Biotechnologie des Produits Naturels), Université de La Réunion, ESIROI Département Agroalimentaire, 15 Avenue René Cassin, 97490, Saint-Denis, France
| | - Lobna Hajji-Hedfi
- Regional Centre of Agricultural Research of Sidi Bouzid, CRRA, Gafsa Road Km 6, 357, 9100, Sidi Bouzid, Tunisia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, 2455, 11451, Riyadh, Saudi Arabia
| | - Abeer El Shahawy
- Department of Civil Engineering, Faculty of Engineering, Suez Canal University, 41522, Ismailia, Egypt
| | - Ahmed M Abdel-Azeem
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, 41522, Ismailia, Egypt
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9300, Republic of South Africa
| |
Collapse
|
5
|
Huang J, Wang J, Liu S. Advances in the production of fungi-derived lignocellulolytic enzymes using agricultural wastes. Mycology 2023; 15:523-537. [PMID: 39678642 PMCID: PMC11636153 DOI: 10.1080/21501203.2023.2253827] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/28/2023] [Indexed: 12/17/2024] Open
Abstract
Lignocellulolytic enzymes play an important role in various industrial applications as well as the sustainable valorisation of lignocellulosic materials. Enzyme production using lignocellulosic fungi has shown great advantages such as high enzyme diversity, high production efficiency, and the availability of solid waste as raw materials. Agricultural waste, an abundant and non-food competitive feedstock, can be used to produce fungal lignocellulolytic enzymes. Pretreatment helps break down the complex structure of the raw material, thereby significantly improving product yield but also requiring more energy consumption. Multiple fermentation technologies, including submerged fermentation, solid-state fermentation, and co-culture, can be used for producing lignocellulolytic enzymes. Process optimisation may promote the yield and productivity of such enzymes without additional investment. Genetic engineering is also useful for enhancing enzyme production to meet industrial requirements. This review summarises the research progress in the fungal production of lignocellulolytic enzymes from various agricultural wastes via advanced fermentation strategies. It aims to provide technical references for the scale-up production of fungal lignocellulolytic enzymes.
Collapse
Affiliation(s)
- Jiaqi Huang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY, USA
| | - Jianfei Wang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY, USA
| | - Shijie Liu
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY, USA
| |
Collapse
|
6
|
Overproduction of Laccase by Trametes versicolor and Pycnoporus sanguineus in Farnesol-Pineapple Waste Solid Fermentation. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The effect of farnesol, a sesquiterpene alcohol, on the production of laccases by Trametes versicolor and Pycnoporus sanguineus in pineapple waste solid-state fermentation was evaluated. Extracellular laccase production reached a maximum of 77.88 ± 5.62 U/g (236% above control) in farnesol-induced cultures of T. versicolor on the 17th day, whereas in a similar P. sanguineus culture, a maximal laccase activity of 130.95 ± 2.20 U/g (159% increase) was obtained on the 17th day. A single 45 KDa laccase was produced by both fungi under the influence of farnesol. These and other data allow us to conclude that farnesol acted as an inducer of the same form of laccase in both fungi. Farnesol disfavored fungal growth by increasing the lag phase, but it also clearly improved the oxidative state of the cultures. Contrary to the results obtained previously in submerged cultures, farnesol did not promote hyperbranching in the fungal mycelia. This is the first demonstration that farnesol is an excellent inducer of laccases in T. versicolor and P. sanguineus in solid-state cultivation. In quantitative terms, the results can be regarded as an excellent starting point for developing industrial or at least pre-industrial procedures to produce laccases using T. versicolor and P sanguineus under the stimulus of farnesol.
Collapse
|
7
|
Benatti ALT, Polizeli MDLTDM. Lignocellulolytic Biocatalysts: The Main Players Involved in Multiple Biotechnological Processes for Biomass Valorization. Microorganisms 2023; 11:microorganisms11010162. [PMID: 36677454 PMCID: PMC9864444 DOI: 10.3390/microorganisms11010162] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/11/2022] [Accepted: 12/26/2022] [Indexed: 01/10/2023] Open
Abstract
Human population growth, industrialization, and globalization have caused several pressures on the planet's natural resources, culminating in the severe climate and environmental crisis which we are facing. Aiming to remedy and mitigate the impact of human activities on the environment, the use of lignocellulolytic enzymes for biofuel production, food, bioremediation, and other various industries, is presented as a more sustainable alternative. These enzymes are characterized as a group of enzymes capable of breaking down lignocellulosic biomass into its different monomer units, making it accessible for bioconversion into various products and applications in the most diverse industries. Among all the organisms that produce lignocellulolytic enzymes, microorganisms are seen as the primary sources for obtaining them. Therefore, this review proposes to discuss the fundamental aspects of the enzymes forming lignocellulolytic systems and the main microorganisms used to obtain them. In addition, different possible industrial applications for these enzymes will be discussed, as well as information about their production modes and considerations about recent advances and future perspectives in research in pursuit of expanding lignocellulolytic enzyme uses at an industrial scale.
Collapse
|