1
|
Mehraji S, Saadatmand M, Eskandari M. Production of letrozole-loaded alginate oxide-gelatin microgels using microfluidic systems for drug delivery applications. Int J Biol Macromol 2024; 263:129685. [PMID: 38394762 DOI: 10.1016/j.ijbiomac.2024.129685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/23/2023] [Accepted: 01/21/2024] [Indexed: 02/25/2024]
Abstract
Microfluidic systems are capable of producing microgels with a monodisperse size distribution and a spherical shape due to their laminar flow and superior flow. A significant challenge in producing these drug-carrying microgels is simultaneous drug loading into microgels. Various factors such as the type of polymer, the type of drug, the volume ratio of the drug to the polymer, and the geometry of the microfluidic system used to generate microgels can effectively address these challenges. The overall goal of this study was to produce mono-disperse drug-carrying microgels capable of controlled drug release. To achieve this goal, this study used a stream-focused microfluidic chip containing a coating current to prevent chip clogging. Alginate oxide was synthesized with a 30 % oxidation percentage. Alginate oxide, gelatin, and compositions of them with volume ratios of 50-50, 70-30, and 30-70, by determining their appropriate weight percentage, were used for the controlled release of letrozole. The properties of the produced microgels were measured through various tests such as drug release test, loading percentage, SEM, FTIR, swelling ratio, and dimensional stability. It was found that microgels made of a combination of alginate oxide-gelatin with volume ratios of 70-30 had a good swelling ratio and structural stability. The drug loading percentages for alginate, alginate oxide, and alginate oxide-gelatin with volume ratios of 50-50 and 30-70, respectively, were 56 %, 68 %, and 66 %, 61 % and the alginate oxide-gelatin with a volume ratio of 70-30 compared to other samples had over 70 % drug loading percentages. Furthermore, samples of alginate, alginate oxide, and alginate oxide-gelatin with volume ratios of 50-50 and 30-70 had 94 %, 63 %, 56 %, and 68 % drug release in 13 days, respectively. However, alginate oxide-gelatin with a volume ratio of 70-30 had a release rate of about 50 % in 13 days, which is a more controlled release for letrozole compared to the volume ratios of 50-50 and 30-70. Examining the drug release profile, it was concluded that drug release follows the Higuchi model and therefore follows Fick's first law of diffusion. It can be concluded that the combination of alginate oxide-gelatin produces more suitable microgels than alginate and alginate oxide for the controlled-release of letrozole. A comparison of microgels of alginate oxide and gelatin with volume ratios of 50-50 and 70-30 had better results for the cytotoxicity study compared to other samples.
Collapse
Affiliation(s)
- Sima Mehraji
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Maryam Saadatmand
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | - Mahnaz Eskandari
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic University), Tehran, Iran.
| |
Collapse
|
2
|
Lu S, Li F, Liu B, Yang K, Tian F, Cheng Z, Ding S, Hou K. Monodisperse Fluorescent Polystyrene Microspheres for Staphylococcus aureus Aerosol Simulation. Polymers (Basel) 2023; 15:3614. [PMID: 37688240 PMCID: PMC10490235 DOI: 10.3390/polym15173614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Staphylococcus aureus (SA) is one of the most common causes of hospital-acquired infections and foodborne illnesses and is commonly found in nature in air, dust, and water. The spread and transmission of SA aerosols in the air has the potential to cause epidemic transmission among humans and between humans and animals. To effectively provide the timely warning of SA aerosols in the atmosphere, the identification and detection of SA aerosol concentrations are required. Due to their homogeneous physicochemical properties, highly monodisperse submicron polystyrene (PS) microspheres can be used as one of the simulants of SA aerosols. In this study, 800 nm monodisperse fluorescent PS (f-PS) microspheres with fluorescence spectra and particle size distribution similar to those of SA were prepared. The 800 nm monodisperse f-PS microspheres had a fluorescence characteristic peak at 465 nm; in aerosols, 800 nm monodisperse f-PS microspheres with a similar particle size distribution to that of SA were further verified, mainly in the range of 500 nm-1000 nm; finally, it was found that the f-PS microspheres still possessed similar fluorescence characteristics after 180 days. The f-PS microspheres prepared in this study are very close to SA in terms of particle size and fluorescence properties, providing a new idea for aerosol analogs of SA.
Collapse
Affiliation(s)
- Siyu Lu
- Medical Support Technology Research Department, Systems Engineering Institute, Academy of Military Sciences, People’s Liberation Army, Tianjin 300161, China; (S.L.); (B.L.); (K.Y.); (Z.C.); (S.D.); (K.H.)
| | - Fan Li
- Medical Support Technology Research Department, Systems Engineering Institute, Academy of Military Sciences, People’s Liberation Army, Tianjin 300161, China; (S.L.); (B.L.); (K.Y.); (Z.C.); (S.D.); (K.H.)
| | - Bo Liu
- Medical Support Technology Research Department, Systems Engineering Institute, Academy of Military Sciences, People’s Liberation Army, Tianjin 300161, China; (S.L.); (B.L.); (K.Y.); (Z.C.); (S.D.); (K.H.)
| | - Kun Yang
- Medical Support Technology Research Department, Systems Engineering Institute, Academy of Military Sciences, People’s Liberation Army, Tianjin 300161, China; (S.L.); (B.L.); (K.Y.); (Z.C.); (S.D.); (K.H.)
| | - Feng Tian
- Medical Support Technology Research Department, Systems Engineering Institute, Academy of Military Sciences, People’s Liberation Army, Tianjin 300161, China; (S.L.); (B.L.); (K.Y.); (Z.C.); (S.D.); (K.H.)
| | - Zhi Cheng
- Medical Support Technology Research Department, Systems Engineering Institute, Academy of Military Sciences, People’s Liberation Army, Tianjin 300161, China; (S.L.); (B.L.); (K.Y.); (Z.C.); (S.D.); (K.H.)
- National Bio-Protection Engineering Center, Tianjin 300161, China
| | - Sheng Ding
- Medical Support Technology Research Department, Systems Engineering Institute, Academy of Military Sciences, People’s Liberation Army, Tianjin 300161, China; (S.L.); (B.L.); (K.Y.); (Z.C.); (S.D.); (K.H.)
| | - Kexin Hou
- Medical Support Technology Research Department, Systems Engineering Institute, Academy of Military Sciences, People’s Liberation Army, Tianjin 300161, China; (S.L.); (B.L.); (K.Y.); (Z.C.); (S.D.); (K.H.)
| |
Collapse
|
3
|
Chaurasia M, Singh R, Sur S, Flora SJS. A review of FDA approved drugs and their formulations for the treatment of breast cancer. Front Pharmacol 2023; 14:1184472. [PMID: 37576816 PMCID: PMC10416257 DOI: 10.3389/fphar.2023.1184472] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/23/2023] [Indexed: 08/15/2023] Open
Abstract
Breast cancer is one of the most diagnosed solid cancers globally. Extensive research has been going on for decades to meet the challenges of treating solid tumors with selective compounds. This article aims to summarize the therapeutic agents which are either being used or are currently under approval for use in the treatment or mitigation of breast cancer by the US FDA, to date. A structured search of bibliographic databases for previously published peer-reviewed research papers on registered molecules was explored and data was sorted in terms of various categories of drugs used in first line/adjuvant therapy for different stages of breast cancer. We included more than 300 peer-reviewed papers, including both research and reviews articles, in order to provide readers an useful comprehensive information. A list of 39 drugs are discussed along with their current status, dose protocols, mechanism of action, pharmacokinetics, possible side effects, and marketed formulations. Another interesting aspect of the article included focusing on novel formulations of these drugs which are currently in clinical trials or in the process of approval. This exhaustive review thus shall be a one-stop solution for researchers who are working in the areas of formulation development for these drugs.
Collapse
Affiliation(s)
| | | | | | - S. J. S. Flora
- Era College of Pharmacy, Era University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
4
|
Abuçafy MP, da Silva BL, Oshiro-Junior JA, Manaia EB, Chiari-Andréo BG, Armando RAM, Frem RCG, Chiavacci LA. Advances in the use of MOFs for Cancer Diagnosis and Treatment: An Overview. Curr Pharm Des 2020; 26:4174-4184. [DOI: 10.2174/1381612826666200406153949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/09/2020] [Indexed: 01/04/2023]
Abstract
Nanoparticles as drug delivery systems and diagnostic agents have gained much attention in recent
years, especially for cancer treatment. Nanocarriers improve the therapeutic efficiency and bioavailability of
antitumor drugs, besides providing preferential accumulation at the target site. Among different types of nanocarriers
for drug delivery assays, metal-organic frameworks (MOFs) have attracted increasing interest in the academic
community. MOFs are an emerging class of coordination polymers constructed of metal nodes or clusters
and organic linkers that show the capacity to combine a porous structure with high drug loading through distinct
kinds of interactions, overcoming the limitations of traditional drug carriers explored up to date. Despite the rational
design and synthesis of MOFs, structural aspects and some applications of these materials like gas adsorption
have already been comprehensively described in recent years; it is time to demonstrate their potential applications
in biomedicine. In this context, MOFs can be used as drug delivery systems and theranostic platforms due
to their ability to release drugs and accommodate imaging agents. This review describes the intrinsic characteristics
of nanocarriers used in cancer therapy and highlights the latest advances in MOFs as anticancer drug delivery
systems and diagnostic agents.
Collapse
Affiliation(s)
- Marina P. Abuçafy
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Highway Araraquara-Jau, Araraquara, SP, Brazil
| | - Bruna L. da Silva
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Highway Araraquara-Jau, Araraquara, SP, Brazil
| | - João A. Oshiro-Junior
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Highway Araraquara-Jau, Araraquara, SP, Brazil
| | - Eloisa B. Manaia
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Highway Araraquara-Jau, Araraquara, SP, Brazil
| | - Bruna G. Chiari-Andréo
- Department of Biological and Health Sciences, Universidade de Araraquara, UNIARA, Araraquara, SP, Brazil
| | - Renan A. M. Armando
- Institute of Chemistry, Department of Inorganic and General Chemistry, Sao Paulo State University-UNESP, SP, Brazil
| | - Regina C. G. Frem
- Institute of Chemistry, Department of Inorganic and General Chemistry, Sao Paulo State University-UNESP, SP, Brazil
| | - Leila A. Chiavacci
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Highway Araraquara-Jau, Araraquara, SP, Brazil
| |
Collapse
|
5
|
Khudair N, Agouni A, Elrayess MA, Najlah M, Younes HM, Elhissi A. Letrozole-loaded nonionic surfactant vesicles prepared via a slurry-based proniosome technology: Formulation development and characterization. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101721] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Tao B, Yin Z. Redox-Responsive Coordination Polymers of Dopamine-Modified Hyaluronic Acid with Copper and 6-Mercaptopurine for Targeted Drug Delivery and Improvement of Anticancer Activity against Cancer Cells. Polymers (Basel) 2020; 12:polym12051132. [PMID: 32423174 PMCID: PMC7285144 DOI: 10.3390/polym12051132] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/30/2020] [Accepted: 05/08/2020] [Indexed: 02/02/2023] Open
Abstract
Dopamine-modified hyaluronic acid (HA-DOP) was chosen as the drug carrier in this study, and Cu2+ was selected from among Cu2+, Zn2+, Fe2+, and Ca2+ as the central atom. 6-Mercaptopurine (6-MP) was conjugated with HA through a coordination reaction. HA-DOP-copper-MP (HA-DOP-Cu-MP), a redox-responsive coordination polymer prodrug, was prepared. The drug loading was 49.5 mg/g, the encapsulation efficiency was 70.18%, and the particle size was 173.5 nm. HA-DOP-Cu-MP released rapidly in the release medium containing reduced glutathione (GSH), and the accumulated release exceeded 94% in 2 h. In the release medium without GSH, the drug release rate was slow, with only 15% of the 6-MP released in 24 h. Cell uptake experiments revealed the CD44 targeting of HA. Cell viability assays showed that the cytotoxicity of HA-DOP-Cu-MP was higher than that of free 6-MP. Indeed, HA-DOP-Cu-MP is very toxic to cancer cells. In this paper, the redox-responsive drug delivery system was synthesized by a coordination reaction. The tumour targeting and tumour cytotoxicity of 6-MP were improved.
Collapse
|