1
|
Durairaj P, Liu ZL. Brain Cytochrome P450: Navigating Neurological Health and Metabolic Regulation. J Xenobiot 2025; 15:44. [PMID: 40126262 PMCID: PMC11932283 DOI: 10.3390/jox15020044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/25/2025] Open
Abstract
Human cytochrome P450 (CYP) enzymes in the brain represent a crucial frontier in neuroscience, with far-reaching implications for drug detoxification, cellular metabolism, and the progression of neurodegenerative diseases. The brain's complex architecture, composed of interconnected cell types and receptors, drives unique neuronal signaling pathways, modulates enzyme functions, and leads to distinct CYP gene expression and regulation patterns compared to the liver. Despite their relatively low levels of expression, brain CYPs exert significant influence on drug responses, neurotoxin susceptibility, behavior, and neurological disease risk. These enzymes are essential for maintaining brain homeostasis, mediating cholesterol turnover, and synthesizing and metabolizing neurochemicals, neurosteroids, and neurotransmitters. Moreover, they are key participants in oxidative stress responses, neuroprotection, and the regulation of inflammation. In addition to their roles in metabolizing psychotropic drugs, substances of abuse, and endogenous compounds, brain CYPs impact drug efficacy, safety, and resistance, underscoring their importance beyond traditional drug metabolism. Their involvement in critical physiological processes also links them to neuroprotection, with significant implications for the onset and progression of neurodegenerative diseases. Understanding the roles of cerebral CYP enzymes is vital for advancing neuroprotective strategies, personalizing treatments for brain disorders, and developing CNS-targeting therapeutics. This review explores the emerging roles of CYP enzymes, particularly those within the CYP1-3 and CYP46 families, highlighting their functional diversity and the pathological consequences of their dysregulation on neurological health. It also examines the potential of cerebral CYP-based biomarkers to improve the diagnosis and treatment of neurodegenerative disorders, offering new avenues for therapeutic innovation.
Collapse
Affiliation(s)
- Pradeepraj Durairaj
- Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL 32310, USA
- Department of Chemical and Biomedical Engineering, Florida A&M University, Tallahassee, FL 32310, USA
| | - Zixiang Leonardo Liu
- Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL 32310, USA
- Department of Chemical and Biomedical Engineering, Florida A&M University, Tallahassee, FL 32310, USA
- Institute for Successful Longevity, Florida State University, Tallahassee, FL 32310, USA
| |
Collapse
|
2
|
Mondal S, Uppal R, Cs S. Investigation of Minipigs as the Optimal Non-rodent Pre-clinical Species: Exploring Plasma Protein Binding of Marketed Cardiovascular Drugs Across Species. AAPS PharmSciTech 2024; 26:4. [PMID: 39638965 DOI: 10.1208/s12249-024-03005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024] Open
Abstract
Pre-clinical studies in animals are an essential part of drug development for new chemical entities. Before clinical trials in humans, submission of safety data from one rodent and one non-rodent species is compulsory as per regulatory guidelines. Even though minipigs and monkeys are physiologically closer to humans, dogs are usually employed as the non-rodent pre-clinical species. In this study, the in vitro plasma protein binding of eleven marketed cardiovascular drugs was studied in dog, minipig, monkey and human to determine the preferred species. To conduct plasma protein binding studies, the most reliable equilibrium dialysis method was adopted. Ten out of eleven tested cardiovascular drugs showed statistically similar plasma protein binding in minipig and human plasma which was different from dog and monkey plasma. The results from the studies showed greater similarity between minipigs and humans suggesting that the minipig species maybe a better pre-clinical non-rodent model during drug development of cardiovascular drugs instead of the conventional dog species. Additionally, use of the more accessible minipig species may help in saving time, and resources during pre-clinical studies and may also be more predictive during the safety studies in humans during later stage clinical trials.
Collapse
Affiliation(s)
- Subodh Mondal
- PESU Institute of Pharmacy, PES University, Bangalore, 560100, India.
| | - Ritika Uppal
- Eurofins Advinus Biopharma Services Private Limited, Bangalore, 560058, India
| | - Satish Cs
- PESU Institute of Pharmacy, PES University, Bangalore, 560100, India
| |
Collapse
|
3
|
Mokhosoev IM, Astakhov DV, Terentiev AA, Moldogazieva NT. Cytochrome P450 monooxygenase systems: Diversity and plasticity for adaptive stress response. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 193:19-34. [PMID: 39245215 DOI: 10.1016/j.pbiomolbio.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Superfamily of cytochromes P450 (CYPs) is composed of heme-thiolate-containing monooxygenase enzymes, which play crucial roles in the biosynthesis, bioactivation, and detoxification of a variety of organic compounds, both endogenic and exogenic. Majority of CYP monooxygenase systems are multi-component and contain various redox partners, cofactors and auxiliary proteins, which contribute to their diversity in both prokaryotes and eukaryotes. Recent progress in bioinformatics and computational biology approaches make it possible to undertake whole-genome and phylogenetic analyses of CYPomes of a variety of organisms. Considerable variations in sequences within and between CYP families and high similarity in secondary and tertiary structures between all CYPs along with dramatic conformational changes in secondary structure elements of a substrate binding site during catalysis have been reported. This provides structural plasticity and substrate promiscuity, which underlie functional diversity of CYPs. Gene duplication and mutation events underlie CYP evolutionary diversity and emergence of novel selectable functions, which provide the involvement of CYPs in high adaptability to changing environmental conditions and dietary restrictions. In our review, we discuss the recent advancements and challenges in the elucidating the evolutionary origin and mechanisms underlying the CYP monooxygenase system diversity and plasticity. Our review is in the view of hypothesis that diversity of CYP monooxygenase systems is translated into the broad metabolic profiles, and this has been acquired during the long evolutionary time to provide structural plasticity leading to high adaptative capabilities to environmental stress conditions.
Collapse
Affiliation(s)
| | - Dmitry V Astakhov
- Department of Biochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991, Moscow, Russia
| | - Alexander A Terentiev
- Department of Biochemistry and Molecular Biology, N.I. Pirogov Russian National Research Medical University, 117997, Moscow, Russia
| | | |
Collapse
|
4
|
Sapozhnikova YP, Koroleva AG, Sidorova TV, Potapov SA, Epifantsev AA, Vakhteeva EA, Tolstikova LI, Glyzina OY, Yakhnenko VM, Cherezova VM, Sukhanova LV. Transcriptional Rearrangements Associated with Thermal Stress and Preadaptation in Baikal Whitefish ( Coregonus baicalensis). Animals (Basel) 2024; 14:3077. [PMID: 39518801 PMCID: PMC11545380 DOI: 10.3390/ani14213077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
In this work, we describe the transcriptional profiles of preadapted and non-adapted one-month-old juvenile Baikal whitefish after heat shock exposure. Preadapted fish were exposed to a repeated thermal rise of 6 °C above the control temperature every three days throughout their embryonic development. One month after hatching, preadapted and non-adapted larvae were either kept at control temperatures (12 °C) or exposed to an acute thermal stress (TS) of 12 °C above the control temperature. In response to this acute stress, an increase in HSP gene expression (HSP-30, HSP-40, HSP-47, HSP-70, and HSP-90) and TRIM16 was detected, independent of preadaptation. The expression levels of genes responsible for the response to oxygen levels, growth factors and the immune response, HBA, HBB, Myosin VI, Myosin VII, MHC, Plumieribetin, TnI, CYP450, and LDB3 were higher in individuals that had previously undergone adaptation. Genes responsible for the regulation of metabolism, MtCK, aFGF, ARF, CRYGB, and D-DT, however, increased their activity in non-adapted individuals. This information on transcriptional profiles will contribute to further understanding of the mechanisms of adaptation of whitefish to their environment.
Collapse
Affiliation(s)
- Yulia P. Sapozhnikova
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya, Irkutsk 664033, Russia; (T.V.S.); (S.A.P.); (A.A.E.); (E.A.V.); (L.I.T.); (O.Y.G.); (V.M.Y.); (V.M.C.); (L.V.S.)
| | - Anastasiya G. Koroleva
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya, Irkutsk 664033, Russia; (T.V.S.); (S.A.P.); (A.A.E.); (E.A.V.); (L.I.T.); (O.Y.G.); (V.M.Y.); (V.M.C.); (L.V.S.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Guengerich FP. Roles of Individual Human Cytochrome P450 Enzymes in Drug Metabolism. Pharmacol Rev 2024; 76:1104-1132. [PMID: 39054072 PMCID: PMC11549934 DOI: 10.1124/pharmrev.124.001173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/28/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
Our knowledge of the roles of individual cytochrome P450 (P450) enzymes in drug metabolism has developed considerably in the past 30 years, and this base has been of considerable use in avoiding serious issues with drug interactions and issues due to variations. Some newer approaches are being considered for "phenotyping" metabolism reactions with new drug candidates. Endogenous biomarkers are being used for noninvasive estimation of levels of individual P450 enzymes. There is also the matter of some remaining "orphan" P450s, which have yet to be assigned reactions. Practical problems that continue in drug development include predicting drug-drug interactions, predicting the effects of polymorphic and other P450 variations, and evaluating interspecies differences in drug metabolism, particularly in the context of "metabolism in safety testing" regulatory issues ["disproportionate (human) metabolites"]. SIGNIFICANCE STATEMENT: Cytochrome P450 enzymes are the major catalysts involved in drug metabolism. The characterization of their individual roles has major implications in drug development and clinical practice.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
6
|
Kastrinou-Lampou V, Rodríguez-Pérez R, Poller B, Huth F, Gáborik Z, Mártonné-Tóth B, Temesszentandrási-Ambrus C, Schadt HS, Kullak-Ublick GA, Arand M, Camenisch G. Identification of reversible OATP1B1 and time-dependent CYP3A4 inhibition as the major risk factors for drug-induced cholestasis (DIC). Arch Toxicol 2024; 98:3409-3424. [PMID: 39023798 DOI: 10.1007/s00204-024-03794-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 05/22/2024] [Indexed: 07/20/2024]
Abstract
Hepatic bile acid regulation is a multifaceted process modulated by several hepatic transporters and enzymes. Drug-induced cholestasis (DIC), a main type of drug-induced liver injury (DILI), denotes any drug-mediated condition in which hepatic bile flow is impaired. Our ability in translating preclinical toxicological findings to human DIC risk is currently very limited, mainly due to important interspecies differences. Accordingly, the anticipation of clinical DIC with available in vitro or in silico models is also challenging, due to the complexity of the bile acid homeostasis. Herein, we assessed the in vitro inhibition potential of 47 marketed drugs with various degrees of reported DILI severity towards all metabolic and transport mechanisms currently known to be involved in the hepatic regulation of bile acids. The reported DILI concern and/or cholestatic annotation correlated with the number of investigated processes being inhibited. Furthermore, we employed univariate and multivariate statistical methods to determine the important processes for DILI discrimination. We identified time-dependent inhibition (TDI) of cytochrome P450 (CYP) 3A4 and reversible inhibition of the organic anion transporting polypeptide (OATP) 1B1 as the major risk factors for DIC among the tested mechanisms related to bile acid transport and metabolism. These results were consistent across multiple statistical methods and DILI classification systems applied in our dataset. We anticipate that our assessment of the two most important processes in the development of cholestasis will enable a risk assessment for DIC to be efficiently integrated into the preclinical development process.
Collapse
Affiliation(s)
- Vlasia Kastrinou-Lampou
- Pharmacokinetic Sciences, BioMedical Research, Novartis, Basel, Switzerland
- Preclinical Safety, BioMedical Research, Novartis, Basel, Switzerland
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Birk Poller
- Pharmacokinetic Sciences, BioMedical Research, Novartis, Basel, Switzerland
| | - Felix Huth
- Pharmacokinetic Sciences, BioMedical Research, Novartis, Basel, Switzerland
| | - Zsuzsanna Gáborik
- SOLVO Biotechnology, Charles River Laboratories Hungary, 1117, Budapest, Hungary
| | - Beáta Mártonné-Tóth
- SOLVO Biotechnology, Charles River Laboratories Hungary, 1117, Budapest, Hungary
| | | | - Heiko S Schadt
- Preclinical Safety, BioMedical Research, Novartis, Basel, Switzerland
| | - Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Mechanistic Safety, CMO & Patient Safety, Global Drug Development, Novartis, Basel, Switzerland
| | - Michael Arand
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Gian Camenisch
- Pharmacokinetic Sciences, BioMedical Research, Novartis, Basel, Switzerland.
| |
Collapse
|
7
|
Zhang Y, Pan X, Shi T, Gu Z, Yang Z, Liu M, Xu Y, Yang Y, Ren L, Song X, Lin H, Deng K. P450Rdb: A manually curated database of reactions catalyzed by cytochrome P450 enzymes. J Adv Res 2024; 63:35-42. [PMID: 37871773 PMCID: PMC11380020 DOI: 10.1016/j.jare.2023.10.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/03/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023] Open
Abstract
INTRODUCTION Cytochrome P450 enzymes (P450s) are recognized as the most versatile catalysts worldwide, playing vital roles in numerous biological metabolism and biosynthesis processes across all kingdoms of life. Despite the vast number of P450 genes available in databases (over 300,000), only a small fraction of them (less than 0.2 %) have undergone functional characterization. OBJECTIVES To provide a convenient platform with abundant information on P450s and their corresponding reactions, we introduce the P450Rdb database, a manually curated resource compiles literature-supported reactions catalyzed by P450s. METHODS All the P450s and Reactions were manually curated from the literature and known databases. Subsequently, the P450 reactions organized and categorized according to their chemical reaction type and site. The website was developed using HTML and PHP languages, with the MySQL server utilized for data storage. RESULTS The current version of P450Rdb catalogs over 1,600 reactions, involving more than 590 P450s across a diverse range of over 200 species. Additionally, it offers a user-friendly interface with comprehensive information, enabling easy querying, browsing, and analysis of P450s and their corresponding reactions. P450Rdb is free available at http://www.cellknowledge.com.cn/p450rdb/. CONCLUSIONS We believe that this database will significantly promote structural and functional research on P450s, thereby fostering advancements in the fields of natural product synthesis, pharmaceutical engineering, biotechnological applications, agricultural and crop improvement, and the chemical industry.
Collapse
Affiliation(s)
- Yang Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianrun Pan
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tianyu Shi
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zhifeng Gu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zhaochang Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Minghao Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yi Xu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yu Yang
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu 611844, China
| | - Liping Ren
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu 611844, China
| | - Xiaoming Song
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China.
| | - Hao Lin
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Kejun Deng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| |
Collapse
|
8
|
Altynova N, Khamdiyeva O, Garshin A, Baratzhanova G, Amirgaliyeva A, Seisenbayeva A, Abylkassymova G, Yergali K, Tolebaeva A, Skvortsova L, Zhunussova G, Bekmanov B, Cakir-Kiefer C, Djansugurova L. Case-Control Study of the Association between Single Nucleotide Polymorphisms of Genes Involved in Xenobiotic Detoxification and Antioxidant Protection with the Long-Term Influence of Organochlorine Pesticides on the Population of the Almaty Region. TOXICS 2023; 11:948. [PMID: 38133349 PMCID: PMC10747153 DOI: 10.3390/toxics11120948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023]
Abstract
The association of genetic polymorphisms with the individual sensitivity of humans to the action of pesticide pollution is being actively studied in the world. The aim of this study was a molecular epidemiological analysis of candidate polymorphisms of genes involved in pesticide metabolism, detoxification, and antioxidant protection. Some of the selected polymorphisms also relate to susceptibility to cancer and cardiovascular, respiratory, and immune system diseases in individuals exposed to pesticides for a long time. For a case-control study of a unique cohort of people exposed to organochlorine pesticides for 10 years or more were chosen, a control cohort was selected that matched with the experimental group by the main population characteristics. PCR-PRLF and genome-wide microarray genotyping (GWAS) methods were used. We identified 17 polymorphisms of xenobiotic detoxification genes and 27 polymorphisms of antioxidant defense genes, which had a significantly high statistical association with the negative impact of chronic pesticide intoxication on human health. We also found 17 polymorphisms of xenobiotic detoxification genes and 12 polymorphisms of antioxidant defense genes that have a protective effect. Data obtained added to the list of potential polymorphisms that define a group at high risk or resistant to the negative effects of pesticides.
Collapse
Affiliation(s)
- Nazym Altynova
- Institute of Genetics and Physiology, Al-Farabi Avenue 93, Almaty 050060, Kazakhstan; (N.A.); (A.G.); (A.A.); (A.S.); (G.A.); (K.Y.); (A.T.); (L.S.); (G.Z.); (B.B.)
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Avenue 71, Almaty 050040, Kazakhstan
| | - Ozada Khamdiyeva
- Institute of Genetics and Physiology, Al-Farabi Avenue 93, Almaty 050060, Kazakhstan; (N.A.); (A.G.); (A.A.); (A.S.); (G.A.); (K.Y.); (A.T.); (L.S.); (G.Z.); (B.B.)
| | - Aleksandr Garshin
- Institute of Genetics and Physiology, Al-Farabi Avenue 93, Almaty 050060, Kazakhstan; (N.A.); (A.G.); (A.A.); (A.S.); (G.A.); (K.Y.); (A.T.); (L.S.); (G.Z.); (B.B.)
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Avenue 71, Almaty 050040, Kazakhstan
| | - Gulminyam Baratzhanova
- Institute of Genetics and Physiology, Al-Farabi Avenue 93, Almaty 050060, Kazakhstan; (N.A.); (A.G.); (A.A.); (A.S.); (G.A.); (K.Y.); (A.T.); (L.S.); (G.Z.); (B.B.)
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Avenue 71, Almaty 050040, Kazakhstan
- INRAE, UR AFPA, USC 340, University of Lorraine, Nancy F-54000, France;
| | - Almira Amirgaliyeva
- Institute of Genetics and Physiology, Al-Farabi Avenue 93, Almaty 050060, Kazakhstan; (N.A.); (A.G.); (A.A.); (A.S.); (G.A.); (K.Y.); (A.T.); (L.S.); (G.Z.); (B.B.)
| | - Akerke Seisenbayeva
- Institute of Genetics and Physiology, Al-Farabi Avenue 93, Almaty 050060, Kazakhstan; (N.A.); (A.G.); (A.A.); (A.S.); (G.A.); (K.Y.); (A.T.); (L.S.); (G.Z.); (B.B.)
| | - Gulnar Abylkassymova
- Institute of Genetics and Physiology, Al-Farabi Avenue 93, Almaty 050060, Kazakhstan; (N.A.); (A.G.); (A.A.); (A.S.); (G.A.); (K.Y.); (A.T.); (L.S.); (G.Z.); (B.B.)
| | - Kanagat Yergali
- Institute of Genetics and Physiology, Al-Farabi Avenue 93, Almaty 050060, Kazakhstan; (N.A.); (A.G.); (A.A.); (A.S.); (G.A.); (K.Y.); (A.T.); (L.S.); (G.Z.); (B.B.)
| | - Anar Tolebaeva
- Institute of Genetics and Physiology, Al-Farabi Avenue 93, Almaty 050060, Kazakhstan; (N.A.); (A.G.); (A.A.); (A.S.); (G.A.); (K.Y.); (A.T.); (L.S.); (G.Z.); (B.B.)
| | - Liliya Skvortsova
- Institute of Genetics and Physiology, Al-Farabi Avenue 93, Almaty 050060, Kazakhstan; (N.A.); (A.G.); (A.A.); (A.S.); (G.A.); (K.Y.); (A.T.); (L.S.); (G.Z.); (B.B.)
| | - Gulnur Zhunussova
- Institute of Genetics and Physiology, Al-Farabi Avenue 93, Almaty 050060, Kazakhstan; (N.A.); (A.G.); (A.A.); (A.S.); (G.A.); (K.Y.); (A.T.); (L.S.); (G.Z.); (B.B.)
| | - Bakhytzhan Bekmanov
- Institute of Genetics and Physiology, Al-Farabi Avenue 93, Almaty 050060, Kazakhstan; (N.A.); (A.G.); (A.A.); (A.S.); (G.A.); (K.Y.); (A.T.); (L.S.); (G.Z.); (B.B.)
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Avenue 71, Almaty 050040, Kazakhstan
| | | | - Leyla Djansugurova
- Institute of Genetics and Physiology, Al-Farabi Avenue 93, Almaty 050060, Kazakhstan; (N.A.); (A.G.); (A.A.); (A.S.); (G.A.); (K.Y.); (A.T.); (L.S.); (G.Z.); (B.B.)
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Avenue 71, Almaty 050040, Kazakhstan
| |
Collapse
|
9
|
Wang L, Li D, Zhu Z, Liao Y, Wu J, Liu Y, Yang R, Dai H, Wu Z, Sun X. Knockout of Sema4D alleviates liver fibrosis by suppressing AOX1 expression. Pharmacol Res 2023; 195:106886. [PMID: 37591326 DOI: 10.1016/j.phrs.2023.106886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/30/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023]
Abstract
Liver fibrosis can occur in many chronic liver diseases, and no effective treatments are available due to the poorly characterized molecular pathogenesis. Semaphorin 4D (Sema4D) has immune functions and serves important roles in T cell priming. Here, we found that Sema4D was highly expressed in fibrotic liver, and the expression of Sema4D increased with hepatic stellate cells (HSCs) activation. Knockout of Sema4D alleviated liver fibrosis. Mechanistically, knockout of Sema4D alleviated liver fibrosis by suppressing the expression of AOX1 in retinol metabolism. Further investigation demonstrated that retinoic acid receptor α (RARA), an important nuclear receptor of retinoic acid, was reduced by Sema4D knockout during liver fibrogenesis. Sema4D knockout-mediated suppression of liver fibrosis was partly mediated by regulating the balance of Th1, Th2, Th17, and T-bet+Treg cells via inhibiting AOX1/RARA. Thus, targeting Sema4D may hold promise as a potential therapeutic approach for treating liver fibrosis.
Collapse
Affiliation(s)
- Lifu Wang
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 511436, China
| | - Dinghao Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou 510080, China
| | - Zifeng Zhu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou 510080, China
| | - Yao Liao
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 511436, China
| | - Ji Wu
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 511436, China
| | - Yuheng Liu
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 511436, China
| | - Ruibing Yang
- Guangzhou KingMed Diagnostic Laboratory Group Co Ltd, Guangzhou 510310, China
| | - Hanqiao Dai
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou 510080, China.
| | - Xi Sun
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou 510080, China.
| |
Collapse
|
10
|
Judy M, Sams D, Poulton S. Maximizing patient safety when prescribing opioids for pain management. JAAPA 2023; 36:1-6. [PMID: 37668489 DOI: 10.1097/01.jaa.0000947084.60262.4e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
ABSTRACT Cytochrome P450 enzyme metabolism is altered by environmental and genetic factors, which can affect the efficacy and safety of opioids. This article describes CYP polymorphisms and how pharmacogenetic testing could be used to help clinicians make safer decisions about opioid use in patients.
Collapse
Affiliation(s)
- Megan Judy
- Megan Judy practices in general surgery in Greensburg, Pa. David Sams is an assistant professor in the PA program at Marietta College and practices at OhioHealth CampusCare in Athens, Ohio. Stephon Poulton is an adjunct professor in the PA program at Marietta College and a clinical pharmacist with Genesis Healthcare Systems in Zanesville, Ohio. The authors have disclosed no potential conflicts of interest, financial or otherwise
| | | | | |
Collapse
|
11
|
Petkova-Kirova P, Baas S, Wagenpfeil G, Hartz P, Unger MM, Bernhardt R. SNPs in cytochrome P450 genes decide on the fate of individuals with genetic predisposition to Parkinson's disease. Front Pharmacol 2023; 14:1244516. [PMID: 37601072 PMCID: PMC10436510 DOI: 10.3389/fphar.2023.1244516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Parkinson's disease (PD) is one of the most frequent neurological diseases affecting millions of people worldwide. While the majority of PD cases are of unknown origin (idiopathic), about 5%-10% are familial and linked to mutations in different known genes. However, there are also people with a genetic predisposition to PD who do not develop the disease. To elucidate factors leading to the manifestation of PD we compared the occurrence of single nucleotide polymorphisms (SNPs) in various cytochrome P450 (P450) genes in people with a genetic predisposition and suffering from PD (GPD) to that of people, who are genetically predisposed, but show no symptoms of the disease (GUN). We used the PPMI (Parkinson's Progression Markers Initiative) database and the gene sequences of all 57 P450s as well as their three redox partners. Corresponding odds ratios (OR) and confidence intervals (CI) were calculated to assess the incidence of the various SNPs in the two groups of individuals and consequently their relation to PD. We identified for the first time SNPs that are significantly (up to 10fold!) over- or under-represented in GPD patients compared to GUN. SNPs with OR > 5 were found in 10 P450s being involved in eicosanoid, vitamin A and D metabolism as well as cholesterol degradation pointing to an important role of endogenous factors for the manifestation of PD clinical symptoms. Moreover, 12 P450s belonging to all P450 substrate classes as well as POR have SNPs that are significantly under-represented (OR < 0.2) in GPD compared to GUN, indicating a protective role of those SNPs and the corresponding P450s regarding disease advancement. To the best of our knowledge our data for the first time demonstrate an association between known PD predisposition genes and SNPs in other genes, shown here for different P450 genes and for their redox partner POR, which promote the manifestation of the disease in familial PD. Our results thus shed light onto the pathogenesis of PD, especially the switch from GUN to GPD and might further help to advance novel strategies for preventing the development or progression of the disease.
Collapse
Affiliation(s)
- Polina Petkova-Kirova
- Institut für Biochemie, Fachbereich Biologie, Naturwissenschaftlich-Technische Fakultät, Universität des Saarlandes, Saarbrücken, Germany
| | | | - Gudrun Wagenpfeil
- Institut für Medizinische Biometrie, Epidemiologie und Medizinische Informatik, Universität des Saarlandes, Homburg, Germany
| | - Philip Hartz
- Institut für Biochemie, Fachbereich Biologie, Naturwissenschaftlich-Technische Fakultät, Universität des Saarlandes, Saarbrücken, Germany
| | | | - Rita Bernhardt
- Institut für Biochemie, Fachbereich Biologie, Naturwissenschaftlich-Technische Fakultät, Universität des Saarlandes, Saarbrücken, Germany
| |
Collapse
|
12
|
Bârsan M, Chelaru VF, Râjnoveanu AG, Popa ȘL, Socaciu AI, Bădulescu AV. Difference in Levels of Vitamin D between Indoor and Outdoor Athletes: A Systematic Review and Meta-Analysis. Int J Mol Sci 2023; 24:ijms24087584. [PMID: 37108748 PMCID: PMC10147028 DOI: 10.3390/ijms24087584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Vitamin D, its importance in different processes taking place in the human body, the effects of abnormal levels of this hormone, either too low or too high, and the need for supplementation have been extensively researched thus far. Variances in exposure to sunlight can cause vitamin D levels to fluctuate. Indoor activity can be a factor for these fluctuations and can lead to a decrease in vitamin D levels. We conducted a systematic review and meta-analysis aiming to identify whether indoor compared to outdoor training has a significant influence on vitamin D levels; we also performed subgroup analyses and multivariate meta-regression. The type of training has an impact on vitamin D levels that is influenced by multiple cofounders. In a subgroup analysis not considering cofounders, the mean serum vitamin D was 3.73 ng/mL higher in outdoor athletes, a difference which barely fails to achieve significance (p = 0.052, a total sample size of 5150). The indoor-outdoor difference is only significant (clinically and statistically) when considering studies performed exclusively on Asian athletes (a mean difference of 9.85 ng/mL, p < 0.01, and a total sample size of 303). When performing the analyses within each season, no significant differences are observed between indoor and outdoor athletes. To control for multiple cofounders (the season, latitude, and Asian/Caucasian race) simultaneously, we constructed a multivariate meta-regression model, which estimated a serum vitamin D concentration lower by 4.446 ng/mL in indoor athletes. While a multivariate model suggests that outdoor training is associated with slightly higher vitamin D concentrations when controlling for the season, latitude, and Asian/Caucasian race, the type of training has a numerically and clinically small impact. This suggests that vitamin D levels and the need for supplementation should not be decided based on training type alone.
Collapse
Affiliation(s)
- Maria Bârsan
- Department of Occupational Medicine, 'Iuliu Hațieganu' University of Medicine and Pharmacy Cluj-Napoca, 400347 Cluj-Napoca, Romania
| | - Vlad-Florin Chelaru
- Faculty of Medicine, 'Iuliu Hațieganu' University of Medicine and Pharmacy Cluj-Napoca, 400347 Cluj-Napoca, Romania
| | - Armand-Gabriel Râjnoveanu
- Department of Occupational Medicine, 'Iuliu Hațieganu' University of Medicine and Pharmacy Cluj-Napoca, 400347 Cluj-Napoca, Romania
| | - Ștefan Lucian Popa
- 2nd Medical Department, 'Iuliu Hațieganu' University of Medicine and Pharmacy Cluj-Napoca, 400347 Cluj-Napoca, Romania
| | - Andreea-Iulia Socaciu
- Department of Occupational Medicine, 'Iuliu Hațieganu' University of Medicine and Pharmacy Cluj-Napoca, 400347 Cluj-Napoca, Romania
| | - Andrei-Vlad Bădulescu
- Faculty of Medicine, 'Iuliu Hațieganu' University of Medicine and Pharmacy Cluj-Napoca, 400347 Cluj-Napoca, Romania
| |
Collapse
|
13
|
Costa RM, Matos E Chaib VR, Domingues AG, Rubio KTS, Martucci MEP. Untargeted Metabolomics Reveals Lipid Impairment in the Liver of Adult Zebrafish (Danio rerio) Exposed to Carbendazim. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:437-448. [PMID: 36484755 DOI: 10.1002/etc.5534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/24/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Carbendazim is a systemic fungicide used in several countries, particularly in Brazil. However, studies suggest that it is related to the promotion of tumors, endocrine disruption, and toxicity to organisms, among other effects. As a result, carbendazim is not allowed in the United States, Australia, and some European Union countries. Therefore, further studies are necessary to evaluate its effects, and zebrafish is a model routinely used to provide relevant information regarding the acute and long-term effects of xenobiotics. In this way, zebrafish water tank samples (water samples from aquari containing zebrafish) and liver samples from animals exposed to carbendazim at a concentration of 120 μg/L were analyzed by liquid chromatography coupled to high-resolution mass spectrometry, followed by multivariate and univariate statistical analyses, using the metabolomics approach. Our results suggest impairment of lipid metabolism with a consequent increase in intrahepatic lipids and endocrine disruption. Furthermore, the results suggest two endogenous metabolites as potential biomarkers to determine carbendazim exposure. Finally, the present study showed that it is possible to use zebrafish water tank samples to assess the dysregulation of endogenous metabolites to understand biological effects. Environ Toxicol Chem 2023;42:437-448. © 2022 SETAC.
Collapse
Affiliation(s)
- Raíssa M Costa
- Postgraduate Program in Environmental Engineering-ProAmb, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Victória R Matos E Chaib
- Department of Pharmacy, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Anderson G Domingues
- Department of Pharmacy, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Karina T S Rubio
- Department of Pharmacy, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Maria Elvira Poleti Martucci
- Postgraduate Program in Environmental Engineering-ProAmb, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
- Department of Pharmacy, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| |
Collapse
|
14
|
Chen Y, Yan D, Xu J, Xiong H, Luan S, Xiao C, Huang Q. The importance of selecting crystal form for triazole fungicide tebuconazole to enhance its botryticidal activity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158778. [PMID: 36122714 DOI: 10.1016/j.scitotenv.2022.158778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
The growing evidences of resistant fungi stimulate fully understanding tebuconazole regarding its crystal structure on fungicidal activity. In this study, the crystal structures of six technical tebuconazoles (BX, HH, JP, QZ, SJ, and YT) were characterized by using high-resolution X-ray powder diffraction and three-dimensional crystal structure modeling. A structure-activity relationship of the tebuconazoles on the susceptible (HLS and YJS) or resistant (XHR) Botrytis cinerea isolates was analyzed, the differential tricarboxylic acid (TCA) cycle metabolism was determined, and molecular docking with sterol 14α-demethylase (CYP51) was performed. The results showed that tebuconazole existed in three types of crystal forms: an overlapping-pair conformation, a side-by-side-pair conformation, and a parallel-pair conformation. QZ with the parallel-pair conformation and the minimum crystal cell volume exhibited a higher activity and a lower resistant level. XHR possessed a higher content of TCA cycle metabolites and phosphate than YJS, but the exposure to QZ significantly reduced the contents of citrate, isocitrate, α-ketoglutarate and oxaloacetate in XHR, as did the exposure to other technical tebuconazoles. Moreover, the point mutations F487L, G464S, and G443S altered the binding properties of chiral stereoscopic R-QZ with CYP51 protein. Especially the G443S mutation promoted a weak linking of R-QZ with LEU380 and TYR126, and greatly slashed the binding action at lower docking score. In conclusion, our results evidenced an efficient crystal conformation of tebuconazole to improve botryticidal activity and a potential adaptability of B. cinerea to tebuconazole inhibition in TCA cycle metabolism and CYP51 protein mutation.
Collapse
Affiliation(s)
- Yongjun Chen
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Dongmei Yan
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jialin Xu
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Hui Xiong
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Shaorong Luan
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Ciying Xiao
- School of Biological Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Qingchun Huang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
15
|
Guengerich FP. Drug Metabolism: A Half-Century Plus of Progress, Continued Needs, and New Opportunities. Drug Metab Dispos 2023; 51:99-104. [PMID: 35868640 PMCID: PMC11024512 DOI: 10.1124/dmd.121.000739] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 06/13/2022] [Accepted: 06/28/2022] [Indexed: 01/19/2023] Open
Abstract
The systematic study of drug metabolism began in the 19th Century, but most of what we know now has been learned in the last 50 years. Drug metabolism continues to play a critical role in pharmaceutical development and clinical practice, as well as contributing to toxicology, chemical carcinogenesis, endocrinology, and drug abuse. The importance of the field will continue, but its nature will continue to develop with changes in analytical chemistry, structural biology, and artificial intelligence. Challenges and opportunities include toxicology, defining roles of genetic variations, and application to clinical issues. Although the focus of this Minireview is cytochrome P450, the same principles apply to other enzymes and transporters involved in drug metabolism. SIGNIFICANCE STATEMENT: Progress in the field of drug metabolism over the past 50 years has helped make the pharmaceutical enterprise what it is today. Drug metabolism will continue to be important. Challenges and opportunities for the future are discussed.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
16
|
Abu-Bakar A, Tan BH, Halim H, Ramli S, Pan Y, Ong6 CE. Cytochromes P450: Role in Carcinogenesis and Relevance to Cancers. Curr Drug Metab 2022; 23:355-373. [DOI: 10.2174/1389200223666220328143828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/06/2021] [Accepted: 01/25/2022] [Indexed: 11/22/2022]
Abstract
Abstracts:
Cancer is a leading factor of mortality globally. Cytochrome P450 (CYP) enzymes play a pivotal role in the biotransformation of both endogenous and exogenous compounds. Evidence from numerous epidemiological, animal, and clinical studies points to instrumental role of CYPs in cancer initiation, metastasis, and prevention. Substantial research has found that CYPs are involved in activating different carcinogenic chemicals in the environment, such as polycyclic aromatic hydrocarbons and tobacco-related nitrosamines. Electrophilic intermediates produced from these chemicals can covalently bind to DNA, inducing mutation and cellular transformation that collectively result in cancer development. While bioactivation of procarcinogens and promutagens by CYPs has long been established, the role of CYP-derived endobiotics in carcinogenesis has emerged in recent years. Eicosanoids derived from arachidonic acid via CYP oxidative pathways have been implicated in tumorigenesis, cancer progression and metastasis. The purpose of this review is to update on the current state of knowledge about the cancer molecular mechanism involving CYPs with focus on the biochemical and biotransformation mechanisms in the various CYP-mediated carcinogenesis, and the role of CYP-derived reactive metabolites, from both external and endogenous sources, on cancer growth and tumour formation.
Collapse
Affiliation(s)
- A’edah Abu-Bakar
- Product Stewardship and Toxicology, Group Health, Safety, Security and Environment, PETRONAS, Kuala Lumpur, Malaysia
| | - Boon Hooi Tan
- Division of Applied Biomedical Sciences and Biotechnology, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Hasseri Halim
- Faculty of Pharmacy, Universiti Teknologi MARA, Selangor, 42300 Puncak Alam, Selangor, Malaysia
| | - Salfarina Ramli
- Faculty of Pharmacy, Universiti Teknologi MARA, Selangor, 42300 Puncak Alam, Selangor, Malaysia
| | - Yan Pan
- Department of Biomedical Science, University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia
| | - Chin Eng Ong6
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
Zuo HL, Huang HY, Lin YCD, Cai XX, Kong XJ, Luo DL, Zhou YH, Huang HD. Enzyme Activity of Natural Products on Cytochrome P450. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020515. [PMID: 35056827 PMCID: PMC8779343 DOI: 10.3390/molecules27020515] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/27/2022]
Abstract
Drug-metabolizing enzymes, particularly the cytochrome P450 (CYP450) monooxygenases, play a pivotal role in pharmacokinetics. CYP450 enzymes can be affected by various xenobiotic substrates, which will eventually be responsible for most metabolism-based herb–herb or herb–drug interactions, usually involving competition with another drug for the same enzyme binding site. Compounds from herbal or natural products are involved in many scenarios in the context of such interactions. These interactions are decisive both in drug discovery regarding the synergistic effects, and drug application regarding unwanted side effects. Herein, this review was conducted as a comprehensive compilation of the effects of herbal ingredients on CYP450 enzymes. Nearly 500 publications reporting botanicals’ effects on CYP450s were collected and analyzed. The countries focusing on this topic were summarized, the identified herbal ingredients affecting enzyme activity of CYP450s, as well as methods identifying the inhibitory/inducing effects were reviewed. Inhibitory effects of botanicals on CYP450 enzymes may contribute to synergistic effects, such as herbal formulae/prescriptions, or lead to therapeutic failure, or even increase concentrations of conventional medicines causing serious adverse events. Conducting this review may help in metabolism-based drug combination discovery, and in the evaluation of the safety profile of natural products used therapeutically.
Collapse
Affiliation(s)
- Hua-Li Zuo
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-L.Z.); (H.-Y.H.); (Y.-C.-D.L.); (X.-X.C.); (D.-L.L.); (Y.-H.Z.)
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
- School of Computer Science and Technology, University of Science and Technology of China, Hefei 230027, China
| | - Hsi-Yuan Huang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-L.Z.); (H.-Y.H.); (Y.-C.-D.L.); (X.-X.C.); (D.-L.L.); (Y.-H.Z.)
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Yang-Chi-Dung Lin
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-L.Z.); (H.-Y.H.); (Y.-C.-D.L.); (X.-X.C.); (D.-L.L.); (Y.-H.Z.)
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Xiao-Xuan Cai
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-L.Z.); (H.-Y.H.); (Y.-C.-D.L.); (X.-X.C.); (D.-L.L.); (Y.-H.Z.)
| | - Xiang-Jun Kong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China;
| | - Dai-Lin Luo
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-L.Z.); (H.-Y.H.); (Y.-C.-D.L.); (X.-X.C.); (D.-L.L.); (Y.-H.Z.)
| | - Yu-Heng Zhou
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-L.Z.); (H.-Y.H.); (Y.-C.-D.L.); (X.-X.C.); (D.-L.L.); (Y.-H.Z.)
| | - Hsien-Da Huang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-L.Z.); (H.-Y.H.); (Y.-C.-D.L.); (X.-X.C.); (D.-L.L.); (Y.-H.Z.)
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
- Correspondence: ; Tel.: +86-0755-2351-9601
| |
Collapse
|
18
|
El-Denglawey A, Mubarak MF, Selim H. Tertiary Nanocomposites of Metakaolinite/Fe3O4/SBA-15 Nanocomposite for the Heavy Metal Adsorption: Isotherm and Kinetic Study. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-021-05690-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
Cadet MJ. Antiretroviral therapies and corticosteroids: Drug-drug interactions. Nurse Pract 2021; 46:40-47. [PMID: 34808646 DOI: 10.1097/01.npr.0000798224.30305.d1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Antiretroviral therapies for HIV may cause systemic toxicities when coadministered with corticosteroids. Potential drug-drug interactions may occur, leading to iatrogenic Cushing syndrome or adrenal insufficiency. This article highlights the drug-drug interactions of antiretroviral therapies with corticosteroids. Practice implications are discussed.
Collapse
Affiliation(s)
- Myriam Jean Cadet
- Myriam Jean Cadet is an adjunct nursing professor at The State University of New York Downstate Medical Center, Brooklyn, N.Y
| |
Collapse
|
20
|
do Prado CCA, Queiroz LG, da Silva FT, de Paiva TCB. Ecotoxicological effect of ketoconazole on the antioxidant system of Daphnia similis. Comp Biochem Physiol C Toxicol Pharmacol 2021; 246:109080. [PMID: 34015536 DOI: 10.1016/j.cbpc.2021.109080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/29/2021] [Accepted: 05/13/2021] [Indexed: 11/24/2022]
Abstract
The occurrence of emerging pharmaceutical pollutants (i.e. small drugs, antibiotics) present in aquatic environments shown to be a current environmental problem still without apparent solution. In this regard, the use of ecotoxicological techniques has been shown fundamental for the appraisal of damage to affected living organisms. Herein, ecotoxicological tests were conducted, focusing on the evaluation of the effects of ketoconazole (KTZ) on the antioxidant system of the model body Daphnia similis. In order to study the biochemical changes caused by KTZ in the antioxidant system, the enzymatic biomarkers glutathione S-transferase (GST), catalase (CAT), and ascorbate peroxidase (APX) were monitored. Toxicological tests were conducted using KTZ concentrations (0-10 μg·L-1). Prolonged exposure to KTZ (336 h) caused changes upon the expression of antioxidant enzymes and simultaneously affected the reproductive system in those organisms. Moreover, a decrease in GST and APX activity was observed caused by KTZ exposure, respectively 79.2% (3.53 μmol min-1 mg-1 protein) and 24.4% (0.88 μmol min-1 mg-1 protein). On the other hand, it was observed an increase of 27% (0.17 μmol min-1 mg-1 protein) in CAT activity. Through this study, it was possible to observe the toxicological effects of KTZ, which proves its action as an oxidative stress-inducing agent and endocrine modifier in daphnids organisms.
Collapse
Affiliation(s)
- Caio César Achiles do Prado
- Engineering School of Lorena, University of Sao Paulo, Department of Biotechnology, Lorena 12602-810, Brazil.
| | - Lucas Gonçalves Queiroz
- Engineering School of Lorena, University of Sao Paulo, Department of Biotechnology, Lorena 12602-810, Brazil.
| | - Flávio Teixeira da Silva
- Engineering School of Lorena, University of Sao Paulo, Department of Biotechnology, Lorena 12602-810, Brazil.
| | - Teresa Cristina Brazil de Paiva
- Engineering School of Lorena, University de Sao Paulo, Department of Basic and Environmental Sciences, Lorena 12602-810, Brazil.
| |
Collapse
|
21
|
Valikhani D, Bolivar JM, Pelletier JN. An Overview of Cytochrome P450 Immobilization Strategies for Drug Metabolism Studies, Biosensing, and Biocatalytic Applications: Challenges and Opportunities. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02017] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Donya Valikhani
- Department of Chemistry, Université de Montréal and Center for Green Chemistry and Catalysis (CGCC), 1375 Thérèse-Lavoie-Roux Ave., Montréal, Quebec H2 V 0B3, Canada
- PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec City Quebec G1 V 0A6, Canada
| | - Juan M. Bolivar
- Chemical and Materials Engineering Department, Faculty of Chemical Sciences, Complutense University of Madrid, Complutense Ave., 28040 Madrid, Spain
| | - Joelle N. Pelletier
- Department of Chemistry, Université de Montréal and Center for Green Chemistry and Catalysis (CGCC), 1375 Thérèse-Lavoie-Roux Ave., Montréal, Quebec H2 V 0B3, Canada
- PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec City Quebec G1 V 0A6, Canada
- Department of Biochemistry, Université de Montréal, 2900 Édouard-Montpetit ave, Montréal, Quebec H3T 1J4, Canada
| |
Collapse
|
22
|
Abaffy T, Matsunami H. 19-hydroxy Steroids in the Aromatase Reaction: Review on Expression and Potential Functions. J Endocr Soc 2021; 5:bvab050. [PMID: 34095690 PMCID: PMC8169043 DOI: 10.1210/jendso/bvab050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Indexed: 12/05/2022] Open
Abstract
Scientific evidence related to the aromatase reaction in various biological processes spanning from mid-1960 to today is abundant; however, as our analytical sensitivity increases, a new look at the old chemical reaction is necessary. Here, we review an irreversible aromatase reaction from the substrate androstenedione. It proceeds in 3 consecutive steps. In the first 2 steps, 19-hydroxy steroids are produced. In the third step, estrone is produced. They can dissociate from the enzyme complex and either accumulate in tissues or enter the blood. In this review, we want to highlight the potential importance of these 19-hydroxy steroids in various physiological and pathological conditions. We focus primarily on 19-hydroxy steroids, and in particular on the 19-hydroxyandrostenedione produced by the incomplete aromatase reaction. Using a PubMed database and the search term “aromatase reaction,” 19-hydroxylation of androgens and steroid measurements, we detail the chemistry of the aromatase reaction and list previous and current methods used to measure 19-hydroxy steroids. We present evidence of the existence of 19-hydroxy steroids in brain tissue, ovaries, testes, adrenal glands, prostate cancer, as well as during pregnancy and parturition and in Cushing’s disease. Based on the available literature, a potential involvement of 19-hydroxy steroids in the brain differentiation process, sperm motility, ovarian function, and hypertension is suggested and warrants future research. We hope that with the advancement of highly specific and sensitive analytical methods, future research into 19-hydroxy steroids will be encouraged, as much remains to be learned and discovered.
Collapse
Affiliation(s)
- Tatjana Abaffy
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| |
Collapse
|
23
|
Loke S, Stoll A, Machalz D, Botrè F, Wolber G, Bureik M, Parr MK. Corticosteroid Biosynthesis Revisited: No Direct Hydroxylation of Pregnenolone by Steroid 21-Hydroxylase. Front Endocrinol (Lausanne) 2021; 12:633785. [PMID: 34149610 PMCID: PMC8211424 DOI: 10.3389/fendo.2021.633785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 05/11/2021] [Indexed: 11/13/2022] Open
Abstract
Cytochrome P450s (CYPs) are an essential family of enzymes in the human body. They play a crucial role in metabolism, especially in human steroid biosynthesis. Reactions catalyzed by these enzymes are highly stereo- and regio-specific. Lack or severe malfunctions of CYPs can cause severe diseases and even shorten life. Hence, investigations on metabolic reactions and structural requirements of substrates are crucial to gain further knowledge on the relevance of different enzymes in the human body functions and the origin of diseases. One key enzyme in the biosynthesis of gluco- and mineralocorticoids is CYP21A2, also known as steroid 21-hydroxylase. To investigate the steric and regional requirements of substrates for this enzyme, we performed whole-cell biotransformation assays using a strain of fission yeast Schizosaccharomyces pombe recombinantly expressing CYP21A2. The progestogens progesterone, pregnenolone, and their 17α-hydroxy-derivatives were used as substrates. After incubation, samples were analyzed using gas chromatography coupled to mass spectrometry. For progesterone and 17α-hydroxyprogesterone, their corresponding 21-hydroxylated metabolites 11-deoxycorticosterone and 11-deoxycortisol were detected, while after incubation of pregnenolone and 17α-hydroxypregnenolone, no hydroxylated product was observed. Findings were confirmed with authentic reference material. Molecular docking experiments agree with these results and suggest that interaction between the 3-oxo group and arginine-234 of the enzyme is a strict requirement. The presented results demonstrate once more that the presence of an oxo-group in position 3 of the steroid is indispensable, while a 3-hydroxy group prevents hydroxylation in position C-21 by CYP21A2. This knowledge may be transferred to other CYP21A2 substrates and hence help to gain essential insights into steroid metabolism.
Collapse
Affiliation(s)
- Steffen Loke
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Anna Stoll
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - David Machalz
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Francesco Botrè
- Federazione Medico Sportiva Italiana, Laboratorio Antidoping Federazione Medico Sportiva Italiana (FMSI), Rome, Italy
- ISSUL—Institute des sciences du sport, Université de Lausanne, Lausanne, Switzerland
| | - Gerhard Wolber
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Maria Kristina Parr
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
24
|
Gautam M, Thapa G. Cytochrome P450-mediated estrogen catabolism therapeutic avenues in epilepsy. Acta Neurol Belg 2021; 121:603-612. [PMID: 32743748 DOI: 10.1007/s13760-020-01454-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 07/23/2020] [Indexed: 01/11/2023]
Abstract
Epilepsy is a neuropsychiatric disorder, which does not have any identifiable cause. However, experimental and clinical results have asserted that the sex hormone estrogen level and endocrine system function influence the seizure and epileptic episodes. There are available drugs to control epilepsy, which passes through the metabolism process. Cytochrome P-450 family 1 (CYP1A1) is a heme-containing mono-oxygenase that are induced several folds in most of the tissues and cells contributing to their differential expression, which regulates various metabolic processes upon administration of therapeutics. CYP1A1 gene family has been found to metabolize estrogen, a female sex hormone, which plays a central role in maintaining the health of brain altering the level of estrogen active neuropsychiatric disorder like epilepsy. Hence, in this article, we endeavor to provide an opinion of estrogen, its effects on epilepsy and catamenial epilepsy, their metabolism by CYP1A1 and new way forward to differential diagnosis and clinical management of epilepsy in future.
Collapse
Affiliation(s)
- Megha Gautam
- Department of Biological Science, Faculty of Science and Engineering, Health Research Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Ganesh Thapa
- Department of Biological Science, Faculty of Science and Engineering, Health Research Institute, University of Limerick, Limerick, V94 T9PX, Ireland.
- Biohazards and Biosafety, Estates and Facilities, Trinity College of Dublin, The University of Dublin, College Green, Dublin 2, D02 PN40, Ireland.
| |
Collapse
|
25
|
Biased cytochrome P450-mediated metabolism via small-molecule ligands binding P450 oxidoreductase. Nat Commun 2021; 12:2260. [PMID: 33859207 PMCID: PMC8050233 DOI: 10.1038/s41467-021-22562-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/15/2021] [Indexed: 02/02/2023] Open
Abstract
Metabolic control is mediated by the dynamic assemblies and function of multiple redox enzymes. A key element in these assemblies, the P450 oxidoreductase (POR), donates electrons and selectively activates numerous (>50 in humans and >300 in plants) cytochromes P450 (CYPs) controlling metabolism of drugs, steroids and xenobiotics in humans and natural product biosynthesis in plants. The mechanisms underlying POR-mediated CYP metabolism remain poorly understood and to date no ligand binding has been described to regulate the specificity of POR. Here, using a combination of computational modeling and functional assays, we identify ligands that dock on POR and bias its specificity towards CYP redox partners, across mammal and plant kingdom. Single molecule FRET studies reveal ligand binding to alter POR conformational sampling, which results in biased activation of metabolic cascades in whole cell assays. We propose the model of biased metabolism, a mechanism akin to biased signaling of GPCRs, where ligand binding on POR stabilizes different conformational states that are linked to distinct metabolic outcomes. Biased metabolism may allow designing pathway-specific therapeutics or personalized food suppressing undesired, disease-related, metabolic pathways.
Collapse
|
26
|
Role of Genetic Variation in Cytochromes P450 in Breast Cancer Prognosis and Therapy Response. Int J Mol Sci 2021; 22:ijms22062826. [PMID: 33802237 PMCID: PMC8001203 DOI: 10.3390/ijms22062826] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/16/2022] Open
Abstract
Breast cancer is the most frequent cancer in the female population worldwide. The role of germline genetic variability in cytochromes P450 (CYP) in breast cancer prognosis and individualized therapy awaits detailed elucidation. In the present study, we used the next-generation sequencing to assess associations of germline variants in the coding and regulatory sequences of all human CYP genes with response of the patients to the neoadjuvant cytotoxic chemotherapy and disease-free survival (n = 105). A total of 22 prioritized variants associating with a response or survival in the above evaluation phase were then analyzed by allelic discrimination in the large confirmation set (n = 802). Associations of variants in CYP1B1, CYP4F12, CYP4X1, and TBXAS1 with the response to the neoadjuvant cytotoxic chemotherapy were replicated by the confirmation phase. However, just association of variant rs17102977 in CYP4X1 passed the correction for multiple testing and can be considered clinically and statistically validated. Replicated associations for variants in CYP4X1, CYP24A1, and CYP26B1 with disease-free survival of all patients or patients stratified to subgroups according to therapy type have not passed a false discovery rate test. Although statistically not confirmed by the present study, the role of CYP genes in breast cancer prognosis should not be ruled out. In conclusion, the present study brings replicated association of variant rs17102977 in CYP4X1 with the response of patients to the neoadjuvant cytotoxic chemotherapy and warrants further research of genetic variation CYPs in breast cancer.
Collapse
|
27
|
Rational Design of CYP3A4 Inhibitors: A One-Atom Linker Elongation in Ritonavir-Like Compounds Leads to a Marked Improvement in the Binding Strength. Int J Mol Sci 2021; 22:ijms22020852. [PMID: 33467005 PMCID: PMC7830545 DOI: 10.3390/ijms22020852] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
Inhibition of the major human drug-metabolizing cytochrome P450 3A4 (CYP3A4) by pharmaceuticals and other xenobiotics could lead to toxicity, drug–drug interactions and other adverse effects, as well as pharmacoenhancement. Despite serious clinical implications, the structural basis and attributes required for the potent inhibition of CYP3A4 remain to be established. We utilized a rational inhibitor design to investigate the structure–activity relationships in the analogues of ritonavir, the most potent CYP3A4 inhibitor in clinical use. This study elucidated the optimal length of the head-group spacer using eleven (series V) analogues with the R1/R2 side-groups as phenyls or R1–phenyl/R2–indole/naphthalene in various stereo configurations. Spectral, functional and structural characterization of the inhibitory complexes showed that a one-atom head-group linker elongation, from pyridyl–ethyl to pyridyl–propyl, was beneficial and markedly improved Ks, IC50 and thermostability of CYP3A4. In contrast, a two-atom linker extension led to a multi-fold decrease in the binding and inhibitory strength, possibly due to spatial and/or conformational constraints. The lead compound, 3h, was among the best inhibitors designed so far and overall, the strongest binder (Ks and IC50 of 0.007 and 0.090 µM, respectively). 3h was the fourth structurally simpler inhibitor superior to ritonavir, which further demonstrates the power of our approach.
Collapse
|
28
|
Guengerich FP. A history of the roles of cytochrome P450 enzymes in the toxicity of drugs. Toxicol Res 2021; 37:1-23. [PMID: 32837681 PMCID: PMC7431904 DOI: 10.1007/s43188-020-00056-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 05/22/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023] Open
Abstract
The history of drug metabolism began in the 19th Century and developed slowly. In the mid-20th Century the relationship between drug metabolism and toxicity became appreciated, and the roles of cytochrome P450 (P450) enzymes began to be defined in the 1960s. Today we understand much about the metabolism of drugs and many aspects of safety assessment in the context of a relatively small number of human P450s. P450s affect drug toxicity mainly by either reducing exposure to the parent molecule or, in some cases, by converting the drug into a toxic entity. Some of the factors involved are enzyme induction, enzyme inhibition (both reversible and irreversible), and pharmacogenetics. Issues related to drug toxicity include drug-drug interactions, drug-food interactions, and the roles of chemical moieties of drug candidates in drug discovery and development. The maturation of the field of P450 and drug toxicity has been facilitated by advances in analytical chemistry, computational capability, biochemistry and enzymology, and molecular and cell biology. Problems still arise with P450s and drug toxicity in drug discovery and development, and in the pharmaceutical industry the interaction of scientists in medicinal chemistry, drug metabolism, and safety assessment is critical for success.
Collapse
Affiliation(s)
- F. Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, 638B Robinson Research Building, 2200 Pierce Avenue, Nashville, TN 37232-0146 USA
| |
Collapse
|
29
|
Graded doses of grape seed methanol extract attenuated hepato-toxicity following chronic carbamazepine treatment in male Wistar rats. Toxicol Rep 2020; 7:1592-1596. [PMID: 33304829 PMCID: PMC7711278 DOI: 10.1016/j.toxrep.2020.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 12/24/2022] Open
Abstract
Chronic carbamazepine treatment decreased the body weight and relative liver weight of male Wistar rats. Carbamazepine induced the activities of liver enzymes in male Wistar rats. Carbamazepine increased the product of lipid peroxidation (malondialdehyde) of the liver. Carbamazepine induced various hepatic histomorphological alterations in male Wistar rats. Most of these derangements were attenuated by grape seed methanolic extract.
Aim This study investigated the effects of co-administration of carbamazepine (CBZ) with grape (Vitis vinifera) seed methanolic extract (GSME) on liver toxicity. Method Thirty-five male rats (145−155 g) were randomized into 5 groups (n = 7) and administered with propylene glycol (PG 0.1 mL/day), CBZ (25 mg/kg), CBZ (25 mg/kg) + GSME (200 mg/kg), CBZ (25 mg/kg) + GSME (100 mg/kg), or CBZ (25 mg/kg) + GSME (50 mg/kg) orally for 28 days. Twenty-four hours after the last dose, changes in the body weights were determined. The rats were euthanized by cervical dislocation. The liver was weighed and later homogenized; while the supernatant was analyzed biochemically. The liver tissues were preserved in 10 % neutral-buffered formalin for the histomorphological investigation. Result There was significant (p = 0.0001) decrease in the body weight following carbamazepine treatment. The relative liver weight also decreased significantly (p = 0.0004) across the treatment group compared with control. The activities of the liver enzymes (aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and glutathione activities), including the concentrations of malondialdehyde, increased significantly (p ≤ 0.0004) following carbamazepine treatment. Various morphological alterations were observed, especially in the photomicrograph of the CBZ treated rats. However, these derangements were attenuated significantly in the CBZ - GSME co-treated group. Conclusion This study concludes that GSME treatment may serve as a potential therapeutic agent in carbamazepine-induced hepatotoxicity/ dysfunction.
Collapse
|
30
|
Child SA, Reddish MJ, Glass SM, Goldfarb MH, Barckhausen IR, Guengerich FP. Functional interactions of adrenodoxin with several human mitochondrial cytochrome P450 enzymes. Arch Biochem Biophys 2020; 694:108596. [PMID: 32980349 DOI: 10.1016/j.abb.2020.108596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 12/11/2022]
Abstract
Seven of the 57 human cytochrome P450 (P450) enzymes are mitochondrial and carry out important reactions with steroids and vitamins A and D. These seven P450s utilize an electron transport chain that includes NADPH, NADPH-adrenodoxin reductase (AdR), and adrenodoxin (Adx) instead of the diflavin NADPH-P450 reductase (POR) used by the other P450s in the endoplasmic reticulum. Although numerous studies have been published involving mitochondrial P450 systems, the experimental conditions vary considerably. We compared human Adx and bovine Adx, a commonly used component, and found very similar catalytic activities in reactions catalyzed by human P450s 11B2, 27A1, and 27C1. Binding constants of 6-200 nM were estimated for Adx binding to these P450s using microscale thermophoresis. All P450 catalytic reactions were saturated at 10 μM Adx, and higher concentrations were not inhibitory up to at least 50 μM. Collectively these studies demonstrate the tight binding of Adx (both human and bovine) to AdR and to several mitochondrial P450s and provide guidance for optimization of Adx-dependent P450 reactions.
Collapse
Affiliation(s)
- Stella A Child
- The Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, United States
| | - Michael J Reddish
- The Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, United States
| | - Sarah M Glass
- The Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, United States
| | - Margo H Goldfarb
- The Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, United States
| | - Ian R Barckhausen
- The Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, United States
| | - F Peter Guengerich
- The Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, United States.
| |
Collapse
|
31
|
Xiao F, Song X, Tian P, Gan M, Verkhivker GM, Hu G. Comparative Dynamics and Functional Mechanisms of the CYP17A1 Tunnels Regulated by Ligand Binding. J Chem Inf Model 2020; 60:3632-3647. [PMID: 32530640 DOI: 10.1021/acs.jcim.0c00447] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
As an important member of cytochrome P450 (CYP) enzymes, CYP17A1 is a dual-function monooxygenase with a critical role in the synthesis of many human steroid hormones, making it an attractive therapeutic target. The emerging structural information about CYP17A1 and the growing number of inhibitors for these enzymes call for a systematic strategy to delineate and classify mechanisms of ligand transport through tunnels that control catalytic activity. In this work, we applied an integrated computational strategy to different CYP17A1 systems with a panel of ligands to systematically study at the atomic level the mechanism of ligand-binding and tunneling dynamics. Atomistic simulations and binding free energy computations identify the dynamics of dominant tunnels and characterize energetic properties of critical residues responsible for ligand binding. The common transporting pathways including S, 3, and 2c tunnels were identified in CYP17A1 binding systems, while the 2c tunnel is a newly formed pathway upon ligand binding. We employed and integrated several computational approaches including the analysis of functional motions and sequence conservation, atomistic modeling of dynamic residue interaction networks, and perturbation response scanning analysis to dissect ligand tunneling mechanisms. The results revealed the hinge-binding and sliding motions as main functional modes of the tunnel dynamic, and a group of mediating residues as key regulators of tunnel conformational dynamics and allosteric communications. We have also examined and quantified the mutational effects on the tunnel composition, conformational dynamics, and long-range allosteric behavior. The results of this investigation are fully consistent with the experimental data, providing novel rationale to the experiments and offering valuable insights into the relationships between the structure and function of the channel networks and a robust atomistic model of activation mechanisms and allosteric interactions in CYP enzymes.
Collapse
Affiliation(s)
- Fei Xiao
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Xingyu Song
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Peiyi Tian
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Mi Gan
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Gennady M Verkhivker
- Department of Computational and Data Sciences, Chapman University, One University Drive, Orange, California 92866, United States.,Department of Biomedical and Pharmaceutical Sciences, Chapman University Pharmacy School, 9401 Jeronimo Rd, Irvine, California 92618, United States
| | - Guang Hu
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
32
|
Ben Othmène Y, Hamdi H, Annabi E, Amara I, Ben Salem I, Neffati F, Najjar MF, Abid-Essefi S. Tebuconazole induced cardiotoxicity in male adult rat. Food Chem Toxicol 2020; 137:111134. [DOI: 10.1016/j.fct.2020.111134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/22/2019] [Accepted: 01/14/2020] [Indexed: 01/04/2023]
|
33
|
Bi-enzymatic virus-like bionanoreactors for the transformation of endocrine disruptor compounds. Int J Biol Macromol 2020; 146:415-421. [DOI: 10.1016/j.ijbiomac.2019.12.272] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/13/2019] [Accepted: 12/31/2019] [Indexed: 12/11/2022]
|
34
|
Circulating Extracellular Vesicles Containing Xenobiotic Metabolizing CYP Enzymes and Their Potential Roles in Extrahepatic Cells Via Cell-Cell Interactions. Int J Mol Sci 2019; 20:ijms20246178. [PMID: 31817878 PMCID: PMC6940889 DOI: 10.3390/ijms20246178] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/27/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023] Open
Abstract
The cytochrome P450 (CYP) family of enzymes is known to metabolize the majority of xenobiotics. Hepatocytes, powerhouses of CYP enzymes, are where most drugs are metabolized into non-toxic metabolites. Additional tissues/cells such as gut, kidneys, lungs, blood, and brain cells express selective CYP enzymes. Extrahepatic CYP enzymes, especially in kidneys, also metabolize drugs into excretable forms. However, extrahepatic cells express a much lower level of CYPs than hepatocytes. It is possible that the liver secretes CYP enzymes, which circulate via plasma and are eventually delivered to extrahepatic cells (e.g., brain cells). CYP circulation likely occurs via extracellular vesicles (EVs), which carry important biomolecules for delivery to distant cells. Recent studies have revealed an abundance of several CYPs in plasma EVs and other cell-derived EVs, and have demonstrated the role of CYP-containing EVs in xenobiotic-induced toxicity via cell–cell interactions. Thus, it is important to study the mechanism for packaging CYP into EVs, their circulation via plasma, and their role in extrahepatic cells. Future studies could help to find novel EV biomarkers and help to utilize EVs in novel interventions via CYP-containing EV drug delivery. This review mainly covers the abundance of CYPs in plasma EVs and EVs derived from CYP-expressing cells, as well as the potential role of EV CYPs in cell–cell communication and their application with respect to novel biomarkers and therapeutic interventions.
Collapse
|
35
|
Guengerich FP, Wilkey CJ, Phan TTN. Human cytochrome P450 enzymes bind drugs and other substrates mainly through conformational-selection modes. J Biol Chem 2019; 294:10928-10941. [PMID: 31147443 DOI: 10.1074/jbc.ra119.009305] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/29/2019] [Indexed: 11/06/2022] Open
Abstract
Cytochrome P450 (P450) enzymes are major catalysts involved in the oxidations of most drugs, steroids, carcinogens, fat-soluble vitamins, and natural products. The binding of substrates to some of the 57 human P450s and other mammalian P450s is more complex than a two-state system and has been proposed to involve mechanisms such as multiple ligand occupancy, induced-fit, and conformational-selection. Here, we used kinetic analysis of binding with multiple concentrations of substrates and computational modeling of these data to discern possible binding modes of several human P450s. We observed that P450 2D6 binds its ligand rolapitant in a mechanism involving conformational-selection. P450 4A11 bound the substrate lauric acid via conformational-selection, as did P450 2C8 with palmitic acid. Binding of the steroid progesterone to P450 21A2 was also best described by a conformational-selection model. Hexyl isonicotinate binding to P450 2E1 could be described by either a conformational-selection or an induced-fit model. Simulation of the binding of the ligands midazolam, bromocriptine, testosterone, and ketoconazole to P450 3A4 was consistent with an induced-fit or a conformational-selection model, but the concentration dependence of binding rates for varying both P450 3A4 and midazolam concentrations revealed discordance in the parameters, indicative of conformational-selection. Binding of the P450s 2C8, 2D6, 3A4, 4A11, and 21A2 was best described by conformational-selection, and P450 2E1 appeared to fit either mode. These findings highlight the complexity of human P450-substrate interactions and that conformational-selection is a dominant feature of many of these interactions.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146.
| | - Clayton J Wilkey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Thanh T N Phan
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| |
Collapse
|