1
|
Zhang DD, Zhao JF, Tan LQ, Wu Q, Lv HX, Zhang YR, Zhang M. Effects of zinc oxide nanocomposites on microorganism growth and protection of physicochemical quality during maize storage. Int J Food Microbiol 2024; 411:110552. [PMID: 38159444 DOI: 10.1016/j.ijfoodmicro.2023.110552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Maize moldy and spoilage due to microbial growth is a significant challenge in grain storage. This study aimed to evaluate the effectiveness of a zinc oxide nanocomposite, ZnO@mSiO2, prepared in our previous research, in inhibiting mold growth and preserving maize cell quality. The results demonstrated that ZnO@mSiO2 could effectively inhibit the growth of dominant microorganism, Aspergillus flavus, Talaromyces variabilis, Penicillium citrinum and Fusarium graminearum, in maize storage. Aspergillus flavus was selected as the model fungus, ZnO@mSiO2 effectively disrupted fungal hyphae structure, leading to reduced hyphal mass and inhibited spore germination. The inhibitory effect of ZnO@mSiO2 on mold growth was concentration-dependent. However, the ZnO@mSiO2 at an appropriate concentration (not exceeding 3.0 g/kg) preserved the integrity of maize cell membranes and enhancing the antioxidant activity within maize cells. The findings highlight the potential of ZnO@mSiO2 as an effective protectant to inhibit mold growth and preserve maize quality during storage.
Collapse
Affiliation(s)
- Dong-Dong Zhang
- Grain Storage and Security Engineering Research Center of Education Ministry, School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Jin-Feng Zhao
- Grain Storage and Security Engineering Research Center of Education Ministry, School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China; Hangzhou Grain Storage Co., Ltd., Hangzhou 311100, China
| | - Li-Qin Tan
- Grain Storage and Security Engineering Research Center of Education Ministry, School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Qiong Wu
- Grain Storage and Security Engineering Research Center of Education Ministry, School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Hao-Xin Lv
- Grain Storage and Security Engineering Research Center of Education Ministry, School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Yu-Rong Zhang
- Grain Storage and Security Engineering Research Center of Education Ministry, School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China.
| | - Min Zhang
- Grain Storage and Security Engineering Research Center of Education Ministry, School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Tu Y, Liu S, Cai P, Shan T. Global distribution, toxicity to humans and animals, biodegradation, and nutritional mitigation of deoxynivalenol: A review. Compr Rev Food Sci Food Saf 2023; 22:3951-3983. [PMID: 37421323 DOI: 10.1111/1541-4337.13203] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/18/2023] [Accepted: 06/05/2023] [Indexed: 07/10/2023]
Abstract
Deoxynivalenol (DON) is one of the main types of B trichothecenes, and it causes health-related issues in humans and animals and imposes considerable challenges to food and feed safety globally each year. This review investigates the global hazards of DON, describes the occurrence of DON in food and feed in different countries, and systematically uncovers the mechanisms of the various toxic effects of DON. For DON pollution, many treatments have been reported on the degradation of DON, and each of the treatments has different degradation efficacies and degrades DON by a distinct mechanism. These treatments include physical, chemical, and biological methods and mitigation strategies. Biodegradation methods include microorganisms, enzymes, and biological antifungal agents, which are of great research significance in food processing because of their high efficiency, low environmental hazards, and drug resistance. And we also reviewed the mechanisms of biodegradation methods of DON, the adsorption and antagonism effects of microorganisms, and the different chemical transformation mechanisms of enzymes. Moreover, nutritional mitigation including common nutrients (amino acids, fatty acids, vitamins, and microelements) and plant extracts was discussed in this review, and the mitigation mechanism of DON toxicity was elaborated from the biochemical point of view. These findings help explore various approaches to achieve the best efficiency and applicability, overcome DON pollution worldwide, ensure the sustainability and safety of food processing, and explore potential therapeutic options with the ability to reduce the deleterious effects of DON in humans and animals.
Collapse
Affiliation(s)
- Yuang Tu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China
| | - Shiqi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China
| | - Peiran Cai
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| |
Collapse
|
3
|
Savi GD, Torres Zanoni E, Scussel R, Córneo EDS, Guimarães Furtado B, Macuvele DLP, Nones J, Feuser PE, Machado-de-Ávila RA, Angioletto E. Mesoporous silica nanoparticles adsorb aflatoxin B 1 and reduce mycotoxin-induced cell damage. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 58:1-9. [PMID: 36573540 DOI: 10.1080/03601234.2022.2161251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The present study examined the effects of mesoporous silica nanoparticles (MSNs) on its adsorption capacity of aflatoxin B1 (AFB1). Moreover, the study evaluated the toxicity of MSNs with AFB1 using NIH3T3 cells and hemolysis test. The obtained MSNs were spherical, irregular-like in shape, having a mean size of 39.97 ± 7.85 nm and a BET surface area of 1195 m2/g. At 0.1 mg mL-1 concentration of MSN, the AFB1 adsorption capacity was 30%, which reached 70% when the MSN concentration increased to 2.0 mg mL-1. Our findings showed that AFB1 was adsorbed (∼67%) in the first few minutes on being in contact with MSNs, reaching an adsorption capacity of ∼70% after 15 min. Thereafter, the adsorption capacity remained constant in solution, demonstrating that the MSNs adsorbed toxins even beyond overnight. MSN treatment (0.5-2.0 mg mL-1) using NIH3T3 cells did not result in any reduction in cell viability. In addition, MSN treatment completely reversed the cytotoxic effect of AFB1 at all concentrations. Hemolysis test also revealed no hemolysis in MSNs evaluated alone and in those combined with AFB1. To the best of our knowledge, this study is the first to demonstrate that MSN can reduce cell toxicity produced by AFB1 due to its potential to adsorb mycotoxins.
Collapse
Affiliation(s)
- Geovana Dagostim Savi
- Programa de Pós-Graduação em Ciência e Engenharia de Materiais, Universidade do Extremo Sul Catarinense, Iparque-Parque Científico e Tecnológico, Criciuma, Brazil
| | - Elton Torres Zanoni
- Programa de Pós-Graduação em Ciência e Engenharia de Materiais, Universidade do Extremo Sul Catarinense, Iparque-Parque Científico e Tecnológico, Criciuma, Brazil
| | - Rahisa Scussel
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Avenida Universitária, Criciuma, Brazil
| | - Emily da Silva Córneo
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Avenida Universitária, Criciuma, Brazil
| | - Bianca Guimarães Furtado
- Programa de Pós-Graduação em Ciência e Engenharia de Materiais, Universidade do Extremo Sul Catarinense, Iparque-Parque Científico e Tecnológico, Criciuma, Brazil
| | - Domingos Lusitâneo Pier Macuvele
- Núcleo de Estudos em Ciência e Tecnologia (NECET), Universidade Rovuma, Lichinga, Mozambique
- Programa de Pós-Graduação em Engenharia Química, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Janaína Nones
- Universidade do Vale do Itajaí, Balneário Camboriú, Brasil
| | - Paulo Emilio Feuser
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Avenida Universitária, Criciuma, Brazil
| | - Ricardo Andrez Machado-de-Ávila
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Avenida Universitária, Criciuma, Brazil
| | - Elidio Angioletto
- Programa de Pós-Graduação em Ciência e Engenharia de Materiais, Universidade do Extremo Sul Catarinense, Iparque-Parque Científico e Tecnológico, Criciuma, Brazil
| |
Collapse
|
4
|
Shoaib A, Khan KA, Awan ZA, Jan BL, Kaushik P. Integrated management of charcoal rot disease in susceptible genotypes of mungbean with soil application of micronutrient zinc and green manure (prickly sesban). Front Microbiol 2022; 13:899224. [PMID: 35958154 PMCID: PMC9358777 DOI: 10.3389/fmicb.2022.899224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Charcoal rot disease is incited by the soil-borne fungus Macrophomina phaseolina (Tassi). Goid is a challenging disease due to long-term persistence of fungus sclerotia in the soil. This study assessed the potential of zinc (Zn: 1.25, 2.44, and 5 mg/kg) and green manure (GM: 1 and 2%) in solitary and bilateral combinations to alleviate infection stress incited by M. phaseolina on disease, growth, physiology, and yield attributes in mungbean. A completely randomized design experiment was conducted in potted soil, artificially inoculated with the pathogen, and sown with surface-sterilized seeds of mungbean genotypes (susceptible: MNUYT-107 and highly susceptible: MNUYT-105). Concealment of plant resistance by M. phaseolina in both genotypes resulted in 53-55% disease incidence and 40-50% plant mortality, which contributed in causing a significant reduction of 30-90% in attributes of growth, biomass, yield, photosynthetic pigment, and total protein content with an imbalance of production of antioxidant enzymes (polyphenol oxidase, superoxide dismutase, catalase, and peroxidase). Soil application with Zn-based fertilizer (ZnSO4: 33%) in combination with GM significantly managed up to 80% of the charcoal rot disease, hence improving growth (50-100%) and physiochemical (30-100%) attributes and sustainably enhancing grain average yield (300-600%), biological yield (100-200%), and harvest index (100-200%) in mungbean plants. The heat map and principal component analyses based on 19 measured attributes with 16 treatments separated Zn (2.44 or 5 mg/kg) combined with 2% GM as the best treatments for alleviating charcoal rot disease stress by improving growth, yield, and biological attributes to an extent to profitable farming in terms of harvest index (HI) and benefit-cost ratio (BCR).
Collapse
Affiliation(s)
- Amna Shoaib
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Kashif Ali Khan
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Zoia Arshad Awan
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Basit Latief Jan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Prashant Kaushik
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|