1
|
Zimmermann M, Michel F, Bartsch J, Thommes M. A novel approach of external lubrication in a rotary tablet press using electrostatics. Drug Dev Ind Pharm 2022; 48:737-744. [PMID: 36620915 DOI: 10.1080/03639045.2023.2165662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE In powder compaction on rotary tablet presses, the addition of a lubricant is normally mandatory. However, the typical internal lubrication method tends toward overlubrication, resulting in an alteration of the critical quality attributes of the product. In this study, the feasibility of an external lubrication system only using electrostatics for the application was investigated. METHODS Three well-established lubricants were analyzed regarding their ability to accumulate and retain charge. In subsequent tableting experiments, the impact of different lubrication methods on critical quality attributes and process parameters was investigated. RESULTS Due to material characteristics, the charge on magnesium stearate particles was most stable over time. The application of this lubricant on the punches via external lubrication with electrostatic forces resulted in a significant reduction of the ejection forces. Furthermore, the tensile strength of the tablets produced in these trials was significantly higher compared to tablets that were produced with internal lubrication. CONCLUSION The external lubrication method with an electrostatically charged lubricant is a promising method for reducing both the necessary amount of lubricant and the impact of the lubricant on the product.
Collapse
Affiliation(s)
- Maren Zimmermann
- Laboratory of Solids Process Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Felix Michel
- Laboratory of Solids Process Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Jens Bartsch
- Laboratory of Solids Process Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Markus Thommes
- Laboratory of Solids Process Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
2
|
Picart L, Mazel V, Moulin A, Bourgeaux V, Tchoreloff P. Controlling the lag-time and release kinetics of press-coated tablets using process parameters and tablet geometry. Int J Pharm 2022; 627:122252. [DOI: 10.1016/j.ijpharm.2022.122252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/26/2022]
|
3
|
The effect of granules characters on mechanical properties of press-coated tablets: A comparative study. Int J Pharm 2022; 624:121986. [PMID: 35820516 DOI: 10.1016/j.ijpharm.2022.121986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/02/2022] [Accepted: 07/02/2022] [Indexed: 11/20/2022]
Abstract
The aim of this study was to investigate the correlation between critical granules characters (including particle size, surface roughness, and apparent porosity) and mechanical properties of press-coated tablets. Granules of a model formulation were prepared through Roll Compaction Granulation (RCG), High Shear Granulation (HSG), and Fluidized Bed Granulation (FBG) to prepare granules with different surface roughness and apparent porosity. The surface roughness and porosity of granules had a significantly greater effect on mechanical properties than the particle size of granules. Whether for brittle or plastic materials, FBG granules with the roughest surface and the greatest apparent porosity exhibited the best compression properties. The elastic recovery test, the interlayer adhesion forces study, the break pattern test, and the X-ray microcomputed tomography investigation suggested that granules with great apparent porosity and rough surfaces could contribute to the production of stable press-coated structures. Moreover, for press-coated tablets prepared using granules, the proper granules in the coat layer could eliminate the side effect of the rigid core on the mechanical strength. The above understandings will be conducive to the selection of compatible and appropriate granules characters, which can enhance mechanical properties and extend the application of press-coated tablets.
Collapse
|
4
|
Influence of the punch shape on the core and shell structure of press-coated tablets. Int J Pharm 2022; 623:121930. [PMID: 35716982 DOI: 10.1016/j.ijpharm.2022.121930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 11/20/2022]
Abstract
Press-coated tablets are a key technology to achieve delayed releases in chronotherapeutics. The drug release properties of this kind of tablets are linked to its unique core-shell structure. It is thus important to understand the influence of the process parameters on this structure. As different shapes can be used in the industry, we focused, in this study, on understanding the influence of punch shape on the final structure of a press-coated tablet. Experiments were performed using flat, bevel-edged and concave punches for the coating-compression to study the effect of the punch shape on the final properties of the core but also on the density distribution in the shell. The experiments were supported by numerical simulation to understand the mechanical effects in the powder compression process. It was found that the radial and axial stress state in the shell and in the core during compression is very dependent on the punch shape. The use of concave punches results in a more hydrostatic stress state compared to flat punches. The consequences on the structure are a more homogenous shell and less deformation of the core, which confirms that the tooling shape is a critical parameter to consider for the production of press-coated tablets.
Collapse
|
5
|
Wang Q, Jiao J, Cai Q, Wang Q, Zhou W. Design and evaluation of a zero-order controlled release system based on pre-hydrated constant release area prepared by compression coating technology. Pharm Dev Technol 2021; 26:1120-1129. [PMID: 34698603 DOI: 10.1080/10837450.2021.1998912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The main aim of this research work was to develop and evaluate a drug delivery system with compression coating technology to control drug release at a constant rate. The compression coated tablets (CCTs) consist of the hydrophilic matrix core and the hydrophobic waxy coating. The presence of hydrophobic waxy coating could provide sufficient time for hydration of the core to prevent initial burst release. The mechanism research revealed that erosion was the main way of drug release and the releasing area was constant during the entire release process because the core tablet was located in the cup-shaped coating after one side cover was dropped at the lag time. This made the release behavior exhibit zero-order kinetics (R2>0.99). The coating rupture strength and the core swelling force at the lag time influenced erosion rate thus affecting release rate. Different solubility of drugs (propranolol hydrochloride, melatonin, and nifedipine) was selected as model drugs and the properties of the prepared CCTs in terms of formulations and in vitro release were evaluated. The release rate was independent of solubility, medium pH, and osmotic pressure. This zero-order controlled system could be applied to both controlled drug delivery and chrono pharmaceutical drug delivery.
Collapse
Affiliation(s)
- Qinying Wang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Jie Jiao
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Qingchun Cai
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Qiaochu Wang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Wei Zhou
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
6
|
dos Santos J, da Silva GS, Velho MC, Beck RCR. Eudragit ®: A Versatile Family of Polymers for Hot Melt Extrusion and 3D Printing Processes in Pharmaceutics. Pharmaceutics 2021; 13:1424. [PMID: 34575500 PMCID: PMC8471576 DOI: 10.3390/pharmaceutics13091424] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/02/2021] [Accepted: 09/05/2021] [Indexed: 12/11/2022] Open
Abstract
Eudragit® polymers are polymethacrylates highly used in pharmaceutics for the development of modified drug delivery systems. They are widely known due to their versatility with regards to chemical composition, solubility, and swelling properties. Moreover, Eudragit polymers are thermoplastic, and their use has been boosted in some production processes, such as hot melt extrusion (HME) and fused deposition modelling 3D printing, among other 3D printing techniques. Therefore, this review covers the studies using Eudragit polymers in the development of drug delivery systems produced by HME and 3D printing techniques over the last 10 years. Eudragit E has been the most used among them, mostly to formulate immediate release systems or as a taste-masker agent. On the other hand, Eudragit RS and Eudragit L100-55 have mainly been used to produce controlled and delayed release systems, respectively. The use of Eudragit polymers in these processes has frequently been devoted to producing solid dispersions and/or to prepare filaments to be 3D printed in different dosage forms. In this review, we highlight the countless possibilities offered by Eudragit polymers in HME and 3D printing, whether alone or in blends, discussing their prominence in the development of innovative modified drug release systems.
Collapse
Affiliation(s)
- Juliana dos Santos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-900, Brazil; (J.d.S.); (M.C.V.)
| | - Guilherme Silveira da Silva
- Departamento de Produção e Controle de Medicamentos, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-900, Brazil;
| | - Maiara Callegaro Velho
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-900, Brazil; (J.d.S.); (M.C.V.)
| | - Ruy Carlos Ruver Beck
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-900, Brazil; (J.d.S.); (M.C.V.)
- Departamento de Produção e Controle de Medicamentos, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-900, Brazil;
| |
Collapse
|
7
|
Abstract
This paper reviewed several recent progresses of the new powder metallurgy technology known as flake powder metallurgy (FPM) including different processing routes, conventional FPM (C-FPM), slurry blending (SB), shift-speed ball milling (SSBM), and high-shear pre-dispersion and SSBM (HSPD/SSBM). The name of FPM was derived from the use of flake metal powders obtained by low-speed ball milling (LSBM) from spherical powder. In this case, the uniformity of reinforcement distribution leads to increased strength and ductility. Powder is the basic unit in PM, especially advanced PM, and its control is key to various new PM technologies. The FPM is a typical method for finely controlling the powder shape through low-energy ball milling (LEBM) to realize the preparation of advanced material structures. The present paper represents a review of the main results of research on FPM and indicates the potential for future studies devoted to the optimization of this processing route.
Collapse
|
8
|
Effect of the compaction parameters on the final structure and properties of a press-coated tablet (Tab-in-Tab): Experimental and numerical study of the influence of core and shell dimensions. Int J Pharm 2021; 596:120260. [PMID: 33486043 DOI: 10.1016/j.ijpharm.2021.120260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 11/23/2022]
Abstract
With increasing interest in chronopharmaceutics, press-coated tablets have become a key technology in the field of modified release drug delivery systems. Although their benefits in terms of drug release have been largely studied, the comprehension of the compaction process of press-coated tablets is yet to complete. Particularly, the effects of geometrical parameters like the ratios between the thickness/diameter of the core and the thickness/diameter of the whole tablet were so far not much considered. Moreover, there is only few studies in the literature about the effect of the press-coating compression on the final structure and properties of the core. The present work consists in a joint experimental and numerical study that aims to assess these points. The study revealed high stress concentrations on the core during compression, causing high permanent deformations of the core, especially when the ratio between the core thickness and the total tablet thickness was high. The mechanical properties of the core tablet were also shown to be impacted: its density and strength were found to decrease before increasing again along the coating-compression. This effect was highlighted to be dependent on the triaxiality of the stress state (i.e. the ratio between the stresses in the different directions), itself depending on the two studied geometrical parameters. As the properties of the core affect the release attributes, ratios between the dimensions of the core and the dimensions of the whole tablet (thickness, diameter) should be taken into account as critical parameters for the manufacture of press-coated tablets.
Collapse
|
9
|
Oral hydrophilic matrices having non uniform drug distribution for zero-order release: A literature review. J Control Release 2020; 325:72-83. [DOI: 10.1016/j.jconrel.2020.06.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 02/07/2023]
|
10
|
Foppoli A, Cerea M, Palugan L, Zema L, Melocchi A, Maroni A, Gazzaniga A. Evaluation of powder-layering vs. spray-coating techniques in the manufacturing of a swellable/erodible pulsatile delivery system. Drug Dev Ind Pharm 2020; 46:1230-1237. [PMID: 32597251 DOI: 10.1080/03639045.2020.1788060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A swellable/erodible system for oral time-dependent release, demonstrated to provide consistent pulsatile and colonic delivery performance, has been manufactured through a range of coating techniques to achieve the functional hydroxypropyl methylcellulose (HPMC) layer. Although aqueous spray-coating has long been preferred, the processing times and yields still represent open issues, especially in view of the considerable amount of polymer required to give in vivo lag phases of proper duration. To make manufacturing of the delivery system more cost-efficient, different coating modes were thus evaluated, namely top and tangential spray-coating as well as powder-layering, using a fluid bed equipment. To this aim, disintegrating tablets of 5 mm in diameter, containing a tracer drug, were coated up to 50% weight gain with low-viscosity HPMC, either as a water solution or as a powder formulation. In all cases, process feasibility was assessed following setup of the operating conditions. Irrespective of the technique employed, the resulting dosage forms exhibited uniform coating layers able to defer the onset of release as a function of the amount of polymer applied. The structure and thickness of such layers differed depending on the deposition modes. With respect to top spray-, both tangential spray-coating and powder-layering were shown to remarkably ameliorate the process time, which was reduced to approximately 1/3 and 1/6, and to enhance the yield by almost 20 and 30%, respectively. Clear advantages associated with such techniques were thus highlighted, particularly with respect to powder-layering here newly proposed for application of a swellable hydrophilic cellulose derivative.
Collapse
Affiliation(s)
- Anastasia Foppoli
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Italy
| | - Matteo Cerea
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Italy
| | - Luca Palugan
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Italy
| | - Lucia Zema
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Italy
| | - Alice Melocchi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Italy
| | - Alessandra Maroni
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Italy
| | - Andrea Gazzaniga
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Italy
| |
Collapse
|
11
|
Nguyen TT, Park HR, Cho CH, Hwang KM, Park ES. Investigation of critical factors affecting mechanical characteristics of press-coated tablets using a compaction simulator. Int J Pharm 2020; 582:119308. [PMID: 32272166 DOI: 10.1016/j.ijpharm.2020.119308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/17/2020] [Accepted: 04/04/2020] [Indexed: 10/24/2022]
Abstract
Press-coated tablets have become an indispensable dosage form in chronotherapeutic drug delivery. Drug release from press-coated tablets has been extensively studied, yet there is little knowledge about their mechanical characteristics. This study aimed to systematically investigate the effects of critical factors on the structure, layer adhesion, and delamination tendency of the tablets. Material elasticity was found to play an important role in determining tablet structure in that excessive elastic mismatch between core and shell materials caused tablet defects during decompression and ejection. Unlike bilayer tablets, the overall strength of press-coated tablets was more affected by binding capacity of coating materials than by the core properties. Shell/core ratio was another factor affecting tablet integrity against external stresses. To mitigate the risk of delamination, poor layer adhesion must be compensated by increasing the coating thickness or enhanced by optimizing the formulation and process (e.g., core plasticity/brittleness, initial core solid fraction, and compression speed). X-ray micro-computed tomography revealed the presence of a shell-core gap and inhomogeneous density distribution within the tablet where the side coat appeared as the least dense and weakest region. These findings will enable the improvement of tablet quality and widen the application of press coating in industrial manufacturing.
Collapse
Affiliation(s)
- Thi-Tram Nguyen
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hye-Ryeong Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Cheol-Hee Cho
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kyu-Mok Hwang
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Eun-Seok Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
12
|
Foppoli A, Maroni A, Palugan L, Zema L, Moutaharrik S, Melocchi A, Cerea M, Gazzaniga A. Erodible coatings based on HPMC and cellulase for oral time-controlled release of drugs. Int J Pharm 2020; 585:119425. [PMID: 32473374 DOI: 10.1016/j.ijpharm.2020.119425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 12/19/2022]
Abstract
Oral drug delivery systems for time-controlled release, intended for chronotherapy or colon targeting, are often in the form of coated dosage forms provided with swellable/soluble hydrophilic polymer coatings. These are responsible for programmable lag phases prior to release, due to their progressive hydration in the biological fluids. When based on high-viscosity polymers and/or manufactured by press-coating, the performance of functional hydroxypropyl methylcellulose (HPMC) layers was not fully satisfactory. Particularly, it encompassed an initial phase of slow release because of outward diffusion of the drug through a persistent gel barrier surrounding the core. To promote erosion of such a barrier, the use of a cellulolytic product (Sternzym® C13030) was here explored. For this purpose, the mass loss behavior of tableted matrices based on various HPMC grades, containing increasing percentages of Sternzym® C13030, was preliminarily studied, highlighting a clear and concentration-dependent effect of the enzyme especially with high-viscosity polymers. Subsequently, Sternzym® C13030-containing systems, wherein the cellulolytic product was either incorporated into a high-viscosity HPMC coating or formed a separate underlying layer, were manufactured. Evaluated for release, such systems gave rise to more reproducible profiles, with shortened lag phases and reduced diffusional release, as compared to the reference formulation devoid of enzyme.
Collapse
Affiliation(s)
- Anastasia Foppoli
- Università degli Studi di Milano, Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", via G. Colombo 71, 20133 Milano, Italy
| | - Alessandra Maroni
- Università degli Studi di Milano, Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", via G. Colombo 71, 20133 Milano, Italy.
| | - Luca Palugan
- Università degli Studi di Milano, Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", via G. Colombo 71, 20133 Milano, Italy
| | - Lucia Zema
- Università degli Studi di Milano, Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", via G. Colombo 71, 20133 Milano, Italy
| | - Saliha Moutaharrik
- Università degli Studi di Milano, Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", via G. Colombo 71, 20133 Milano, Italy
| | - Alice Melocchi
- Università degli Studi di Milano, Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", via G. Colombo 71, 20133 Milano, Italy
| | - Matteo Cerea
- Università degli Studi di Milano, Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", via G. Colombo 71, 20133 Milano, Italy
| | - Andrea Gazzaniga
- Università degli Studi di Milano, Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", via G. Colombo 71, 20133 Milano, Italy
| |
Collapse
|
13
|
Moisture barrier films for herbal medicines fabricated by electrostatic dry coating with ultrafine powders. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.03.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
3D printing by fused deposition modeling of single- and multi-compartment hollow systems for oral delivery – A review. Int J Pharm 2020; 579:119155. [DOI: 10.1016/j.ijpharm.2020.119155] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/11/2020] [Accepted: 02/15/2020] [Indexed: 02/08/2023]
|
15
|
Casati F, Melocchi A, Moutaharrik S, Uboldi M, Foppoli A, Maroni A, Zema L, Neut C, Siepmann F, Siepmann J, Gazzaniga A. Injection Molded Capsules for Colon Delivery Combining Time-Controlled and Enzyme-Triggered Approaches. Int J Mol Sci 2020; 21:ijms21061917. [PMID: 32168895 PMCID: PMC7139580 DOI: 10.3390/ijms21061917] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/23/2022] Open
Abstract
A new type of colon targeting system is presented, combining time-controlled and enzyme-triggered approaches. Empty capsule shells were prepared by injection molding of blends of a high-amylose starch and hydroxypropyl methylcellulose (HPMC) of different chain lengths. The dissolution/erosion of the HPMC network assures a time-controlled drug release, i.e., drug release starts upon sufficient shell swelling/dissolution/erosion. In addition, the presence of high-amylose starch ensures enzyme-triggered drug release. Once the colon is reached, the local highly concentrated bacterial enzymes effectively degrade this polysaccharide, resulting in accelerated drug release. Importantly, the concentration of bacterial enzymes is much lower in the upper gastrointestinal tract, thus enabling site-specific drug delivery. The proposed capsules were filled with acetaminophen and exposed to several aqueous media, simulating the contents of the gastrointestinal tract using different experimental setups. Importantly, drug release was pulsatile and occurred much faster in the presence of fecal samples from patients. The respective lag times were reduced and the release rates increased once the drug started to be released. It can be expected that variations in the device design (e.g., polymer blend ratio, capsule shell geometry and thickness) allow for a large variety of possible colon targeting release profiles.
Collapse
Affiliation(s)
- Federica Casati
- Sezione di Tecnologia e Legislazione Farmaceutiche “Maria Edvige Sangalli”, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, 20133 Milano, Italy; (F.C.); (A.M.); (S.M.); (M.U.); (A.F.); (A.M.); (A.G.)
- IMA S.p.a., Ozzana dell’Emilia, 40064 Bologna, Italy
| | - Alice Melocchi
- Sezione di Tecnologia e Legislazione Farmaceutiche “Maria Edvige Sangalli”, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, 20133 Milano, Italy; (F.C.); (A.M.); (S.M.); (M.U.); (A.F.); (A.M.); (A.G.)
| | - Saliha Moutaharrik
- Sezione di Tecnologia e Legislazione Farmaceutiche “Maria Edvige Sangalli”, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, 20133 Milano, Italy; (F.C.); (A.M.); (S.M.); (M.U.); (A.F.); (A.M.); (A.G.)
| | - Marco Uboldi
- Sezione di Tecnologia e Legislazione Farmaceutiche “Maria Edvige Sangalli”, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, 20133 Milano, Italy; (F.C.); (A.M.); (S.M.); (M.U.); (A.F.); (A.M.); (A.G.)
| | - Anastasia Foppoli
- Sezione di Tecnologia e Legislazione Farmaceutiche “Maria Edvige Sangalli”, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, 20133 Milano, Italy; (F.C.); (A.M.); (S.M.); (M.U.); (A.F.); (A.M.); (A.G.)
| | - Alessandra Maroni
- Sezione di Tecnologia e Legislazione Farmaceutiche “Maria Edvige Sangalli”, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, 20133 Milano, Italy; (F.C.); (A.M.); (S.M.); (M.U.); (A.F.); (A.M.); (A.G.)
| | - Lucia Zema
- Sezione di Tecnologia e Legislazione Farmaceutiche “Maria Edvige Sangalli”, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, 20133 Milano, Italy; (F.C.); (A.M.); (S.M.); (M.U.); (A.F.); (A.M.); (A.G.)
- Correspondence: ; Tel.: +39-02-5032-4654
| | - Christel Neut
- University of Lille, Inserm, CHU Lille, UMR1286, F-59000 Lille, France;
| | - Florence Siepmann
- Université of Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France; (F.S.); (J.S.)
| | - Juergen Siepmann
- Université of Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France; (F.S.); (J.S.)
| | - Andrea Gazzaniga
- Sezione di Tecnologia e Legislazione Farmaceutiche “Maria Edvige Sangalli”, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, 20133 Milano, Italy; (F.C.); (A.M.); (S.M.); (M.U.); (A.F.); (A.M.); (A.G.)
| |
Collapse
|
16
|
Non-uniform drug distribution matrix system (NUDDMat) for zero-order release of drugs with different solubility. Int J Pharm 2020; 581:119217. [PMID: 32165228 DOI: 10.1016/j.ijpharm.2020.119217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/04/2020] [Accepted: 03/07/2020] [Indexed: 11/21/2022]
Abstract
A decrease in the drug release rate over time typically affects the performance of hydrophilic matrices for oral prolonged release. To address such an issue, a Non-Uniform Drug Distribution Matrix (NUDDMat) based on hypromellose was proposed and demonstrated to yield zero-order release. The system consisted of 5 overlaid layers, applied by powder layering, having drug concentration decreasing from the inside towards the outside of the matrix according to a descending staircase function. In the present study, manufacturing and performance of the described delivery platform were evaluated using drug tracers having different water solubility. Lansoprazole, acetaminophen and losartan potassium were selected as slightly (SST), moderately (MST) and highly (HST) soluble tracers. By halving the thickness of the external layer, which contained no drug, linear release of HST and MST was obtained. The release behavior of the NUDDMat system loaded with a drug having pH-independent solubility was shown to be consistent in pH 1.2, 4.5 and 6.8 media. Based on these results, feasibility of the NUDDMat platform by powder layering was demonstrated using drugs having different physico-technological characteristics. Moreover, its ability to generate zero-order release was proved in the case of drugs with water solubility in a relatively wide range.
Collapse
|
17
|
Melocchi A, Uboldi M, Parietti F, Cerea M, Foppoli A, Palugan L, Gazzaniga A, Maroni A, Zema L. Lego-Inspired Capsular Devices for the Development of Personalized Dietary Supplements: Proof of Concept With Multimodal Release of Caffeine. J Pharm Sci 2020; 109:1990-1999. [PMID: 32112824 DOI: 10.1016/j.xphs.2020.02.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/03/2020] [Accepted: 02/18/2020] [Indexed: 12/19/2022]
Abstract
Dietary supplement companies have recently started to focus on the personalization of products and the improvement of the relevant performance. In this respect, a versatile, easy-to-handle capsular delivery platform with customizable content and release kinetics was here proposed and evaluated after filling with caffeine as a model dietary ingredient. In particular, capsular devices comprising 1 to 3 independent inner compartments were attained by Lego-inspired assembly of matching modular units with different wall compositions, manufactured by injection molding and fused deposition modeling 3D printing. Accordingly, one-, two- and three-pulse release profiles of the dietary ingredient were obtained from differently assembled devices following the breakup of the compartments occurring promptly (immediate-release), on pH change (delayed-release) or after tunable lag times (pulsatile-release). The latter release mode would enable the onset of the stimulating effect of caffeine at different times of the day after a single administration when convenient. The performance of each individual compartment only depended on the composition (i.e., promptly soluble, swellable/soluble or enteric soluble polymers) and thickness of its own wall, while it was not affected by the composition and number of joined modular units. Moreover, the delivery platform was extended to include an external gastroresistant shell enclosing previously assembled devices.
Collapse
Affiliation(s)
- Alice Melocchi
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via G. Colombo 71, Milan 20133, Italy; Multiply Labs, 1760 Cesar Chavez Street Unit D, 94124 San Francisco, California 94124
| | - Marco Uboldi
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via G. Colombo 71, Milan 20133, Italy
| | - Federico Parietti
- Multiply Labs, 1760 Cesar Chavez Street Unit D, 94124 San Francisco, California 94124
| | - Matteo Cerea
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via G. Colombo 71, Milan 20133, Italy
| | - Anastasia Foppoli
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via G. Colombo 71, Milan 20133, Italy
| | - Luca Palugan
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via G. Colombo 71, Milan 20133, Italy
| | - Andrea Gazzaniga
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via G. Colombo 71, Milan 20133, Italy
| | - Alessandra Maroni
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via G. Colombo 71, Milan 20133, Italy.
| | - Lucia Zema
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via G. Colombo 71, Milan 20133, Italy
| |
Collapse
|
18
|
Foppoli A, Maroni A, Moutaharrik S, Melocchi A, Zema L, Palugan L, Cerea M, Gazzaniga A. In vitro and human pharmacoscintigraphic evaluation of an oral 5-ASA delivery system for colonic release. Int J Pharm 2019; 572:118723. [DOI: 10.1016/j.ijpharm.2019.118723] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022]
|
19
|
Ascani S, Berardi A, Bisharat L, Bonacucina G, Cespi M, Palmieri GF. The influence of core tablets rheology on the mechanical properties of press-coated tablets. Eur J Pharm Sci 2019; 135:68-76. [PMID: 31112756 DOI: 10.1016/j.ejps.2019.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/03/2019] [Accepted: 05/17/2019] [Indexed: 11/17/2022]
Abstract
Press-coating (also called compression coating or dry coating) consists of a second compression of an outer layer of material over a preformed tablet core. Despite being old, this technology has returned to popularity due to its widespread use in preparation of chronotherapeutic dosage forms. The literature available on press-coated tablets has mainly investigated drug release kinetics, while there is a lack of information about their mechanical properties. Here we study, for the first time, the effect of material properties and manufacturing parameters on the mechanical characteristics of press-coated tablets. Firstly, we show that the stiffness of the bare core tablets depends on the material type and, in case of viscoelastic materials, also depends on the compression pressure. We then demonstrate that less stiff (i.e. more viscoelastic) core tablets deform to a greater extent upon the second compression and thus allow the formation of less porous, harder coats and with a more homogenous density distribution. Finally, we find that changes in the mechanical properties of press-coated tablets over one month storage are almost negligible. Our data suggest that viscoelastic rather than stiff cores should be used in dry coating, as they promote the formation of more homogenous coats and with better mechanical properties.
Collapse
Affiliation(s)
- Samantha Ascani
- School of Pharmacy, University of Camerino, Via Gentile III da Varano, Camerino, MC, Italy
| | - Alberto Berardi
- Department of Pharmaceutical Sciences and Pharmaceutics, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan
| | - Lorina Bisharat
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Giulia Bonacucina
- School of Pharmacy, University of Camerino, Via Gentile III da Varano, Camerino, MC, Italy
| | - Marco Cespi
- School of Pharmacy, University of Camerino, Via Gentile III da Varano, Camerino, MC, Italy.
| | | |
Collapse
|
20
|
Albertini B, Melegari C, Bertoni S, Dolci LS, Passerini N. A Novel Approach for Dry Powder Coating of Pellets with Ethylcellulose. Part II: Evaluation of Caffeine Release. AAPS PharmSciTech 2018; 19:1426-1436. [PMID: 29441468 DOI: 10.1208/s12249-018-0964-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/23/2018] [Indexed: 11/30/2022] Open
Abstract
The objective of this study was to assess the efficacy and the capability of a novel ethylcellulose-based dry-coating system to obtain prolonged and stable release profiles of caffeine-loaded pellets. Lauric and oleic acids at a suitable proportion were used to plasticize ethylcellulose. The effect of coating level, percentage of drug loading, inert core particle size, and composition of the coating formulation including the anti-sticking agent on the drug release profile were fully investigated. A coating level of 15% w/w was the maximum layered amount which could modify the drug release. The best controlled drug release was obtained by atomizing talc (2.5% w/w) together with the solid plasticizer during the dry powder-coating process. SEM pictures revealed a substantial drug re-crystallization on the pellet surface, and the release studies evidenced that caffeine diffused through the plasticized polymer acting as pore former. Therefore, the phenomenon of caffeine migration across the coating layer had a strong influence on the permeability of the coating membrane. Comparing dry powder-coated pellets to aqueous film-coated ones, drug migration happened during storage, though more sustained release profiles were obtained. The developed dry powder-coating process enabled the production of stable caffeine sustained release pellets. Surprisingly, the release properties of the dry-coated pellets were mainly influenced by the way of addition of talc into the dry powder-coating blend and by the drug nature and affinity to the coating components. It would be interesting to study the efficacy of novel coating system using a different API.
Collapse
|