1
|
Paul SK, Guendouzi A, Banerjee A, Guendouzi A, Haldar R. Identification of approved drugs with ALDH1A1 inhibitory potential aimed at enhancing chemotherapy sensitivity in cancer cells: an in-silico drug repurposing approach. J Biomol Struct Dyn 2025; 43:3830-3844. [PMID: 38189344 DOI: 10.1080/07391102.2023.2300127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/21/2023] [Indexed: 01/09/2024]
Abstract
The aldehyde dehydrogenase 1A1 (ALDH1A1) also known as retinal dehydrogenase, is an enzyme normally involved in the cellular metabolism, development and detoxification processes in healthy cells. However, it's also considered a cancer stem cell marker and its high levels of expression in several cancers, including breast, lung, ovarian, and colon cancer have been associated with poor prognosis and resistance to chemotherapy. Given its crucial role in chemotherapy resistance by detoxification of chemotherapeutic drugs, ALDH1A1 has attracted significant research interest as a potential therapeutic target for cancer. Though a few synthetic inhibitors of ALDH1A1 have been synthesized and their efficacy has been proved in-vitro and in-vivo studies, none of them have passed clinical trials so far. In this scenario, we have performed an in-silico study to verify whether any of the already approved drugs used for various purposes has the ability to inhibit catalytic activity of ALDH1A1, so that they can be repurposed for cancer therapy. Keeping in mind the feasibility of repurposing in a larger population we have selected the approved drugs from five widely used drug categories such as antibiotic, antiviral, antifungal, anti diabetic and antihypertensive for screening. Computational techniques like molecular docking, molecular dynamics simulations and MM-PBSA binding energy calculation have been used in this study to screen the approved drugs. Based on the logical analysis of results, we propose that three drugs - telmisartan, irbesartan and maraviroc can inhibit the catalytic activity of ALDH1A1 and thus can be repurposed to increase chemotherapy sensitivity in cancer cells.
Collapse
Affiliation(s)
- Sanjay Kumar Paul
- Department of Physiology, University of Calcutta, Kolkata, India
- Department of Zoology, Rammohan College, Kolkata, West Bengal, India
| | - Abdelmadjid Guendouzi
- Center for Research in Pharmaceutical Sciences (CRSP), Constantine, Algeria
- Ecole Normale Supérieure ENS Constantine, Constantine, Algeria
| | | | | | - Rajen Haldar
- Department of Physiology, University of Calcutta, Kolkata, India
| |
Collapse
|
2
|
Xue J, Li Q, Wang Y, Yin R, Zhang J. Insight into the structure, oligomerization, and the role in drug resistance of human UDP-glucuronosyltransferases. Arch Toxicol 2025; 99:1153-1165. [PMID: 39812829 DOI: 10.1007/s00204-024-03929-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/28/2024] [Indexed: 01/16/2025]
Abstract
Human UDP-glucuronosyltransferases (UGTs) are pivotal phase II metabolic enzymes facilitating the transfer of glucuronic acid from UDP-glucuronic acid (UDPGA) to various substrates. UGTs are classic type I transmembrane glycoproteins, mainly localized in the endoplasmic reticulum (ER) membrane. This review comprehensively explores UGTs, encompassing gene expression, functional characteristics, substrate specificity, and metabolic mechanisms. A recent analysis of C-terminal structures, compared with original data, underscores the pivotal role of α3, α4, and β4 functional domains in selectively recognizing diverse glycosyl donors. Accumulating evidence suggests that UGTs function as homo- and heterodimers, with oligomers likely stabilizing UGTs and modulating their activity. The review sheds light on the implications of UGT oligomerization on substrate glucuronidation and the interplay between protein-protein interaction and glucuronidation activity. UGT-mediated drug resistance, often underestimated, emerges as a clinically relevant form of chemical resistance, with delineated outcomes in tumors and other diseases. This review provides a multifaceted exploration of the physiological significance of UGTs, spanning genetics, proteins, oligomerization, drug resistance, and more, offering insights into their metabolic mechanisms. Understanding interactions between UGT isoforms is crucial for predicting drug-drug interactions, preventing drug toxicity, and enabling precision treatment.
Collapse
Affiliation(s)
- Jia Xue
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiuyi Li
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yao Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ruxi Yin
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jian Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Crispim D, Ramos C, Esteves F, Kranendonk M. The Adaptation of MCF-7 Breast Cancer Spheroids to the Chemotherapeutic Doxorubicin: The Dynamic Role of Phase I Drug Metabolizing Enzymes. Metabolites 2025; 15:136. [PMID: 39997761 PMCID: PMC11857127 DOI: 10.3390/metabo15020136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/05/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025] Open
Abstract
Background/Objectives: Drug resistance (DR) is a major challenge in cancer therapy, contributing to approximately 90% of cancer-related deaths. While alterations in drug metabolism are known to be key drivers of DR, their role-particularly in the early stages of acquired chemoresistance-remains understudied. Phase I drug-metabolizing enzymes (DMEs), especially cytochrome P450s (CYPs), significantly influence the metabolic fate of chemotherapeutic agents, directly affecting drug response. This study aimed to investigate the role of Phase I DMEs in the early metabolic adaptation of breast cancer (BC) MCF-7 cells to doxorubicin (DOX). Methods: Four types of spheroids were generated from MCF-7 cells that were either DOX-sensitive (DOXS) or adapted to low concentrations of the chemotherapeutic agent (DOXA 25, 35, and 45 nM). The expression levels of 92 Phase I DMEs and the activities of specific CYP isoforms were assessed in both DOXS and DOXA spheroids. Results: A total of twenty-four DMEs, including fifteen CYPs and nine oxidoreductases, were found to be differentially expressed in DOXA spheroids. Pathway analysis identified key roles for the differentially expressed DMEs in physiologically relevant pathways, including the metabolism of drugs, arachidonic acid, retinoic acid, and vitamin D. Conclusions: The deconvolution of these pathways highlights a highly dynamic process driving early-stage DOX resistance, with a prominent role of CYP3A-dependent metabolism in DOX adaptation. Our findings provide valuable insights into the underlying molecular mechanisms driving the early adaptation of MCF-7 cells to DOX exposure.
Collapse
Affiliation(s)
- Daniel Crispim
- Comprehensive Health Research Centre (CHRC) NOVA Medical School | Faculty of Medical Sciences, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (D.C.); (C.R.); (F.E.)
| | - Carolina Ramos
- Comprehensive Health Research Centre (CHRC) NOVA Medical School | Faculty of Medical Sciences, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (D.C.); (C.R.); (F.E.)
| | - Francisco Esteves
- Comprehensive Health Research Centre (CHRC) NOVA Medical School | Faculty of Medical Sciences, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (D.C.); (C.R.); (F.E.)
- Instituto Politécnico de Setúbal (IPS), Escola Superior de Saúde (ESS), Departamento de Ciências Biomédicas, Estefanilha, 2910-761 Setúbal, Portugal
| | - Michel Kranendonk
- Comprehensive Health Research Centre (CHRC) NOVA Medical School | Faculty of Medical Sciences, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (D.C.); (C.R.); (F.E.)
| |
Collapse
|
4
|
Corachea AJM, Ferrer RJE, Ty LPB, Aquino LAC, Morta MT, Macalindong SS, Uy GLB, Odoño EG, Llames JHS, Tablizo FA, Cutiongco-Dela Paz EMC, Dofitas RB, Velarde MC. Lymphovascular Invasion Is Associated With Doxorubicin Resistance in Breast Cancer. J Transl Med 2025; 105:104115. [PMID: 39978641 DOI: 10.1016/j.labinv.2025.104115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/30/2025] [Accepted: 02/08/2025] [Indexed: 02/22/2025] Open
Abstract
Lymphovascular invasion (LVI), the invasion of tumor cells into the lymphatic or vascular space, is an early indicator of potential metastasis, with its presence in breast cancer independently predicting poorer outcomes even after neoadjuvant chemotherapy. However, a major limitation is that LVI detection currently relies on postsurgical evaluation. To address this, we determined whether LVI+ breast tumors contain a unique gene signature that could facilitate earlier detection. Here, we conducted an integrative analysis of the gene profile between LVI+ and LVI- primary breast tumors from various sources, including published data and our own research, using both microarray and RNA-seq data. Our analysis revealed protein binding and vesicle-related genes to be the most enriched categories in LVI+ vs LVI- tumors. Furthermore, LVI+ tumors showed enrichment for xenobiotic metabolism genes, particularly drug metabolism enzymes, such as cytochrome P450 and uridine 5'-diphospho-glucuronosyltransferases. An elastic net regression model containing 13 of these uridine 5'-diphospho-glucuronosyltransferases and cytochrome P450 genes can predict LVI status with 92% accuracy. This suggests a potential link to drug resistance, which was further confirmed by the finding that patients with LVI+ tumors had a significantly lower clinical response rate than individuals with LVI- tumors. We also observed this resistance in patient-derived organoids, with LVI+ organoids exhibiting lower sensitivity to doxorubicin, implying that doxorubicin might be less effective for LVI+ breast cancer, potentially contributing to poorer outcomes. Overall, our study unlocked an exciting opportunity for personalized medicine, in that, therapy efficacy and patient outcomes can be improved by incorporating the LVI-associated gene signature into treatment plans.
Collapse
Affiliation(s)
- Allen Joy M Corachea
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Regina Joyce E Ferrer
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Lance Patrick B Ty
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Lizzie Anne C Aquino
- Department of Surgery, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | - Madeleine T Morta
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Shiela S Macalindong
- Department of Surgery, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | - Gemma Leonora B Uy
- Department of Surgery, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | - Eugene G Odoño
- Department of Pathology, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | - Jo-Hannah S Llames
- Philippine Genome Center, University of the Philippines, Diliman, Quezon City, Philippines
| | - Francis A Tablizo
- Philippine Genome Center, University of the Philippines, Diliman, Quezon City, Philippines
| | | | - Rodney B Dofitas
- Department of Surgery, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | - Michael C Velarde
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines.
| |
Collapse
|
5
|
Islam MS, Akter F, Rahman MM, Rafe MR, Aziz MA, Parvin S, Mosaddek ASM, Islam MS, Akter MW. Impact of ALDH1A1 and NQO1 gene polymorphisms on the response and toxicity of chemotherapy in Bangladeshi breast cancer patients. Cancer Chemother Pharmacol 2024; 94:507-516. [PMID: 39012380 DOI: 10.1007/s00280-024-04700-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 07/05/2024] [Indexed: 07/17/2024]
Abstract
PURPOSE Cyclophosphamide, Epirubicin/Doxorubicin, 5-fluorouracil (CEF or CAF) chemotherapy has long been a standard first-line treatment for breast cancer. The genetic variations of enzymes that are responsible for the metabolism of these drugs have been linked to altered treatment response and toxicity. Two drug-metabolizing enzymes ALDH1A1 and NQO1 are critically involved in the pathways of CEF/CAF metabolism. This study aimed to evaluate the effect of ALDH1A1 (rs13959) and NQO1 (rs1800566) polymorphisms on treatment response and toxicities caused by adjuvant (ACT) and neoadjuvant chemotherapy (NACT) where CEF/CAF combination was used to treat Bangladeshi breast cancer patients. METHODS A total of 330 patients were recruited from various hospitals, with 150 receiving neoadjuvant chemotherapy and 180 receiving adjuvant chemotherapy. To extract genomic DNA, a non-enzymatic simple salting out approach was adopted. The polymerase chain reaction-restriction fragment length polymorphism method was used to detect genetic polymorphisms. Unconditional logistic regression was used to derive odds ratios (ORs) with 95% confidence intervals (CIs) to study the association between genetic polymorphisms and clinical outcome and toxicity. RESULTS A statistically significant association was observed between ALDH1A1 (rs13959) polymorphism and treatment response (TT vs. CC: aOR = 6.40, p = 0.007; recessive model: aOR = 6.38, p = 0.002; allele model: p = 0.032). Patients with the genotypes TT and CT + TT of the NQO1 (rs1800566) polymorphism had a significantly higher risk of toxicities such as anemia (aOR = 0.34, p = 0.006 and aOR = 0.58, p = 0.021), neutropenia (aOR = 0.42, p = 0.044 and aOR = 0.57, p = 0.027), leukopenia (aOR = 0.33, p = 0.010 and aOR = 0.46, p = 0.005), and gastrointestinal toxicity (aOR = 0.30, p = 0.02 and aOR = 0.38, p = 0.006) when compared to the wild CC genotype, while patients with the genotype CT had a significant association with gastrointestinal toxicity (aOR = 0.42, p = 0.02) and leukopenia (aOR = 0.52, p = 0.010). The TT and CT + TT genotypes of rs13959 had a significantly higher risk of anemia (aOR = 2.00, p = 0.037 and aOR = 1.68, p = 0.029). There was no significant association between rs1800566 polymorphism and treatment response. CONCLUSION Polymorphisms in ALDH1A1 (rs13959) and NQO1 (rs1800566) may be useful in predicting the probability of treatment response and adverse effects from CEF or CAF-based chemotherapy in breast cancer patients.
Collapse
Affiliation(s)
- Md Siddiqul Islam
- Department of Pharmacy, Southeast University, Dhaka, 1213, Bangladesh
| | - Ferdowsi Akter
- Department of Pharmacy, Southeast University, Dhaka, 1213, Bangladesh
| | - Md Mosiqur Rahman
- Department of Pharmacy, Southeast University, Dhaka, 1213, Bangladesh
| | - Md Rajdoula Rafe
- Department of Pharmacy, Jagannath University, Dhaka, 1100, Bangladesh
| | - Md Abdul Aziz
- Department of Pharmacy, State University of Bangladesh, Dhaka, 1205, Bangladesh
| | - Salma Parvin
- QUEST Bangladesh - Biomedical Research Centre, Dhaka, 1230, Bangladesh
| | - Abu Syed Md Mosaddek
- QUEST Bangladesh - Biomedical Research Centre, Dhaka, 1230, Bangladesh
- Uttara Adhunik Medical College, Dhaka, 1230, Bangladesh
| | - Mohammad Safiqul Islam
- Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali, 3814, Bangladesh.
| | - Md Wahid Akter
- Department of Radiation Oncology, National Institute of Cancer Research & Hospital (NICRH), Dhaka, 1212, Bangladesh
| |
Collapse
|
6
|
Zhou Y, Chen Y, Xuan C, Li X, Tan Y, Yang M, Cao M, Chen C, Huang X, Hu R. DPP9 regulates NQO1 and ROS to promote resistance to chemotherapy in liver cancer cells. Redox Biol 2024; 75:103292. [PMID: 39094401 PMCID: PMC11345690 DOI: 10.1016/j.redox.2024.103292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024] Open
Abstract
Chemotherapy has been the standard treatment for liver cancer. However, intrinsic or acquired drug resistance remains a major barrier to successful treatment. At present, the underlying molecular mechanisms of chemoresistance in liver cancer have not been elucidated. Dipeptidyl peptidase 9 (DPP9) is a member of the dipeptidyl peptidase IV family that has been found to be highly expressed in a variety of tumors, including liver cancer. It is unclear whether DPP9 affects chemoresistance in liver cancer. In this study, we find that DPP9 weakens the responses of liver cancer cells to chemotherapy drugs by up-regulating NQO1 and inhibiting intracellular ROS levels. In terms of mechanism, DPP9 inhibits ubiquitin-mediated degradation of NRF2 protein by binding to KEAP1, up-regulates NRF2 protein levels, promotes mRNA transcription of NQO1, and inhibits intracellular ROS levels. In addition, the NQO1 inhibitor dicoumarol can enhance the efficacy of chemotherapy drugs in liver cancer cells. Collectively, our findings suggest that inhibiting DPP9/NQO1 signaling can serve as a potential therapeutic strategy for liver cancer.
Collapse
Affiliation(s)
- Yunjiang Zhou
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yaxin Chen
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Chenyuan Xuan
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xingyan Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yingying Tan
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Mengdi Yang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Mengran Cao
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Chi Chen
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xing Huang
- Department of Pathology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, Nanjing, 210009, China.
| | - Rong Hu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
7
|
Li Z, Shu X, Liu X, Li Q, Hu Y, Jia B, Song M. Cellular and Molecular Mechanisms of Chemoresistance for Gastric Cancer. Int J Gen Med 2024; 17:3779-3788. [PMID: 39224691 PMCID: PMC11368108 DOI: 10.2147/ijgm.s473749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Gastric cancer (GC) is one of the most common malignant tumors in the digestive tract, and chemotherapy plays an irreplaceable role in the comprehensive treatment of GC. However, chemoresistance makes it difficult for patients with GC to benefit steadily from chemotherapy in the long term, which ultimately leads to tumor recurrence, metastasis, and patient death. Elucidating the detailed mechanism of chemoresistance in GC and identifying specific therapeutic targets will help to solve the difficult problem of chemoresistance and improve the prognosis of patients with GC. This review summarizes and clarifies the cellular and molecular mechanisms underlying chemoresistance for GC.
Collapse
Affiliation(s)
- Zonglin Li
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Xingming Shu
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Xin Liu
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Qiuyun Li
- Grade 2023, Clinical Medicine College, Southwest Medical University, Luzhou, People’s Republic of China
| | - Yifu Hu
- Grade 2023, Clinical Medicine College, Southwest Medical University, Luzhou, People’s Republic of China
| | - Bingbing Jia
- Grade 2023, Clinical Medicine College, Southwest Medical University, Luzhou, People’s Republic of China
| | - Min Song
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| |
Collapse
|
8
|
Chen X, Yang N, Wang Y, Yang S, Peng Y. PCK1-mediated glycogenolysis facilitates ROS clearance and chemotherapy resistance in cervical cancer stem cells. Sci Rep 2024; 14:13670. [PMID: 38871968 PMCID: PMC11176388 DOI: 10.1038/s41598-024-64255-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024] Open
Abstract
Cervical cancer, one of the most common gynecological cancers, is primarily caused by human papillomavirus (HPV) infection. The development of resistance to chemotherapy is a significant hurdle in treatment. In this study, we investigated the mechanisms underlying chemoresistance in cervical cancer by focusing on the roles of glycogen metabolism and the pentose phosphate pathway (PPP). We employed the cervical cancer cell lines HCC94 and CaSki by manipulating the expression of key enzymes PCK1, PYGL, and GYS1, which are involved in glycogen metabolism, through siRNA transfection. Our analysis included measuring glycogen levels, intermediates of PPP, NADPH/NADP+ ratio, and the ability of cells to clear reactive oxygen species (ROS) using biochemical assays and liquid chromatography-mass spectrometry (LC-MS). Furthermore, we assessed chemoresistance by evaluating cell viability and tumor growth in NSG mice. Our findings revealed that in drug-resistant tumor stem cells, the enzyme PCK1 enhances the phosphorylation of PYGL, leading to increased glycogen breakdown. This process shifts glucose metabolism towards PPP, generating NADPH. This, in turn, facilitates ROS clearance, promotes cell survival, and contributes to the development of chemoresistance. These insights suggest that targeting aberrant glycogen metabolism or PPP could be a promising strategy for overcoming chemoresistance in cervical cancer. Understanding these molecular mechanisms opens new avenues for the development of more effective treatments for this challenging malignancy.
Collapse
Affiliation(s)
- Xinxin Chen
- Department of Cadre Ward 2, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Nan Yang
- Department of Cadre Ward 2, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Ying Wang
- Department of Cadre Ward 2, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Shuang Yang
- Department of Cadre Ward 2, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Yuanhong Peng
- Department of Cadre Ward 1, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| |
Collapse
|
9
|
Yao X, Mao J, Zhang H, Xiao Y, Wang Y, Liu H. Development of novel N-aryl-2,4-bithiazole-2-amine-based CYP1B1 degraders for reversing drug resistance. Eur J Med Chem 2024; 272:116488. [PMID: 38733885 DOI: 10.1016/j.ejmech.2024.116488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
Extrahepatic cytochrome P450 1B1 (CYP1B1), which is highly expressed in non-small cell lung cancer, is an attractive target for cancer prevention, therapy, and overcoming drug resistance. Historically, CYP1B1 inhibition has been the primary therapeutic approach for treating CYP1B1-related malignancies, but its success has been limited. This study introduced CYP1B1 degradation as an alternative strategy to counter drug resistance and metastasis in CYP1B1-overexpressing non-small cell lung cancer A549/Taxol cells via a PROTAC strategy. Our investigation revealed that the identification of the potent CYP1B1 degrader PV2, achieving DC50 values of 1.0 nM and inducing >90 % CYP1B1 degradation at concentrations as low as 10 nM in A549/Taxol cells. Importantly, PV2 enhanced the sensitivity of the A549/Taxol subline to Taxol, possibly due to its stronger inhibitory effects on P-gp through CYP1B1 degradation. Additionally, compared to the CYP1B1 inhibitor A1, PV2 effectively suppressed the migration and invasion of A549/Taxol cells by inhibiting the FAK/SRC and EMT pathways. These findings hold promise for a novel therapy targeting advanced CYP1B1+ non-small cell lung cancer.
Collapse
Affiliation(s)
- Xiaoxuan Yao
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, Liaoning, PR China
| | - Jianping Mao
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, Liaoning, PR China
| | - Haoyu Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, Liaoning, PR China
| | - Yi Xiao
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, Liaoning, PR China
| | - Yongjun Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, Liaoning, PR China.
| | - Hongzhuo Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, Liaoning, PR China.
| |
Collapse
|
10
|
Chamorey E, Pujalte-Martin M, Ferrero JM, Mahammedi H, Gravis G, Roubaud G, Beuzeboc P, Largillier R, Borchiellini D, Linassier C, Bouges H, Etienne-Grimaldi MC, Schiappa R, Gal J, Milano G. Long-Term Pharmacokinetic Follow-Up of Abiraterone Acetate in Patients with Metastatic Castration-Resistant Prostate Cancer. Int J Mol Sci 2024; 25:6058. [PMID: 38892246 PMCID: PMC11172583 DOI: 10.3390/ijms25116058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
This ABIGENE pharmacokinetic (PK) study sought mainly to characterize the unchanged drug PK during long-term abiraterone acetate (AA) administration in advanced prostate cancer patients (81 patients). It was observed that individual AA concentrations remained constant over treatment time, with no noticeable changes during repeated long-term drug administration for up to 120 days. There was no correlation between AA concentrations and survival outcomes. However, a significant association between higher AA concentrations and better clinical benefit was observed (p = 0.041). The safety data did not correlate with the AA PK data. A significant positive correlation (r = 0.40, p < 0.001) was observed between mean AA concentration and patient age: the older the patient, the higher the AA concentration. Patient age was found to impact steady-state AA concentration: the older the patient, the higher the mean AA concentration. Altogether, these data may help to guide future research and clinical trials in order to maximize the benefits of AA metastatic castration-resistant prostate cancer patients.
Collapse
Affiliation(s)
- Emmanuel Chamorey
- Epidemiology and Biostatistics Department, Centre Antoine Lacassagne, University Côte d’Azur, 06000 Nice, France (J.G.)
| | - Marc Pujalte-Martin
- Medical Oncology Department, Centre Antoine Lacassagne, University Côte d’Azur, 06000 Nice, France
| | - Jean-Marc Ferrero
- Medical Oncology Department, Centre Antoine Lacassagne, University Côte d’Azur, 06000 Nice, France
| | - Hakim Mahammedi
- Medical Oncology Department, Centre Jean Perrin, 63000 Clermond Ferrand, France
| | - Gwenaelle Gravis
- Medical Oncology Department, Institut Paoli Calmette, 13009 Marseille, France
| | - Guilhem Roubaud
- Department of Medical Oncology, Institut Bergonié, 33076 Bordeaux, France
| | | | - Remy Largillier
- Medical Oncology Department, Centre Azuréen de Cancérologie, 06250 Mougins, France
| | - Delphine Borchiellini
- Medical Oncology Department, Centre Antoine Lacassagne, University Côte d’Azur, 06000 Nice, France
- Clinical Research Department, Centre Antoine Lacassagne, University Côte d’Azur, 06000 Nice, France
| | - Claude Linassier
- Medical Oncology Department, Centre Hospitalier Régional Universitaire, 37000 Tours, France
| | - Hélène Bouges
- Oncopharmacology Unit, Centre Antoine Lacassagne, University Côte d’Azur, 06189 Nice, France
| | | | - Renaud Schiappa
- Epidemiology and Biostatistics Department, Centre Antoine Lacassagne, University Côte d’Azur, 06000 Nice, France (J.G.)
| | - Jocelyn Gal
- Epidemiology and Biostatistics Department, Centre Antoine Lacassagne, University Côte d’Azur, 06000 Nice, France (J.G.)
| | - Gérard Milano
- Oncopharmacology Unit, Centre Antoine Lacassagne, University Côte d’Azur, 06189 Nice, France
| |
Collapse
|
11
|
Carrera-Pacheco SE, Mueller A, Puente-Pineda JA, Zúñiga-Miranda J, Guamán LP. Designing cytochrome P450 enzymes for use in cancer gene therapy. Front Bioeng Biotechnol 2024; 12:1405466. [PMID: 38860140 PMCID: PMC11164052 DOI: 10.3389/fbioe.2024.1405466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/30/2024] [Indexed: 06/12/2024] Open
Abstract
Cancer is a significant global socioeconomic burden, as millions of new cases and deaths occur annually. In 2020, almost 10 million cancer deaths were recorded worldwide. Advancements in cancer gene therapy have revolutionized the landscape of cancer treatment. An approach with promising potential for cancer gene therapy is introducing genes to cancer cells that encode for chemotherapy prodrug metabolizing enzymes, such as Cytochrome P450 (CYP) enzymes, which can contribute to the effective elimination of cancer cells. This can be achieved through gene-directed enzyme prodrug therapy (GDEPT). CYP enzymes can be genetically engineered to improve anticancer prodrug conversion to its active metabolites and to minimize chemotherapy side effects by reducing the prodrug dosage. Rational design, directed evolution, and phylogenetic methods are some approaches to developing tailored CYP enzymes for cancer therapy. Here, we provide a compilation of genetic modifications performed on CYP enzymes aiming to build highly efficient therapeutic genes capable of bio-activating different chemotherapeutic prodrugs. Additionally, this review summarizes promising preclinical and clinical trials highlighting engineered CYP enzymes' potential in GDEPT. Finally, the challenges, limitations, and future directions of using CYP enzymes for GDEPT in cancer gene therapy are discussed.
Collapse
Affiliation(s)
- Saskya E. Carrera-Pacheco
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | | | | | | | | |
Collapse
|
12
|
Silva IMD, Vacario BGL, Okuyama NCM, Barcelos GRM, Fuganti PE, Guembarovski RL, Cólus IMDS, Serpeloni JM. Polymorphisms in drug-metabolizing genes and urinary bladder cancer susceptibility and prognosis: Possible impacts and future management. Gene 2024; 907:148252. [PMID: 38350514 DOI: 10.1016/j.gene.2024.148252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/22/2024] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
Epidemiological studies have shown the association of genetic variants with risks of occupational and environmentally induced cancers, including bladder (BC). The current review summarizes the effects of variants in genes encoding phase I and II enzymes in well-designed studies to highlight their contribution to BC susceptibility and prognosis. Polymorphisms in genes codifying drug-metabolizing proteins are of particular interest because of their involvement in the metabolism of exogenous genotoxic compounds, such as tobacco and agrochemicals. The prognosis between muscle-invasive and non-muscle-invasive diseases is very different, and it is difficult to predict which will progress worse. Web of Science, PubMed, and Medline were searched to identify studies published between January 1, 2010, and February 2023. We included 73 eligible studies, more than 300 polymorphisms, and 46 genes/loci. The most studied candidate genes/loci of phase I metabolism were CYP1B1, CYP1A1, CYP1A2, CYP3A4, CYP2D6, CYP2A6, CYP3E1, and ALDH2, and those in phase II were GSTM1, GSTT1, NAT2, GSTP1, GSTA1, GSTO1, and UGT1A1. We used the 46 genes to construct a network of proteins and to evaluate their biological functions based on the Reactome and KEGG databases. Lastly, we assessed their expression in different tissues, including normal bladder and BC samples. The drug-metabolizing pathway plays a relevant role in BC, and our review discusses a list of genes that could provide clues for further exploration of susceptibility and prognostic biomarkers.
Collapse
Affiliation(s)
- Isabely Mayara da Silva
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina 86057-970, Brazil.
| | - Beatriz Geovana Leite Vacario
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina 86057-970, Brazil; Center of Health Sciences, State University of West Paraná (UNIOESTE), Francisco Beltrão-Paraná, 85605-010, Brazil.
| | - Nádia Calvo Martins Okuyama
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina 86057-970, Brazil.
| | - Gustavo Rafael Mazzaron Barcelos
- Department of Biosciences, Institute for Health and Society, Federal University of São Paulo (UNIFESP), Santos 11.060-001, Brazil.
| | | | - Roberta Losi Guembarovski
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina 86057-970, Brazil.
| | - Ilce Mara de Syllos Cólus
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina 86057-970, Brazil.
| | - Juliana Mara Serpeloni
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina 86057-970, Brazil.
| |
Collapse
|
13
|
Barata IS, Rueff J, Kranendonk M, Esteves F. Pleiotropy of Progesterone Receptor Membrane Component 1 in Modulation of Cytochrome P450 Activity. J Xenobiot 2024; 14:575-603. [PMID: 38804287 PMCID: PMC11130977 DOI: 10.3390/jox14020034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Progesterone receptor membrane component 1 (PGRMC1) is one of few proteins that have been recently described as direct modulators of the activity of human cytochrome P450 enzymes (CYP)s. These enzymes form a superfamily of membrane-bound hemoproteins that metabolize a wide variety of physiological, dietary, environmental, and pharmacological compounds. Modulation of CYP activity impacts the detoxification of xenobiotics as well as endogenous pathways such as steroid and fatty acid metabolism, thus playing a central role in homeostasis. This review is focused on nine main topics that include the most relevant aspects of past and current PGRMC1 research, focusing on its role in CYP-mediated drug metabolism. Firstly, a general overview of the main aspects of xenobiotic metabolism is presented (I), followed by an overview of the role of the CYP enzymatic complex (IIa), a section on human disorders associated with defects in CYP enzyme complex activity (IIb), and a brief account of cytochrome b5 (cyt b5)'s effect on CYP activity (IIc). Subsequently, we present a background overview of the history of the molecular characterization of PGRMC1 (III), regarding its structure, expression, and intracellular location (IIIa), and its heme-binding capability and dimerization (IIIb). The next section reflects the different effects PGRMC1 may have on CYP activity (IV), presenting a description of studies on the direct effects on CYP activity (IVa), and a summary of pathways in which PGRMC1's involvement may indirectly affect CYP activity (IVb). The last section of the review is focused on the current challenges of research on the effect of PGRMC1 on CYP activity (V), presenting some future perspectives of research in the field (VI).
Collapse
Affiliation(s)
- Isabel S. Barata
- Department of Pediatrics, Division of Endocrinology, Diabetology and Metabolism, University Children’s Hospital, University of Bern, 3010 Bern, Switzerland;
- Translational Hormone Research Program, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - José Rueff
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal;
| | - Michel Kranendonk
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal;
| | - Francisco Esteves
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal;
| |
Collapse
|
14
|
Narendra G, Raju B, Verma H, Kumar M, Jain SK, Tung GK, Thakur S, Kaur R, Kaur S, Sapra B, Silakari O. Scaffold hopping based designing of selective ALDH1A1 inhibitors to overcome cyclophosphamide resistance: synthesis and biological evaluation. RSC Med Chem 2024; 15:309-321. [PMID: 38283216 PMCID: PMC10809718 DOI: 10.1039/d3md00543g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/27/2023] [Indexed: 01/30/2024] Open
Abstract
Aldehyde dehydrogenase 1A1 (ALDH1A1) is an isoenzyme that catalyzes the conversion of aldehydes to acids. However, the overexpression of ALDH1A1 in a variety of malignancies is the major cause of resistance to an anti-cancer drug, cyclophosphamide (CP). CP is a prodrug that is initially converted into 4-hydroxycyclophosphamide and its tautomer aldophosphamide, in the liver. These compounds permeate into the cell and are converted as active metabolites, i.e., phosphoramide mustard (PM), through spontaneous beta-elimination. On the other hand, the conversion of CP to PM is diverted at the level of aldophosphamide by converting it into inactive carboxyphosphamide using ALDH1A1, which ultimately leads to high drug inactivation and CP resistance. Hence, in combination with our earlier work on the target of resistance, i.e., ALDH1A1, we hereby report selective ALDH1A1 inhibitors. Herein, we selected a lead molecule from our previous virtual screening and implemented scaffold hopping analysis to identify a novel scaffold that can act as an ALDH1A1 inhibitor. This results in the identification of various novel scaffolds. Among these, on the basis of synthetic feasibility, the benzimidazole scaffold was selected for the design of novel ALDH1A1 inhibitors, followed by machine learning-assisted structure-based virtual screening. Finally, the five best compounds were selected and synthesized. All synthesized compounds were evaluated using in vitro enzymatic assay against ALDH1A1, ALDH2, and ALDH3A1. The results disclosed that three molecules A1, A2, and A3 showed significant selective ALDH1A1 inhibitory potential with an IC50 value of 0.32 μM, 0.55 μM, and 1.63 μM, respectively, and none of the compounds exhibits potency towards the other two ALDH isoforms i.e. ALDH2 and ALDH3A1. Besides, the potent compounds (A1, A2, and A3) have been tested for in vitro cell line assay in combination with mafosfamide (analogue of CP) on two cell lines i.e. A549 and MIA-PaCa-2. All three compounds show significant potency to reverse mafosfamide resistance by inhibiting ALDH1A1 against these cell lines.
Collapse
Affiliation(s)
- Gera Narendra
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala Punjab 147002 India +91 17522 83075 +91 95015 42696
| | - Baddipadige Raju
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala Punjab 147002 India +91 17522 83075 +91 95015 42696
| | - Himanshu Verma
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala Punjab 147002 India +91 17522 83075 +91 95015 42696
| | - Manoj Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala Punjab 147002 India +91 17522 83075 +91 95015 42696
| | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University Amritsar India
| | - Gurleen Kaur Tung
- Centre for Basic and Translational Research in Health Sciences, Guru Nanak Dev University Amritsar India
| | - Shubham Thakur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University Amritsar India
| | - Rasdeep Kaur
- Department of Botany and Environmental Sciences, Guru Nanak Dev University Amritsar India
| | - Satwinderjeet Kaur
- Department of Botany and Environmental Sciences, Guru Nanak Dev University Amritsar India
| | - Bharti Sapra
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala Punjab 147002 India +91 17522 83075 +91 95015 42696
| | - Om Silakari
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala Punjab 147002 India +91 17522 83075 +91 95015 42696
| |
Collapse
|
15
|
Raju B, Sapra B, Silakari O. 3D-QSAR assisted identification of selective CYP1B1 inhibitors: an effective bioisosteric replacement/molecular docking/electrostatic complementarity analysis. Mol Divers 2023; 27:2673-2693. [PMID: 36441444 DOI: 10.1007/s11030-022-10574-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/20/2022] [Indexed: 11/29/2022]
Abstract
Cytochrome P450-1B1 is a majorly overexpressed drug-metabolizing enzyme in tumors and is responsible for inactivation and subsequent resistance to a variety of anti-cancer drugs, i.e., docetaxel, tamoxifen, and cisplatin. In the present study, a 3D quantitative structure-activity relationship (3D-QSAR) model has been constructed for the identification, design, and optimization of novel CYP1B1 inhibitors. The model has been built using a set of 148 selective CYP1B1 inhibitors. The developed model was evaluated based on certain statistical parameters including q2 and r2 which showed the acceptable predictive and descriptive capability of the generated model. The developed 3D-QSAR model assisted in understanding the key molecular fields which were firmly related to the selective CYP1B1 inhibition. A theoretic approach for the generation of new lead compounds with optimized CYP1B1 receptor affinity has been performed utilizing bioisosteric replacement analysis. These generated molecules were subjected to a developed 3D-QSAR model to predict the inhibitory activity potentials. Furthermore, these compounds were scrutinized through the activity atlas model, molecular docking, electrostatic complementarity, molecular dynamics, and waterswap analysis. The final hits might act as selective CYP1B1 inhibitors which could address the issue of resistance. This 3D-QSAR includes several chemically diverse selective CYP1B1 receptor ligands and well accounts for the individual ligand's inhibition affinities. These features of the developed 3D-QSAR model will ensure future prospective applications of the model to speed up the identification of new potent and selective CYP1B1 receptor ligands.
Collapse
Affiliation(s)
- Baddipadige Raju
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Bharti Sapra
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Om Silakari
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India.
| |
Collapse
|
16
|
Spalenkova A, Ehrlichova M, Wei S, Peter Guengerich F, Soucek P. Effects of 7-ketocholesterol on tamoxifen efficacy in breast carcinoma cell line models in vitro. J Steroid Biochem Mol Biol 2023; 232:106354. [PMID: 37343688 PMCID: PMC10529436 DOI: 10.1016/j.jsbmb.2023.106354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/06/2023] [Accepted: 06/18/2023] [Indexed: 06/23/2023]
Abstract
Oxysterols play significant roles in many physiological and pathological processes including cancer. They modulate some of the cancer hallmarks pathways, influence the efficacy of anti-cancer drugs, and associate with patient survival. In this study, we aimed to analyze the role of 7-ketocholesterol (7-KC) in breast carcinoma cells and its potential modulation of the tamoxifen effect. 7-KC effects were studied in two estrogen receptor (ER)-positive (MCF-7 and T47D) and one ER-negative (BT-20) breast cancer cell lines. First, we tested the viability of cells in the presence of 7-KC. Next, we co-incubated cells with tamoxifen and sublethal concentrations of 7-KC. We also tested changes in caspase 3/7 activity, deregulation of the cell cycle, and changes in expression of selected genes/proteins in the presence of tamoxifen, 7-KC, or their combination. Finally, we analyzed the effect of 7-KC on cellular migration and invasion. We found that the presence of 7-KC slightly decreases the efficacy of tamoxifen in MCF-7 cells, while an increased effect of tamoxifen and higher caspase 3/7 activity was observed in the BT-20 cell line. In the T47D cell line, we did not find any modulation of tamoxifen efficacy by the presence of 7-KC. Expression analysis showed the deregulation in CYP1A1 and CYP1B1 with the opposite trend in MCF-7 and BT-20 cells. Moreover, 7-KC increased cellular migration and invasion potential regardless of the ER status. This study shows that 7-KC can modulate tamoxifen efficacy as well as cellular migration and invasion, making 7-KC a promising candidate for future studies.
Collapse
Affiliation(s)
- Alzbeta Spalenkova
- Department of Toxicogenomics, National Institute of Public Health, Prague 100 42, Czech Republic; Third Faculty of Medicine, Charles University, Prague 100 00, Czech Republic
| | - Marie Ehrlichova
- Department of Toxicogenomics, National Institute of Public Health, Prague 100 42, Czech Republic
| | - Shouzou Wei
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Pavel Soucek
- Department of Toxicogenomics, National Institute of Public Health, Prague 100 42, Czech Republic.
| |
Collapse
|
17
|
Wu Y, Shi JH, Zhu GH, Xiong Y, Gong JH, Wei HZ, Guo ZB, Dai ZR, Sun XB, Ge GB. Discovery of 4'-trifluoromethylchalcones as novel, potent and selective hCYP1B1 inhibitors without concomitant AhR activation. Eur J Med Chem 2023; 258:115552. [PMID: 37315474 DOI: 10.1016/j.ejmech.2023.115552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/27/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
Human cytochrome P450 1B1 (hCYP1B1), an extrahepatic cytochrome P450 enzyme over-expressed in various tumors, has been validated as a promising target for preventing and treating cancers. Herein, two series of chalcone derivatives were synthesized to discover potent hCYP1B1 inhibitors without AhR agonist effect. Structure-activity relationship (SAR) studies demonstrated that 4'-trifluoromethyl on the B-ring strongly enhanced the anti-hCYP1B1 effects, identifying A9 as a promising lead compound. Further SAR analysis on A9 derivatives (modified A-ring of 4'-trifluoromethylchalcone) showed that introducing 2-methoxyl improved the anti-hCYP1B1 effect and selectivity, while introducing a methoxyl at the C-4 site was beneficial for avoiding AhR activation. Ultimately, five 4'-trifluoromethyl chalcones were identified as potent hCYP1B1 inhibitors (IC50 < 10 nM), while B18 exhibits the most potent anti-hCYP1B1 effect (IC50 = 3.6 nM), suitable metabolic stability and good cell-permeability. B18 also acted as an AhR antagonist and could down-regulate hCYP1B1 in living systems. Mechanistic studies showed that B18 potently inhibited hCYP1B1 in a competitive inhibition manner (Ki = 3.92 nM), while docking simulations revealed that B18 could tightly bind to the catalytic cavity of hCYP1B1 mainly via hydrophobic and hydrogen-bonding interactions. Furthermore, B18 could potently inhibit hCYP1B1 in living cells and showed remarkable anti-migration ability on MFC-7 cells. Taken together, this study deciphered the SARs of chalcones as hCYP1B1 inhibitors and provided several potent hCYP1B1 inhibitors as promising candidates for the development of more efficacious anti-migration agents.
Collapse
Affiliation(s)
- Yue Wu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jin-Hui Shi
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Guang-Hao Zhu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuan Xiong
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jia-Hao Gong
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hui-Zhen Wei
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhao-Bin Guo
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zi-Ru Dai
- Ministry of Education, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China.
| | - Xiao-Bo Sun
- Ministry of Education, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Guang-Bo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
18
|
Lei Z, Tian Q, Teng Q, Wurpel JND, Zeng L, Pan Y, Chen Z. Understanding and targeting resistance mechanisms in cancer. MedComm (Beijing) 2023; 4:e265. [PMID: 37229486 PMCID: PMC10203373 DOI: 10.1002/mco2.265] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/05/2023] [Accepted: 03/23/2023] [Indexed: 05/27/2023] Open
Abstract
Resistance to cancer therapies has been a commonly observed phenomenon in clinical practice, which is one of the major causes of treatment failure and poor patient survival. The reduced responsiveness of cancer cells is a multifaceted phenomenon that can arise from genetic, epigenetic, and microenvironmental factors. Various mechanisms have been discovered and extensively studied, including drug inactivation, reduced intracellular drug accumulation by reduced uptake or increased efflux, drug target alteration, activation of compensatory pathways for cell survival, regulation of DNA repair and cell death, tumor plasticity, and the regulation from tumor microenvironments (TMEs). To overcome cancer resistance, a variety of strategies have been proposed, which are designed to enhance the effectiveness of cancer treatment or reduce drug resistance. These include identifying biomarkers that can predict drug response and resistance, identifying new targets, developing new targeted drugs, combination therapies targeting multiple signaling pathways, and modulating the TME. The present article focuses on the different mechanisms of drug resistance in cancer and the corresponding tackling approaches with recent updates. Perspectives on polytherapy targeting multiple resistance mechanisms, novel nanoparticle delivery systems, and advanced drug design tools for overcoming resistance are also reviewed.
Collapse
Affiliation(s)
- Zi‐Ning Lei
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Qin Tian
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Qiu‐Xu Teng
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - John N. D. Wurpel
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Leli Zeng
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Yihang Pan
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| |
Collapse
|
19
|
Narendra G, Raju B, Verma H, Kumar M, Jain SK, Tung GK, Thakur S, Kaur R, Kaur S, Sapra B, Singh PK, Silakari O. Raloxifene and bazedoxifene as selective ALDH1A1 inhibitors to ameliorate cyclophosphamide resistance: A drug repurposing approach. Int J Biol Macromol 2023; 242:124749. [PMID: 37160174 DOI: 10.1016/j.ijbiomac.2023.124749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/25/2023] [Accepted: 05/01/2023] [Indexed: 05/11/2023]
Abstract
Cyclophosphamide (CP) is one of the most widely used anticancer drugs for various malignancies. However, its long-term use leads to ALDH1A1-mediated inactivation and subsequent resistance which necessitates the development of potential ALDH1A1 inhibitors. Currently, ALDH1A1 inhibitors from different chemical classes have been reported, but these failed to reach the market due to safety and efficacy problems. Developing a new treatment from the ground requires a huge amount of time, effort, and money, therefore it is worthwhile to improve CP efficacy by proposing better adjuvants as ALDH1A1 inhibitors. Herein, the database constituting the FDA-approved drugs with well-established safety and toxicity profiles was screened through already reported machine learning models by our research group. This model is validated for discriminating the ALDH1A1 inhibitors and non-inhibitors. Virtual screening protocol (VS) from this model identified four FDA-approved drugs, raloxifene, bazedoxifene, avanafil, and betrixaban as selective ALDH1A1 inhibitors. The molecular docking, dynamics, and water swap analysis also suggested these drugs to be promising ALDH1A1 inhibitors which were further validated for their CP resistance reversal potential by in-vitro analysis. The in-vitro enzymatic assay results indicated that raloxifene and bazedoxifene selectively inhibited the ALDH1A1 enzyme with IC50 values of 2.35 and 4.41 μM respectively, whereas IC50 values of both the drugs against ALDH2 and ALDH3A1 was >100 μM. Additional in-vitro stu = dies with well-reported ALDH1A1 overexpressing A549 and MIA paCa-2 cell lines suggested that mafosfamide sensitivity was further ameliorated by the combination of both raloxifene and bazedoxifene. Collectively, in-silico and in-vitro studies indicate raloxifene and bazedoxifene act as promising adjuvants with CP that may improve the quality of treatment for cancer patients with minimal toxicities.
Collapse
Affiliation(s)
- Gera Narendra
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002, India
| | - Baddipadige Raju
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002, India
| | - Himanshu Verma
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002, India
| | - Manoj Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002, India
| | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Gurleen Kaur Tung
- Centre for Basic and Translational Research in Health Sciences, Guru Nanak Dev University, Amritsar, India
| | - Shubham Thakur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Rasdeep Kaur
- Department of Botany and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Satwinderjeet Kaur
- Department of Botany and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Bharti Sapra
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002, India
| | - Pankaj Kumar Singh
- Integrative Physiology and Pharmacology, Institute of Biomedicine, Faculty of Medicine, University of Turku, FI-20520 Turku, Finland
| | - Om Silakari
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002, India.
| |
Collapse
|
20
|
Zhou X, Mitra R, Hou F, Zhou S, Wang L, Jiang W. Genomic Landscape and Potential Regulation of RNA Editing in Drug Resistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207357. [PMID: 36912579 PMCID: PMC10190536 DOI: 10.1002/advs.202207357] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/31/2023] [Indexed: 05/18/2023]
Abstract
Adenosine-to-inosine RNA editing critically affects the response of cancer therapies. However, comprehensive identification of drug resistance-related RNA editing events and systematic understanding of how RNA editing mediates anticancer drug resistance remain unclear. Here, 7157 differential editing sites (DESs) are identified from 98 127 informative RNA editing sites in tumor tissues, many of which are validated in cancer cell lines. Diverse editing patterns of DESs are discovered in resistant samples, which could not be fully explained by adenosine deaminase acting on RNA enzymes. Some RNA-binding proteins are identified that potentially regulate these editing events. Notably, the DESs are significantly enriched in 3'-untranslated regions (3'-UTRs). The impact of DESs in 3'-UTR on the microRNA (miRNA) regulations is explored, and some triplets (DES, miRNA, and gene) that may contribute to drug resistance are identified. In addition, it is determined that the functions of genes enriched with DESs are associated with drug resistance, such as apoptosis, drug metabolism, and DNA synthesis involved in DNA repair. An online resource (http://www.jianglab.cn/REDR/) to support convenient retrieval of DESs is also built. The findings reveal the landscape and potential regulatory mechanism of RNA editing in drug resistance, providing new therapeutic targets for reversing drug resistance.
Collapse
Affiliation(s)
- Xu Zhou
- Department of Biomedical EngineeringNanjing University of Aeronautics and AstronauticsNanjing211106P. R. China
| | - Ramkrishna Mitra
- Department of PharmacologyPhysiology, and Cancer BiologySidney Kimmel Cancer CenterThomas Jefferson UniversityPhiladelphiaPennsylvania19107USA
| | - Fei Hou
- Department of Biomedical EngineeringNanjing University of Aeronautics and AstronauticsNanjing211106P. R. China
| | - Shunheng Zhou
- Department of Biomedical EngineeringNanjing University of Aeronautics and AstronauticsNanjing211106P. R. China
| | - Lihong Wang
- Department of PathophysiologySchool of MedicineSoutheast UniversityNanjing210009P. R. China
| | - Wei Jiang
- Department of Biomedical EngineeringNanjing University of Aeronautics and AstronauticsNanjing211106P. R. China
| |
Collapse
|
21
|
Seydi H, Nouri K, Rezaei N, Tamimi A, Hassan M, Mirzaei H, Vosough M. Autophagy orchestrates resistance in hepatocellular carcinoma cells. Biomed Pharmacother 2023; 161:114487. [PMID: 36963361 DOI: 10.1016/j.biopha.2023.114487] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/26/2023] Open
Abstract
Treatment resistance is one of the major barriers for therapeutic strategies in hepatocellular carcinoma (HCC). Many studies have indicated that chemotherapy and radiotherapy induce autophagy machinery (cell protective autophagy) in HCC cells. In addition, many experiments report a remarkable crosstalk between treatment resistance and autophagy pathways. Thus, autophagy could be one of the key factors enabling tumor cells to hinder induced cell death after medical interventions. Therefore, extensive research on the molecular pathways involved in resistance induction and autophagy have been conducted to achieve the desired therapeutic response. The key molecular pathways related to the therapy resistance are TGF-β, MAPK, NRF2, NF-κB, and non-coding RNAs. In addition, EMT, drug transports, apoptosis evasion, DNA repair, cancer stem cells, and hypoxia could have considerable impact on the hepatoma cell's response to therapies. These mechanisms protect tumor cells against various treatments and many studies have shown that each of them is connected to the molecular pathways of autophagy induction in HCC. Hence, autophagy inhibition may be an effective strategy to improve therapeutic outcome in HCC patients. In this review, we further highlight how autophagy leads to poor response during treatment through a complex molecular network and how it enhances resistance in primary liver cancer. We propose that combinational regimens of approved HCC therapeutic protocols plus autophagy inhibitors may overcome drug resistance in HCC therapy.
Collapse
Affiliation(s)
- Homeyra Seydi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran
| | - Kosar Nouri
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran
| | - Niloufar Rezaei
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran; Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Islamic Republic of Iran
| | - Atena Tamimi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran; Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
22
|
Verma H, Doshi J, Narendra G, Raju B, Singh PK, Silakari O. Energy decomposition and waterswapping analysis to investigate the SNP associated DPD mediated 5-FU resistance. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2023; 34:39-64. [PMID: 36779961 DOI: 10.1080/1062936x.2023.2165146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/31/2022] [Indexed: 06/18/2023]
Abstract
5-fluorouracil is an essential component of systemic chemotherapy for colon, breast, head, and neck cancer patients. However, tumoral overexpression of the dihydropyrimidine dehydrogenase has rendered 5-FU clinically ineffective by inactivating it to 5'-6'-dihydro fluorouracil. The responses to 5-FU in terms of efficacy and toxicity greatly differ depending upon the population group, because of variability in the DPD activity levels. In the current study, key active site amino acids involved in the 5-FU inactivation were investigated by modelling the 3D structure of human DPD in a complex with 5-FU. The identified amino acids were analyzed for their possible missense mutations available in dbSNP database. Out of 12 missense SNPs, four were validated either by sequencing in the 1000 Genomes project or frequency/genotype data. The recorded validated missense SNPs were further considered to analyze the effect of their respective alterations on 5-FU binding. Overall findings suggested that population bearing the Glu611Val DPD mutation (rs762523739) is highly vulnerable to 5-FU resistance. From the docking, electrostatic complementarity, dynamics, and energy decomposition analyses it was found that the above mutation showed superior scores than the wild DPD -5FU complex. Therefore, prescribing prodrug NUC-3373 or DPD inhibitors (Gimeracil/3-Cyano-2,6-Dihydroxypyridines) as adjuvant therapy may overcome the 5-FU resistance.
Collapse
Affiliation(s)
- H Verma
- Molecular Modelling Laboratory (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - J Doshi
- BioInsight Solutions, Mumbai, India
| | - G Narendra
- Molecular Modelling Laboratory (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - B Raju
- Molecular Modelling Laboratory (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - P K Singh
- Integrative Physiology and Pharmacology, Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - O Silakari
- Molecular Modelling Laboratory (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| |
Collapse
|
23
|
Malpeli G, Barbi S, Innamorati G, Alloggio M, Filippini F, Decimo I, Castelli C, Perris R, Bencivenga M. Landscape of Druggable Molecular Pathways Downstream of Genomic CDH1/Cadherin-1 Alterations in Gastric Cancer. J Pers Med 2022; 12:jpm12122006. [PMID: 36556227 PMCID: PMC9784514 DOI: 10.3390/jpm12122006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/03/2022] [Accepted: 11/24/2022] [Indexed: 12/09/2022] Open
Abstract
Loss of CDH1/Cadherin-1 is a common step towards the acquisition of an abnormal epithelial phenotype. In gastric cancer (GC), mutation and/or downregulation of CDH1/Cadherin-1 is recurrent in sporadic and hereditary diffuse GC type. To approach the molecular events downstream of CDH1/Cadherin-1 alterations and their relevance in gastric carcinogenesis, we queried public databases for genetic and DNA methylation data in search of molecular signatures with a still-uncertain role in the pathological mechanism of GC. In all GC subtypes, modulated genes correlating with CDH1/Cadherin-1 aberrations are associated with stem cell and epithelial-to-mesenchymal transition pathways. A higher level of genes upregulated in CDH1-mutated GC cases is associated with reduced overall survival. In the diffuse GC (DGC) subtype, genes downregulated in CDH1-mutated compared to cases with wild type CDH1/Cadherin-1 resulted in being strongly intertwined with the DREAM complex. The inverse correlation between hypermethylated CpGs and CDH1/Cadherin-1 transcription in diverse subtypes implies a common epigenetic program. We identified nonredundant protein-encoding isoforms of 22 genes among those differentially expressed in GC compared to normal stomach. These unique proteins represent potential agents involved in cell transformation and candidate therapeutic targets. Meanwhile, drug-induced and CDH1/Cadherin-1 mutation-related gene expression comparison predicts FIT, GR-127935 hydrochloride, amiodarone hydrochloride in GC and BRD-K55722623, BRD-K13169950, and AY 9944 in DGC as the most effective treatments, providing cues for the design of combined pharmacological treatments. By integrating genetic and epigenetic aspects with their expected functional outcome, we unveiled promising targets for combinatorial pharmacological treatments of GC.
Collapse
Affiliation(s)
- Giorgio Malpeli
- Department of Surgical, Odontostomatologic, Maternal and Child Sciences, University of Verona, 37134 Verona, Italy
- Correspondence:
| | - Stefano Barbi
- Department of Diagnostics and Public Health, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Giulio Innamorati
- Department of Surgical, Odontostomatologic, Maternal and Child Sciences, University of Verona, 37134 Verona, Italy
| | - Mariella Alloggio
- General and Upper GI Surgery Division, Department and of Surgical, Odontostomatologic, Maternal and Child Sciences, University of Verona, 37134 Verona, Italy
| | - Federica Filippini
- General and Upper GI Surgery Division, Department and of Surgical, Odontostomatologic, Maternal and Child Sciences, University of Verona, 37134 Verona, Italy
| | - Ilaria Decimo
- Section of Pharmacology, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy
| | - Claudia Castelli
- Pathology Unit, Department of Diagnostics and Public Health, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Roberto Perris
- Department of Biosciences, COMT-Centre for Molecular and Translational Oncology, University of Parma, 43124 Parma, Italy
| | - Maria Bencivenga
- General and Upper GI Surgery Division, Department and of Surgical, Odontostomatologic, Maternal and Child Sciences, University of Verona, 37134 Verona, Italy
| |
Collapse
|
24
|
Mayani H, Chávez-González A, Vázquez-Santillan K, Contreras J, Guzman ML. Cancer Stem Cells: Biology and Therapeutic Implications. Arch Med Res 2022; 53:770-784. [PMID: 36462951 DOI: 10.1016/j.arcmed.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
Abstract
It is well recognized that most cancers derive and progress from transformation and clonal expansion of a single cell that possesses stem cell properties, i.e., self-renewal and multilineage differentiation capacities. Such cancer stem cells (CSCs) are usually present at very low frequencies and possess properties that make them key players in tumor development. Indeed, besides having the ability to initiate tumor growth, CSCs drive tumor progression and metastatic dissemination, are resistant to most cancer drugs, and are responsible for cancer relapse. All of these features make CSCs attractive targets for the development of more effective oncologic treatments. In the present review article, we have summarized recent advances in the biology of CSCs, including their identification through their immunophenotype, and their physiology, both in vivo and in vitro. We have also analyzed some molecular markers that might become targets for developing new therapies aiming at hampering CSCs regeneration and cancer relapse.
Collapse
Affiliation(s)
- Hector Mayani
- Unidad de Investigaci..n en Enfermedades Oncol..gicas, Hospital de Oncolog.ía, Centro M..dico Nacional SXXI, Instituto Mexicano del Seguro Social. Ciudad de M..xico, M..xico.
| | - Antonieta Chávez-González
- Unidad de Investigaci..n en Enfermedades Oncol..gicas, Hospital de Oncolog.ía, Centro M..dico Nacional SXXI, Instituto Mexicano del Seguro Social. Ciudad de M..xico, M..xico
| | | | - Jorge Contreras
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Monica L Guzman
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
25
|
Verma H, Narendra G, Raju B, Singh PK, Silakari O. Dihydropyrimidine Dehydrogenase-Mediated Resistance to 5-Fluorouracil: Mechanistic Investigation and Solution. ACS Pharmacol Transl Sci 2022; 5:1017-1033. [PMID: 36407958 PMCID: PMC9667542 DOI: 10.1021/acsptsci.2c00117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Indexed: 11/29/2022]
Abstract
5-Fluorouracil (5-FU) is one of the most widely used chemotherapeutics for the treatment of cancers associated with the aerodigestive tract, breast, and colorectal system. The efficacy of 5-FU is majorly affected by dihydropyrimidine dehydrogenase (DPD) as it degrades more than 80% of administered 5-FU into an inactive metabolite, dihydrofluorouracil. Herein we discuss the molecular mechanism of this inactivation by analyzing the interaction pattern and electrostatic complementarity of the DPD-5-FU complex. The basis of DPD overexpression in cancer cell lines due to significantly distinct levels of the miRNAs (miR-134, miR-27b, and miR-27a) compared to normal cells has also been outlined. Additionally, some kinases including sphingosine kinase 2 (SphK2) have been reported to correlate with DPD expression. Currently, to address this problem various strategies are reported in the literature, including 5-FU analogues (bypass the DPD-mediated inactivation), DPD downregulators (regulate the DPD expression levels in tumors), inhibitors (as promising adjuvants), and formulation development loaded with 5-FU (liposomes, nanoparticles, nanogels, etc.), which are briefly discussed in this Review.
Collapse
Affiliation(s)
- Himanshu Verma
- Molecular
Modeling Lab, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab147002, India
| | - Gera Narendra
- Molecular
Modeling Lab, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab147002, India
| | - Baddipadige Raju
- Molecular
Modeling Lab, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab147002, India
| | - Pankaj Kumar Singh
- Integrative
Physiology and Pharmacology, Institute of Biomedicine, Faculty of
Medicine, University of Turku, FI-20520Turku, Finland
| | - Om Silakari
- Molecular
Modeling Lab, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab147002, India
| |
Collapse
|
26
|
Narendra G, Choudhary S, Raju B, Verma H, Silakari O. Role of Genetic Polymorphisms in Drug-Metabolizing Enzyme-Mediated Toxicity and Pharmacokinetic Resistance to Anti-Cancer Agents: A Review on the Pharmacogenomics Aspect. Clin Pharmacokinet 2022; 61:1495-1517. [PMID: 36180817 DOI: 10.1007/s40262-022-01174-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2022] [Indexed: 01/31/2023]
Abstract
The inter-individual differences in cancer susceptibility are somehow correlated with the genetic differences that are caused by the polymorphisms. These genetic variations in drug-metabolizing enzymes/drug-inactivating enzymes may negatively or positively affect the pharmacokinetic profile of chemotherapeutic agents that eventually lead to pharmacokinetic resistance and toxicity against anti-cancer drugs. For instance, the CYP1B1*3 allele is associated with CYP1B1 overexpression and consequent resistance to a variety of taxanes and platins, while 496T>G is associated with lower levels of dihydropyrimidine dehydrogenase, which results in severe toxicities related to 5-fluorouracil. In this context, a pharmacogenomics approach can be applied to ascertain the role of the genetic make-up in a person's response to any drug. This approach collectively utilizes pharmacology and genomics to develop effective and safe medications that are devoid of resistance problems. In addition, recently reported genomics studies revealed the impact of many single nucleotide polymorphisms in tumors. These studies emphasized the importance of single nucleotide polymorphisms in drug-metabolizing enzymes on the effect of anti-tumor drugs. In this review, we discuss the pharmacogenomics aspect of polymorphisms in detail to provide an insight into the genetic manipulations in drug-metabolizing enzymes that are responsible for pharmacokinetic resistance or toxicity against well-known anti-cancer drugs. Special emphasis is placed on different deleterious single nucleotide polymorphisms and their effect on pharmacokinetic resistance. The information provided in this report may be beneficial to researchers, especially those who are working in the field of biotechnology and human genetics, in rationally manipulating the genetic information of patients with cancer who are undergoing chemotherapy to avoid the problem of pharmacokinetic resistance/toxicity associated with drug-metabolizing enzymes.
Collapse
Affiliation(s)
- Gera Narendra
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, 147002, Patiala, Punjab, India
| | - Shalki Choudhary
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, 147002, Patiala, Punjab, India
| | - Baddipadige Raju
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, 147002, Patiala, Punjab, India
| | - Himanshu Verma
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, 147002, Patiala, Punjab, India
| | - Om Silakari
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, 147002, Patiala, Punjab, India.
| |
Collapse
|
27
|
Specific Gene Duplication and Loss of Cytochrome P450 in Families 1-3 in Carnivora (Mammalia, Laurasiatheria). Animals (Basel) 2022; 12:ani12202821. [PMID: 36290207 PMCID: PMC9597770 DOI: 10.3390/ani12202821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary In this study we investigated the specific duplication and loss events of cytochrome P450 (CYP) genes in families 1-3 in Carnivora. These genes have been recognized as essential detoxification enzymes, and, using genomic data, we demonstrated a synteny analysis of the CYP coding cluster and a phylogenetic analysis of these genes. We discovered the CYP2Cs and CYP3As expansion in omnivorous species such as the badger, the brown bear, the black bear, and the dog. Furthermore, phylogenetic analysis revealed the evolution of CYP2Cs and 3As in Carnivora. These findings are essential for the appropriate estimation of pharmacokinetics or toxicokinetic in wild carnivorans. Abstract Cytochrome P450s are among the most important xenobiotic metabolism enzymes that catalyze the metabolism of a wide range of chemicals. Through duplication and loss events, CYPs have created their original feature of detoxification in each mammal. We performed a comprehensive genomic analysis to reveal the evolutionary features of the main xenobiotic metabolizing family: the CYP1-3 families in Carnivora. We found specific gene expansion of CYP2Cs and CYP3As in omnivorous animals, such as the brown bear, the black bear, the dog, and the badger, revealing their daily phytochemical intake as providing the causes of their evolutionary adaptation. Further phylogenetic analysis of CYP2Cs revealed Carnivora CYP2Cs were divided into CYP2C21, 2C41, and 2C23 orthologs. Additionally, CYP3As phylogeny also revealed the 3As’ evolution was completely different to that of the Caniformia and Feliformia taxa. These studies provide us with fundamental genetic and evolutionary information on CYPs in Carnivora, which is essential for the appropriate interpretation and extrapolation of pharmacokinetics or toxicokinetic data from experimental mammals to wild Carnivora.
Collapse
|
28
|
Dimunová D, Matoušková P, Podlipná R, Boušová I, Skálová L. The role of UDP-glycosyltransferases in xenobiotic-resistance. Drug Metab Rev 2022; 54:282-298. [DOI: 10.1080/03602532.2022.2083632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Diana Dimunová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Petra Matoušková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Radka Podlipná
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Praha 6 - Lysolaje, Czech Republic
| | - Iva Boušová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Lenka Skálová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| |
Collapse
|
29
|
Verma H, Narendra G, Raju B, Kumar M, Jain SK, Tung GK, Singh PK, Silakari O. 3D-QSAR and scaffold hopping based designing of benzo[d]ox-azol-2(3H)-one and 2-oxazolo[4,5-b]pyridin-2(3H)-one derivatives as selective aldehyde dehydrogenase 1A1 inhibitors: Synthesis and biological evaluation. Arch Pharm (Weinheim) 2022; 355:e2200108. [PMID: 35618489 DOI: 10.1002/ardp.202200108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 01/16/2023]
Abstract
Aldehyde dehydrogenase 1 (ALDH1A1), an oxidoreductase class of enzymes, is overexpressed in various types of cancer cell lines and is the major cause of resistance to the Food and Drug Administration (FDA)-approved drug, cyclophosphamide (CP). In cancer conditions, CP undergoes a sequence of biotransformations to form an active metabolite, aldophosphamide, which further biotransforms to its putative cytotoxic metabolite, phosphoramide mustard. However, in resistant cancer conditions, aldophosphamide is converted into its inactive metabolite, carboxyphosphamide, via oxidation with ALDH1A1. Herein, to address the issue of ALDH1A1 mediated CP resistance, we report a series of benzo[d]oxazol-2(3H)-one and 2-oxazolo[4,5-b]pyridin-2(3H)-one derivatives as selective ALDH1A1 inhibitors. These inhibitors were designed using a validated 3D-quantitative structure activity relationship (3D-QSAR) model coupled with scaffold hopping. The 3D-QSAR model was developed using reported indole-2,3-diones based ALDH1A1 inhibitors, which provided field points in terms of electrostatic, van der Waals and hydrophobic potentials required for selectively inhibiting ALDH1A1. The most selective indole-2,3-diones-based compound, that is, cmp 3, was further considered for scaffold hopping. Two top-ranked bioisosteres, that is, benzo[d]oxazol-2(3H)-one and 2-oxazolo[4,5-b]pyridin-2(3H)-one, were selected for designing new inhibitors by considering the field pattern of 3D-QSAR. All designed molecules were mapped perfectly on the 3D-QSAR model and found to be predictive with good inhibitory potency (pIC50 range: 7.5-6.8). Molecular docking was carried out for each designed molecule to identify key interactions that are required for ALDH1A1 inhibition and to authenticate the 3D-QSAR result. The top five inhibitor-ALDH1A1 complexes were also submitted for molecular dynamics simulations to access their stability. In vitro enzyme assays of 21 compounds suggested that these compounds are selective toward ALDH1A1 over the other two isoforms, that is, ALDH2 and ALDH3A1. All the compounds were found to be at least three and two times more selective toward ALDH1A1 over ALDH2 and ALDH3A1, respectively. All the compounds showed an IC50 value in the range of 0.02-0.80 μM, which indicates the potential for these to be developed as adjuvant therapy for CP resistance.
Collapse
Affiliation(s)
- Himanshu Verma
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Gera Narendra
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Baddipadige Raju
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Manoj Kumar
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Subheet K Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Gurleen K Tung
- Centre for Basic and Translational Research in Health Sciences, Guru Nanak Dev University, Amritsar, India
| | - Pankaj K Singh
- Faculty of Medicine, Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Om Silakari
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| |
Collapse
|
30
|
Lohan-Codeço M, Barambo-Wagner ML, Nasciutti LE, Ribeiro Pinto LF, Meireles Da Costa N, Palumbo A. Molecular mechanisms associated with chemoresistance in esophageal cancer. Cell Mol Life Sci 2022; 79:116. [PMID: 35113247 PMCID: PMC11073146 DOI: 10.1007/s00018-022-04131-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 02/07/2023]
Abstract
Esophageal cancer (EC) is one of the most incident and lethal tumors worldwide. Although surgical resection is an important approach in EC treatment, late diagnosis, metastasis and recurrence after surgery have led to the management of adjuvant and neoadjuvant therapies over the past few decades. In this scenario, 5-fluorouracil (5-FU) and cisplatin (CISP), and more recently paclitaxel (PTX) and carboplatin (CBP), have been traditionally used in EC treatment. However, chemoresistance to these agents along EC therapeutic management represents the main obstacle to successfully treat this malignancy. In this sense, despite the fact that most of chemotherapy drugs were discovered several decades ago, in many cases, including EC, they still represent the most affordable and widely employed treatment approach for these tumors. Therefore, this review summarizes the main mechanisms through which the response to the most widely chemotherapeutic agents used in EC treatment is impaired, such as drug metabolism, apoptosis resistance, cancer stem cells (CSCs), cell cycle, autophagy, energetic metabolism deregulation, tumor microenvironment and epigenetic modifications.
Collapse
Affiliation(s)
- Matheus Lohan-Codeço
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Programa de Pesquisa em Biologia Celular e do Desenvolvimento, Universidade Federal do Rio de Janeiro, Prédio do Centro de Ciências da Saúde-Cidade Universitária, Ilha do Fundão, Rua César Pernetta, 1766 (LS.3.01), Rio de Janeiro, RJ, Brasil
| | - Maria Luísa Barambo-Wagner
- Programa de Carcinogênese Molecular Coordenação de Pesquisa, Instituto Nacional de Câncer-INCA, Rua André Cavalcanti, 37-6ºandar-Centro, Rio de Janeiro, RJ, 20231-050, Brazil
| | - Luiz Eurico Nasciutti
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Programa de Pesquisa em Biologia Celular e do Desenvolvimento, Universidade Federal do Rio de Janeiro, Prédio do Centro de Ciências da Saúde-Cidade Universitária, Ilha do Fundão, Rua César Pernetta, 1766 (LS.3.01), Rio de Janeiro, RJ, Brasil
| | - Luis Felipe Ribeiro Pinto
- Programa de Carcinogênese Molecular Coordenação de Pesquisa, Instituto Nacional de Câncer-INCA, Rua André Cavalcanti, 37-6ºandar-Centro, Rio de Janeiro, RJ, 20231-050, Brazil
| | - Nathalia Meireles Da Costa
- Programa de Carcinogênese Molecular Coordenação de Pesquisa, Instituto Nacional de Câncer-INCA, Rua André Cavalcanti, 37-6ºandar-Centro, Rio de Janeiro, RJ, 20231-050, Brazil.
| | - Antonio Palumbo
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Programa de Pesquisa em Biologia Celular e do Desenvolvimento, Universidade Federal do Rio de Janeiro, Prédio do Centro de Ciências da Saúde-Cidade Universitária, Ilha do Fundão, Rua César Pernetta, 1766 (LS.3.01), Rio de Janeiro, RJ, Brasil.
| |
Collapse
|
31
|
Cytochrome P450 Enzymes and Drug Metabolism in Humans. Int J Mol Sci 2021; 22:ijms222312808. [PMID: 34884615 PMCID: PMC8657965 DOI: 10.3390/ijms222312808] [Citation(s) in RCA: 366] [Impact Index Per Article: 91.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 01/07/2023] Open
Abstract
Human cytochrome P450 (CYP) enzymes, as membrane-bound hemoproteins, play important roles in the detoxification of drugs, cellular metabolism, and homeostasis. In humans, almost 80% of oxidative metabolism and approximately 50% of the overall elimination of common clinical drugs can be attributed to one or more of the various CYPs, from the CYP families 1–3. In addition to the basic metabolic effects for elimination, CYPs are also capable of affecting drug responses by influencing drug action, safety, bioavailability, and drug resistance through metabolism, in both metabolic organs and local sites of action. Structures of CYPs have recently provided new insights into both understanding the mechanisms of drug metabolism and exploiting CYPs as drug targets. Genetic polymorphisms and epigenetic changes in CYP genes and environmental factors may be responsible for interethnic and interindividual variations in the therapeutic efficacy of drugs. In this review, we summarize and highlight the structural knowledge about CYPs and the major CYPs in drug metabolism. Additionally, genetic and epigenetic factors, as well as several intrinsic and extrinsic factors that contribute to interindividual variation in drug response are also reviewed, to reveal the multifarious and important roles of CYP-mediated metabolism and elimination in drug therapy.
Collapse
|
32
|
Liu D, Yu Q, Ning Q, Liu Z, Song J. The relationship between UGT1A1 gene & various diseases and prevention strategies. Drug Metab Rev 2021; 54:1-21. [PMID: 34807779 DOI: 10.1080/03602532.2021.2001493] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
UDP-glucuronyltransferase 1A1 (UGT1A1) is a member of the Phase II metabolic enzyme family and the only enzyme that can metabolize detoxified bilirubin. Inactivation and very low activity of UGT1A1 in the liver can be fatal or lead to lifelong Gilbert's syndrome (GS) and Crigler-Najjar syndrome (CN). To date, more than one hundred UGT1A1 polymorphisms have been discovered. Although most UGT1A1 polymorphisms are not fatal, which diseases might be associated with low activity UGT1A1 or UGT1A1 polymorphisms? This scientific topic has been studied for more than a hundred years, there are still many uncertainties. Herein, this article will summarize all the possibilities of UGT1A1 gene-related diseases, including GS and CN, neurological disease, hepatobiliary disease, metabolic difficulties, gallstone, cardiovascular disease, Crohn's disease (CD) obesity, diabetes, myelosuppression, leukemia, tumorigenesis, etc., and provide guidance for researchers to conduct in-depth study on UGT1A1 gene-related diseases. In addition, this article not only summarizes the prevention strategies of UGT1A1 gene-related diseases, but also puts forward some insights for sharing.
Collapse
Affiliation(s)
- Dan Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, PR China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, PR China.,Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Qi Yu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Qing Ning
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, PR China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, PR China
| | - Zhongqiu Liu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Jie Song
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, PR China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, PR China
| |
Collapse
|
33
|
piR-39980 mediates doxorubicin resistance in fibrosarcoma by regulating drug accumulation and DNA repair. Commun Biol 2021; 4:1312. [PMID: 34799689 PMCID: PMC8605029 DOI: 10.1038/s42003-021-02844-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022] Open
Abstract
Resistance to doxorubicin (DOX) is an obstacle to successful sarcoma treatment and a cause of tumor relapse, with the underlying molecular mechanism still unknown. PIWI-interacting RNAs (piRNAs) have been shown to enhance patient outcomes in cancers. However, there are few or no reports on piRNAs affecting chemotherapy in cancers, including fibrosarcoma. The current study aims to investigate the relationship between piR-39980 and DOX resistance and the underlying mechanisms. We reveal that piR-39980 is less expressed in DOX-resistant HT1080 (HT1080/DOX) fibrosarcoma cells. Our results show that inhibition of piR-39980 in parental HT1080 cells induces DOX resistance by attenuating intracellular DOX accumulation, DOX-induced apoptosis, and anti-proliferative effects. Its overexpression in HT1080/DOX cells, on the other hand, increases DOX sensitivity by promoting intracellular DOX accumulation, DNA damage, and apoptosis. The dual-luciferase reporter assay indicates that piR-39980 negatively regulates RRM2 and CYP1A2 via direct binding to their 3'UTRs. Furthermore, overexpressing RRM2 induces DOX resistance of HT1080 cells by rescuing DOX-induced DNA damage by promoting DNA repair, whereas CYP1A2 confers resistance by decreasing intracellular DOX accumulation, which piR-39980 restores. This study reveals that piR-39980 could reduce fibrosarcoma resistance to DOX by modulating RRM2 and CYP1A2, implying that piRNA can be used in combination with DOX.
Collapse
|
34
|
Narendra G, Raju B, Verma H, Silakari O. Identification of potential genes associated with ALDH1A1 overexpression and cyclophosphamide resistance in chronic myelogenous leukemia using network analysis. Med Oncol 2021; 38:123. [PMID: 34491453 DOI: 10.1007/s12032-021-01569-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/20/2021] [Indexed: 12/27/2022]
Abstract
Cyclophosphamide (CP), an important alkylating agent which is used in the treatment therapy for chronic myeloid leukemia (CML). However, acquired drug resistance owing to the inactivation of its active metabolite aldophosphamide via tumoral-overexpressing aldehyde dehydrogenase (ALDH1A1) is one of the major issues with the CP therapy. However, the underlying mechanism of ALDH1A1 overexpression in cancer cells remains poorly defined. Therefore, the current study focused on analyzing the ALDH1A1-overexpressing microarray data for CP resistance and CP-sensitive CML cell lines. In this study, the microarray dataset was obtained from Gene Expression Omnibus GEO. The GEO2R tool was used to identify Differentially Expressing Genes (DEGs). Further, protein-protein interaction (PPI) network of DEGs were constructed using STRING database. Finally, Hub gene-miRNA-TFs interaction were constructed using miRNet tool. A total of 749 DEGs including 387 upregulated and 225 downregulated genes were identified from this pool of microarray data. The construction of DEGs network resulted in identification of three genes including ZEB2, EZH2, and MUC1 were found to be majorly responsible for ALDH1A1 overexpression. miRNA analysis identified that, hsa-mir-16-5p and hsa-mir-26a-5p as hub miRNA which are commonly interacting with maximum target genes. Additionally, drug-gene interaction analysis was performed to identify drugs which are responsible for ALDH1A1 expression. The entire study may provide a deeper understanding about ALDH1A1 regulatory genes responsible for its overexpression in CP resistance cancer. This understanding may be further explore for developing possible co-therapy to avoid the ALDH1A1-mediated CP resistance.
Collapse
Affiliation(s)
- Gera Narendra
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Baddipadige Raju
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Himanshu Verma
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Om Silakari
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India.
| |
Collapse
|
35
|
βIII-tubulin overexpression in cancer: Causes, consequences, and potential therapies. Biochim Biophys Acta Rev Cancer 2021; 1876:188607. [PMID: 34364992 DOI: 10.1016/j.bbcan.2021.188607] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/21/2021] [Accepted: 08/02/2021] [Indexed: 12/30/2022]
Abstract
Class III β-tubulin (βIII-tubulin) is frequently overexpressed in human tumors and is associated with resistance to microtubule-targeting agents, tumor aggressiveness, and poor patient outcome. Understanding the mechanisms regulating βIII-tubulin expression and the varied functions βIII-tubulin may have in different cancers is vital to assess the prognostic value of this protein and to develop strategies to enhance therapeutic benefits in βIII-tubulin overexpressing tumors. Here we gather all the available evidence regarding the clinical implications of βIII-tubulin overexpression in cancer, describe factors that regulate βIII-tubulin expression, and discuss current understanding of the mechanisms underlying βIII-tubulin-mediated resistance to microtubule-targeting agents and tumor aggressiveness. Finally, we provide an overview of emerging therapeutic strategies to target tumors that overexpress βIII-tubulin.
Collapse
|
36
|
Narendra G, Raju B, Verma H, Sapra B, Silakari O. Multiple machine learning models combined with virtual screening and molecular docking to identify selective human ALDH1A1 inhibitors. J Mol Graph Model 2021; 107:107950. [PMID: 34089986 DOI: 10.1016/j.jmgm.2021.107950] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/19/2022]
Abstract
Aldehyde dehydrogenases (ALDHs) are the enzymes of oxidoreductase family that are responsible for the aldehyde metabolism. The unbalanced expression of these enzymes may be associated with a variety of disease conditions including cancers. ALDH1A1 is one of the isoform of ALDHs majorly overexpressed in a variety of tumors and responsible for the anti-cancer drug resistance. This makes ALDH1A1 as a specific target to develop small molecule ALDH1A1 inhibitors for resistant cancer condition. Number of ALDH1A1 inhibitors have been developed and reported in the literature, but because of non-selectivity and inappropriate pharmacokinetic properties till now none of these have reached in the market for clinical use. Therefore, multiple machine learning models of different isoforms of ALDHs are integrated with in-silico techniques including virtual screening, docking, ADMET profiling, and MD simulation to identify selective ALDH1A1 inhibitors. Total ten selective ALDH1A1 inhibitors with diverse scaffolds and appropriate ADMET were identified that can be further developed as adjuvant therapy in cyclophosphamide and cisplatin resistance cancer.
Collapse
Affiliation(s)
- Gera Narendra
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Baddipadige Raju
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Himanshu Verma
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Bharti Sapra
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Om Silakari
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India.
| |
Collapse
|
37
|
Song Y, Li C, Liu G, Liu R, Chen Y, Li W, Cao Z, Zhao B, Lu C, Liu Y. Drug-Metabolizing Cytochrome P450 Enzymes Have Multifarious Influences on Treatment Outcomes. Clin Pharmacokinet 2021; 60:585-601. [PMID: 33723723 DOI: 10.1007/s40262-021-01001-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2021] [Indexed: 02/06/2023]
Abstract
Drug metabolism is a critical process for the removal of unwanted substances from the body. In humans, approximately 80% of oxidative metabolism and almost 50% of the overall elimination of commonly used drugs can be attributed to one or more of various cytochrome P450 (CYP) enzymes from CYP families 1-3. In addition to the basic metabolic effects for elimination, CYP enzymes in vivo are capable of affecting the treatment outcomes in many cases. Drug-metabolizing CYP enzymes are mainly expressed in the liver and intestine, the two principal drug oxidation and elimination organs, where they can significantly influence the drug action, safety, and bioavailability by mediating phase I metabolism and first-pass metabolism. Furthermore, CYP-mediated local drug metabolism in the sites of action may also have the potential to impact drug response, according to the literature in recent years. This article underlines the ability of CYP enzymes to influence treatment outcomes by discussing CYP-mediated diversified drug metabolism in primary metabolic sites (liver and intestine) and typical action sites (brain and tumors) according to their expression levels and metabolic activity. Moreover, intrinsic and extrinsic factors of personal differential CYP phenotypes that contribute to interindividual variation of treatment outcomes are also reviewed to introduce the multifarious pivotal role of CYP-mediated metabolism and clearance in drug therapy.
Collapse
Affiliation(s)
- Yurong Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Chenxi Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Guangzhi Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Rui Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Youwen Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Wen Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhiwen Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Baosheng Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
38
|
Metallothionein-3 promotes cisplatin chemoresistance remodelling in neuroblastoma. Sci Rep 2021; 11:5496. [PMID: 33750814 PMCID: PMC7943580 DOI: 10.1038/s41598-021-84185-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
Metallothionein-3 has poorly characterized functions in neuroblastoma. Cisplatin-based chemotherapy is a major regimen to treat neuroblastoma, but its clinical efficacy is limited by chemoresistance. We investigated the impact of human metallothionein-3 (hMT3) up-regulation in neuroblastoma cells and the mechanisms underlying the cisplatin-resistance. We confirmed the cisplatin-metallothionein complex formation using mass spectrometry. Overexpression of hMT3 decreased the sensitivity of neuroblastoma UKF-NB-4 cells to cisplatin. We report, for the first time, cisplatin-sensitive human UKF-NB-4 cells remodelled into cisplatin-resistant cells via high and constitutive hMT3 expression in an in vivo model using chick chorioallantoic membrane assay. Comparative proteomic analysis demonstrated that several biological pathways related to apoptosis, transport, proteasome, and cellular stress were involved in cisplatin-resistance in hMT3 overexpressing UKF-NB-4 cells. Overall, our data confirmed that up-regulation of hMT3 positively correlated with increased cisplatin-chemoresistance in neuroblastoma, and a high level of hMT3 could be one of the causes of frequent tumour relapses.
Collapse
|
39
|
Clinical and genomic characteristics of metabolic syndrome in colorectal cancer. Aging (Albany NY) 2021; 13:5442-5460. [PMID: 33582655 PMCID: PMC7950286 DOI: 10.18632/aging.202474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/30/2020] [Indexed: 12/27/2022]
Abstract
Metabolic syndrome (MetS) is characterized by a group of metabolic disturbances which leads to the enhanced risk of cancer development. Elucidating the mechanisms between these two pathologies is essential to identify the potential therapeutic molecular targets for colorectal cancer (CRC). 716 colorectal patients from the First and Second Affiliated Hospital of Wenzhou Medical University were involved in our study and metabolic disorders were proven to increase the risk of CRC. The prognostic value of the MetS factors was analyzed using the Cox regression model and a clinical MetS-based nomogram was established. Then by using multi-omics techniques, the distinct molecular mechanism of MetS genes in CRC was firstly systematically characterized. Strikingly, MetS genes were found to be highly correlated with the effectiveness of targeted chemotherapy administration, especially for mTOR and VEGFR pathways. Our results further demonstrated that overexpression of MetS core gene IL6 would promote the malignancy of CRC, which was highly dependent on mTOR-S6K signaling. In conclusion, we comprehensively explored the clinical value and molecular mechanism of MetS in the progression of CRC, which may serve as a candidate option for cancer management and therapy in the future.
Collapse
|
40
|
Raju B, Choudhary S, Narendra G, Verma H, Silakari O. Molecular modeling approaches to address drug-metabolizing enzymes (DMEs) mediated chemoresistance: a review. Drug Metab Rev 2021; 53:45-75. [PMID: 33535824 DOI: 10.1080/03602532.2021.1874406] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Resistance against clinically approved anticancer drugs is the main roadblock in cancer treatment. Drug metabolizing enzymes (DMEs) that are capable of metabolizing a variety of xenobiotic get overexpressed in malignant cells, therefore, catalyzing drug inactivation. As evident from the literature reports, the levels of DMEs increase in cancer cells that ultimately lead to drug inactivation followed by drug resistance. To puzzle out this issue, several strategies inclusive of analog designing, prodrug designing, and inhibitor designing have been forged. On that front, the implementation of computational tools can be considered a fascinating approach to address the problem of chemoresistance. Various research groups have adopted different molecular modeling tools for the investigation of DMEs mediated toxicity problems. However, the utilization of these in-silico tools in maneuvering the DME mediated chemoresistance is least considered and yet to be explored. These tools can be employed in the designing of such chemotherapeutic agents that are devoid of the resistance problem. The current review canvasses various molecular modeling approaches that can be implemented to address this issue. Special focus was laid on the development of specific inhibitors of DMEs. Additionally, the strategies to bypass the DMEs mediated drug metabolism were also contemplated in this report that includes analogs and pro-drugs designing. Different strategies discussed in the review will be beneficial in designing novel chemotherapeutic agents that depreciate the resistance problem.
Collapse
Affiliation(s)
- Baddipadige Raju
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Shalki Choudhary
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Gera Narendra
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Himanshu Verma
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Om Silakari
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| |
Collapse
|
41
|
Bleker de Oliveira M, Koshkin V, Liu G, Krylov SN. Analytical Challenges in Development of Chemoresistance Predictors for Precision Oncology. Anal Chem 2020; 92:12101-12110. [PMID: 32790291 DOI: 10.1021/acs.analchem.0c02644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chemoresistance, i.e., tumor insensitivity to chemotherapy, shortens life expectancy of cancer patients. Despite the availability of new treatment options, initial systemic regimens for solid tumors are dominated by a set of standard chemotherapy drugs, and alternative therapies are used only when a patient has demonstrated chemoresistance clinically. Chemoresistance predictors use laboratory parameters measured on tissue samples to predict the patient's response to chemotherapy and help to avoid application of chemotherapy to chemoresistant patients. Despite thousands of publications on putative chemoresistance predictors, there are only about a dozen predictors that are sufficiently accurate for precision oncology. One of the major reasons for inaccuracy of predictors is inaccuracy of analytical methods utilized to measure their laboratory parameters: an inaccurate method leads to an inaccurate predictor. The goal of this study was to identify analytical challenges in chemoresistance-predictor development and suggest ways to overcome them. Here we describe principles of chemoresistance predictor development via correlating a clinical parameter, which manifests disease state, with a laboratory parameter. We further classify predictors based on the nature of laboratory parameters and analyze advantages and limitations of different predictors using the reliability of analytical methods utilized for measuring laboratory parameters as a criterion. Our eventual focus is on predictors with known mechanisms of reactions involved in drug resistance (drug extrusion, drug degradation, and DNA damage repair) and using rate constants of these reactions to establish accurate and robust laboratory parameters. Many aspects and conclusions of our analysis are applicable to all types of disease biomarkers built upon the correlation of clinical and laboratory parameters.
Collapse
Affiliation(s)
- Mariana Bleker de Oliveira
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto M3J 1P3, Canada
| | - Vasilij Koshkin
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto M3J 1P3, Canada
| | - Geoffrey Liu
- Department of Medicine, Medical Oncology, Princess Margaret Cancer Centre, Toronto M5G 2M9, Canada
| | - Sergey N Krylov
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto M3J 1P3, Canada
| |
Collapse
|
42
|
Verma H, Silakari O. Investigating the Role of Missense SNPs on ALDH 1A1 mediated pharmacokinetic resistance to cyclophosphamide. Comput Biol Med 2020; 125:103979. [PMID: 32877739 DOI: 10.1016/j.compbiomed.2020.103979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022]
Abstract
Cyclophosphamide (CP) is a well-known anti-cancer drug, which exerts its therapeutic effect by DNA cross-linking, both within and between DNA strands. Earlier, a single dose of CP was enough for an effective treatment however due to overexpression of ALDH 1A1 in cancer cells and consequent drug inactivation, the quality of treatment suffered a lot. Drug inactivation via Drug Metabolizing Enzyme (DME) like Aldehyde dehydrogenase 1A1 (ALDH 1A1) is one of the resistance mechanism which is least considered and somewhat overlooked. The current study focused on investigating the impact of missense SNPs on ALDH 1A1 mediated pharmacokinetic resistance to CP. To achieve this aim, we selected 14 missense SNPs from the large pool of SNPs database. The stability of the mutants corresponding to selected SNPs was then determined using web-based tools like I-Mutant, CUPSAT, Maestro-web, STRUM, Eris, SDM, DUET, I-Stable. The obtained results from the mentioned web tools were later validated by molecular dynamic simulations. Furthermore, to find out the optimal range in terms of geometrical parameters and binding affinity for a molecule to be a good substrate for ALDH 1A1, some well-reported substrates of ALDH1A1 were pooled from the literature. Subsequently, similar parameters were calculated for each aldophosphamide (Active metabolite of CP) - mutant complexes to determine if these parameters lie within the optimal range. Based on this analyses population which is most or least susceptible to resistance was suggested. Our results demonstrated that the population group corresponding to rs11554423 (Gly125Arg) and rs763363983 (Val460Leu) mutation may be least vulnerable to CP resistance. Whereas, the population corresponding to rs1049981 (Asn121Ser) and rs774967243 (Val295Leu) SNPs may be most vulnerable to CP resistance.
Collapse
Affiliation(s)
- Himanshu Verma
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Om Silakari
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India.
| |
Collapse
|
43
|
Kellerová P, Raisová Stuchlíková L, Matoušková P, Štěrbová K, Lamka J, Navrátilová M, Vokřál I, Szotáková B, Skálová L. Sub-lethal doses of albendazole induce drug metabolizing enzymes and increase albendazole deactivation in Haemonchus contortus adults. Vet Res 2020; 51:94. [PMID: 32703268 PMCID: PMC7379777 DOI: 10.1186/s13567-020-00820-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022] Open
Abstract
The efficacy of anthelmintic therapy of farm animals rapidly decreases due to drug resistance development in helminths. In resistant isolates, the increased expression and activity of drug-metabolizing enzymes (DMEs), e.g. cytochromes P450 (CYPs), UDP-glycosyltransferases (UGTs) and P-glycoprotein transporters (P-gps), in comparison to sensitive isolates have been described. However, the mechanisms and circumstances of DMEs induction are not well known. Therefore, the present study was designed to find the changes in expression of CYPs, UGTs and P-gps in adult parasitic nematodes Haemonchus contortus exposed to sub-lethal doses of the benzimidazole anthelmintic drug albendazole (ABZ) and its active metabolite ABZ-sulfoxide (ABZSO). In addition, the effect of ABZ at sub-lethal doses on the ability to deactivate ABZ during consequent treatment was studied. The results showed that contact of H. contortus adults with sub-lethal doses of ABZ and ABZSO led to a significant induction of several DMEs, particularly cyp-2, cyp-3, cyp-6, cyp-7, cyp-8, UGT10B1, UGT24C1, UGT26A2, UGT365A1, UGT366C1, UGT368B2, UGT367A1, UGT371A1, UGT372A1 and pgp-3, pgp-9.1, pgp-9.2, pgp-10. This induction led to increased formation of ABZ metabolites (especially glycosides) and their increased export from the helminths' body into the medium. The present study demonstrates for the first time that contact of H. contortus with sub-lethal doses of ABZ (e.g. during underdose treatment) improves the ability of H. contortus adults to deactivate ABZ in consequent therapy.
Collapse
Affiliation(s)
- Pavlína Kellerová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Lucie Raisová Stuchlíková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Petra Matoušková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Karolína Štěrbová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Jiří Lamka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, Czech Republic
| | - Martina Navrátilová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Ivan Vokřál
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, Czech Republic
| | - Barbora Szotáková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Lenka Skálová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| |
Collapse
|