1
|
Nikolaidou A, Spyratou E, Sandali A, Gianni T, Platoni K, Lamprogiannis L, Efstathopoulos EP. Utilization of Nanoparticles for Treating Age-Related Macular Degeneration. Pharmaceuticals (Basel) 2025; 18:162. [PMID: 40005976 PMCID: PMC11858808 DOI: 10.3390/ph18020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Age-related macular degeneration (AMD) is a predominant cause of vision loss, posing significant challenges in its management despite advancements such as anti-vascular endothelial growth factor (anti-VEGF) therapy. Nanomedicine, with its novel properties and capabilities, offers promising potential to transform the treatment paradigm for AMD. This review reports the significant advancements in the use of diverse nanoparticles (NPs) for AMD in vitro, in vivo, and ex vivo, including liposomes, lipid nanoparticles, nanoceria, nanofibers, magnetic nanoparticles, quantum dots, dendrimers, and polymer nanoparticles delivered in forms such as gels, eye drops, intravitreally, or intravenously. Drug delivery was the most common use of NPs for AMD, followed by photodynamic therapy dose enhancement, antioxidant function for nanoceria, biomimetic activity, and immune modulation. Innovative approaches arising included nanotechnology-based photodynamic therapy and light-responsive nanoparticles for controlled drug release, as well as gene therapy transfer. Nanomedicine offers a transformative approach to the treatment and management of AMD, with diverse applications. The integration of nanotechnology in AMD management not only provides innovative solutions to overcome current therapeutic limitations but also shows potential in enhancing outcomes and patient quality of life.
Collapse
Affiliation(s)
- Anna Nikolaidou
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Ellas Spyratou
- 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece (E.P.E.)
| | - Athanasia Sandali
- Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Theodora Gianni
- Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Kalliopi Platoni
- 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece (E.P.E.)
| | | | - Efstathios P. Efstathopoulos
- 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece (E.P.E.)
| |
Collapse
|
2
|
Dmour I. Absorption enhancement strategies in chitosan-based nanosystems and hydrogels intended for ocular delivery: Latest advances for optimization of drug permeation. Carbohydr Polym 2024; 343:122486. [PMID: 39174104 DOI: 10.1016/j.carbpol.2024.122486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/24/2024] [Accepted: 07/09/2024] [Indexed: 08/24/2024]
Abstract
Ophthalmic diseases can be presented as acute diseases like allergies, ocular infections, etc., or chronic ones that can be manifested as a result of systemic disorders, like diabetes mellitus, thyroid, rheumatic disorders, and others. Chitosan (CS) and its derivatives have been widely investigated as nanocarriers in the delivery of drugs, genes, and many biological products. The biocompatibility and biodegradability of CS made it a good candidate for ocular delivery of many ingredients, including immunomodulating agents, antibiotics, ocular hypertension medications, etc. CS-based nanosystems have been successfully reported to modulate ocular diseases by penetrating biological ocular barriers and targeting and controlling drug release. This review provides guidance to drug delivery formulators on the most recently published strategies that can enhance drug permeation to the ocular tissues in CS-based nanosystems, thus improving therapeutic effects through enhancing drug bioavailability. This review will highlight the main ocular barriers to drug delivery observed in the nano-delivery system. In addition, the CS physicochemical properties that contribute to formulation aspects are discussed. It also categorized the permeation enhancement strategies that can be optimized in CS-based nanosystems into four aspects: CS-related physicochemical properties, formulation components, fabrication conditions, and adopting a novel delivery system like implants, inserts, etc. as described in the published literature within the last ten years. Finally, challenges encountered in CS-based nanosystems and future perspectives are mentioned.
Collapse
Affiliation(s)
- Isra Dmour
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan.
| |
Collapse
|
3
|
Klose A, Gounani Z, Ijäs H, Lajunen T, Linko V, Laaksonen T. Doxorubicin-loaded DNA origami nanostructures: stability in vitreous and their uptake and toxicity in ocular cells. NANOSCALE 2024; 16:17585-17598. [PMID: 39228361 PMCID: PMC11372452 DOI: 10.1039/d4nr01995d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024]
Abstract
Biocompatibility and precise control over their size and shape make DNA origami nanostructures (DONs) promising for drug delivery applications. Whilst many investigations have focused on cancer treatment, this might not be the best fit for DONs that get degraded by nucleases in blood. In comparison, an eye is a uniquely isolated target organ, which could benefit from DONs to achieve and maintain therapeutic concentrations in diseases that threaten the eyesight of millions of patients every year. We investigated the loading of doxorubicin (DOX) as a model drug into three distinct DONs and tested their stability upon storage. Further, we chose one structure (24HB) to probe its stability under physiological conditions in cell media and porcine vitreous, before examining the uptake and effect of DOX-loaded 24HB (24HB-DOX) on the cell viability in a retinal cell line (ARPE-19). Similar to previous reports, the tested low μM loading concentrations of DOX resulted in high drug loadings of up to 34% (m/m), and remained mostly intact in water for at least 2 months at 4 °C. In cell media and porcine vitreous at 37 °C, however, 24HB required additional Mg2+ supplementation to avoid degradation and the loss of the attached fluorophores. With added Mg2+, 24HB remained stable in vitreous for 7 days at 37 °C. The treatment with 24HB-DOX was well tolerated by ARPE-19 cells, compared to the observed higher toxicity of free DOX. Uptake studies revealed, however, that in contrast to free DOX, very little 24HB-DOX was taken up by the cells. Instead, the particles were observed to attach around the cells. Hence, our results suggest that since the uptake seems to be the bottleneck for therapies using DONs, further strategies such as adding ocular targeting moieties are necessary to increase the uptake and efficacy of doxorubicin-loaded DONs.
Collapse
Affiliation(s)
- Anna Klose
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5, 00790 Helsinki, Finland.
| | - Zahra Gounani
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5, 00790 Helsinki, Finland.
| | - Heini Ijäs
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Tatu Lajunen
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5, 00790 Helsinki, Finland.
- School of Pharmacy, University of Eastern Finland, Yliopistonrinne 3, 70210 Kuopio, Finland
| | - Veikko Linko
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia.
| | - Timo Laaksonen
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5, 00790 Helsinki, Finland.
- Chemistry and Advanced Materials, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33720 Tampere, Finland
| |
Collapse
|
4
|
Dong K, Wang D, Lin L, Niu P, Wang Y, Tan Q, Xing J. Construction and evaluation of a nanosystem that combines acidification promoted chemodynamic therapy and intracellular drug release monitoring. J Biotechnol 2024; 383:13-26. [PMID: 38325656 DOI: 10.1016/j.jbiotec.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/17/2024] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
Triple-negative breast cancer (TNBC) is a highly invasive subtype of breast cancer that seriously affects women's physical and mental health. Chemodynamic therapy (CDT) induces cell death by specifically generating Fenton/Fenton-like reactions within tumor cells. However, the weak acidity of the tumor microenvironment (TME) greatly weakens the effectiveness of CDT. This work constructed a kind of P-CAIDF/PT nanoparticles (NPs), composed of two Pluronic F127 (PF127) based polymers: one was PF127-CAI (P-CAI), composed by connecting PF127 with the carbonic anhydrase IX (CA IX) inhibitor (CAI); the other was PF127-SS-TPE (PT), composed of PF127 and the aggregation-induced emission molecule, tetraphenylethylene (TPE), via the linkage of disulfide bonds. The two polymers were employed to construct the doxorubicin (DOX) and ferrocene (Fc) co-loaded P-CAIDF/PT NPs through the film dispersion method. After being administrated via i.v., P-CAIDF/PT could be accumulated in the TME by the enhanced permeability and retention (EPR) effect and engulfed by tumor cells. P-CAI induced intracellular acidification by inhibiting the overexpressed CA IX, thus promoting CDT by enhancing the Fc-mediated Fenton reaction. The acidification-enhanced CDT combined with the DOX-mediated chemotherapy could improve the therapeutic effect on TNBC. Moreover, P-CAIDF/PT also monitored the intracellular drug release processes through the fluorescence resonance energy transfer (FRET) effect depending on the inherent DOX/TPE pair. In conclusion, the P-CAIDF/PT nanosystem can achieve the combination therapy of acidification-enhanced CDT and chemotherapy as well as therapy monitoring, thus providing new ideas for the design and development of TNBC therapeutic agents.
Collapse
Affiliation(s)
- Kai Dong
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Danyang Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Leiruo Lin
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Peilin Niu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yidong Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qichao Tan
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jianfeng Xing
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
5
|
Marquina S, Ozgul M, Robertson-Brown K, Kenney MC. A review on PLGA particles as a sustained drug-delivery system and its effect on the retina. Exp Eye Res 2023; 235:109626. [PMID: 37652091 DOI: 10.1016/j.exer.2023.109626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/01/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023]
Abstract
In this review, the designs and recent developments of polymer-based drug delivery of Poly(lactic-co-glycolic acid) (PLGA) will be discussed for the possible treatment of age-related macular degeneration (AMD). PLGA is a versatile co-polymer that consists of synthetic lactic acid and glycolic acid monomers that are constructed to produce nanoparticles, microparticles, and scaffolds for the intraocular delivery of various drugs. As an FDA-approved polymer, PLGA has historically been well-suited for systemic slow-sustained release therapies due to its performance in biodegradability and biocompatibility. This review will examine recent in vitro and in vivo studies that provide evidence for PLGA-based particles as a therapeutic drug carrier for the treatment of AMD. Anti-angiogenic and antiproliferative effects of small peptides, small molecules, RNA molecules, and proteins within PLGA particles are briefly discussed. AMD is a leading cause of central vision loss in people over 55 years and the number of those afflicted will rise as the aging population increases. AMD has two forms that are often sequential. Dry AMD and wet AMD account for 85-90% and 10-15% of cases, respectively. The distinct categories of PLGA-based drug delivery vehicles are important for dispensing novel small molecules, RNA molecules, peptides, and proteins as a long-term effective treatment of AMD.
Collapse
Affiliation(s)
- Sylvana Marquina
- School of Medicine, University of California Irvine, 843 Health Sciences Road, Irvine, CA, 92697, USA.
| | - Mustafa Ozgul
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California Irvine, 843 Health Sciences Road, Irvine, CA, 92697, USA.
| | - Kenneth Robertson-Brown
- School of Medicine, University of California Irvine, 843 Health Sciences Road, Irvine, CA, 92697, USA
| | - M Cristina Kenney
- Department of Pathology and Laboratory Medicine, University of California Irvine, 843 Health Sciences Road, Irvine, CA, 92697, USA
| |
Collapse
|
6
|
Desialylated Mesenchymal Stem Cells-Derived Extracellular Vesicles Loaded with Doxorubicin for Targeted Inhibition of Hepatocellular Carcinoma. Cells 2022; 11:cells11172642. [PMID: 36078050 PMCID: PMC9454677 DOI: 10.3390/cells11172642] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/29/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the dominating causes of cancer-related death throughout the world. Treatment options for patients with HCC vary, however, the lack of effective targeted drugs is the major reason for death in advanced HCC patients. In this study, a delivery system based on mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) loaded with doxorubicin (Dox) was developed. In this system, we initially erased terminal linked α2–3 and α2–6 sialic acids on the surface of EVs by neuraminidase. The exhibition of galactose (Gal) and N-acetylgalactosamine (GalNAc) residues in treated MSC-EVs can specifically be recognized by asialoglycoprotein receptor (ASGPR) of hepatoma cells. Compared to free Dox and Dox-loaded EVs, desialylated EVs loaded with Dox significantly presented the improved cellular uptake, prioritized targeting efficacy, and had a better inhibiting effect in vitro and in vivo. Overall, the results of the present study of the demonstrated delivery system using desialylated MSC-EVs suggest its therapeutic potential for HCC.
Collapse
|
7
|
Syukri A, Budu, Hatta M, Amir M, Rohman MS, Mappangara I, Kaelan C, Wahyuni S, Bukhari A, Junita AR, Primaguna MR, Dwiyanti R, Febrianti A. Doxorubicin induced immune abnormalities and inflammatory responses via HMGB1, HIF1-α and VEGF pathway in progressive of cardiovascular damage. Ann Med Surg (Lond) 2022; 76:103501. [PMID: 35340325 PMCID: PMC8943401 DOI: 10.1016/j.amsu.2022.103501] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 02/06/2023] Open
Abstract
Background Doxorubicin (DOX) is a commonly used treatment for cancer and the mechanism of DOX-induced cardiomyocyte damage in cardiovascular disease is not fully understood. High-mobility group box 1 (HMGB1), strong induce proinflammatory cytokines via damage associated molecular pattern (DAMP) which its interaction with the receptor of advanced glycation end products (RAGE), that affect cytokine release, and angiogenesis via the role of HMBG1, HIF-1α and VEGF as an important regulator in these cardiac failure processes. Hypoxia-inducible factor-1α (HIF-1α) is plays an important role in the cellular response to systemic oxygen levels of cells and VEGF is an angiogenic factor and can stimulate cellular responses on the surface of endothelial cells will be described Objective The aim of this article is to comprehensively review the role of HMGB1, HIF-1α, and VEGF in DOX-induced Cardiovascular Disease and its molecular mechanisms. Methods The data in this study were collect by search the keyword combinations of medical subject headings (MeSH) of “HMGB1”, “HIF-1 α”, “VEGF”, “DOX” and “Cardiovascular disease” and relevant reference lists were manually searched in PubMed, EMBASE and Scopus database. All relevant articles in data base above were included and narratively discussed in this review article. Results Several articles were revealed that molecular mechanisms of the DOX in cardiomyocyte damage and related to HMGB1, HIF-1α and VEGF and may potential treatment and prevention to cardiovascular disease in DOX intervention. Conclusion HMGB1, HIF-1α and VEGF has a pivotal regulator in DOX-induce cardiomyocyte damage and predominantly acts through different pathways. The role of HMGB1 in DOX-induced myocardial damage suggests that HMGB1 is a mediator of DOX-induced damage. In addition, DOX can inhibit HIF-1α activity where DOX can decrease HIF-1α expression and HIF-1α is also responsible for upregulation of several angiogenic factors, including VEGF. VEGF plays an important role in angiogenesis and anti-angiogenesis both in vitro and in vivo and reduces the side effects of DOX markedly. In addition, the administration of anti-angiogenesis will show an inhibitory effect on angiogenesis mediated by the VEGF signaling pathway and triggered by DOX in cells. The effect of Doxorubicin (DOX) induced cardiovascular damage via several pathways. Cardiovascular damage can involve HMGB1, HIF-1α, and VEGF. HMGB1, HIF-1α, and VEGF as a pivotal regulator in DOX-induce cardiomyocyte damage. HMGB1, HIF-1α, and VEGF in cardiovascular diseases will be predominantly acting through different pathways.
Collapse
|
8
|
Retinal toxicities of systemic anticancer drugs. Surv Ophthalmol 2021; 67:97-148. [PMID: 34048859 DOI: 10.1016/j.survophthal.2021.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 01/07/2023]
Abstract
Newer anticancer drugs have revolutionized cancer treatment in the last decade, but conventional chemotherapy still occupies a central position in many cancers, with combination therapy and newer methods of delivery increasing their efficacy while minimizing toxicities. We discuss the retinal toxicities of anticancer drugs with an emphasis on the mechanism of toxicity. Uveitis is seen with the use of v-raf murine sarcoma viral oncogene homolog B editing anticancer inhibitors as well as immunotherapy. Most of the cases are mild with only anterior uveitis, but severe cases of posterior uveitis, panuveitis, and Vogt-Koyanagi-Harada-like disease may also occur. In the retina, a transient neurosensory detachment is observed in almost all patients on mitogen-activated protein kinase kinase (MEK) inhibitors. Microvasculopathy is often seen with interferon α, but vascular occlusion is a more serious toxicity caused by interferon α and MEK inhibitors. Crystalline retinopathy with or without macular edema may occur with tamoxifen; however, even asymptomatic patients may develop cavitatory spaces seen on optical coherence tomography. A unique macular edema with angiographic silence is characteristic of taxanes. Delayed dark adaptation has been observed with fenretinide. Interestingly, this drug is finding potential application in Stargardt disease and age-related macular degeneration.
Collapse
|
9
|
Suri R, Neupane YR, Jain GK, Kohli K. Recent theranostic paradigms for the management of Age-related macular degeneration. Eur J Pharm Sci 2020; 153:105489. [PMID: 32717428 DOI: 10.1016/j.ejps.2020.105489] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/07/2020] [Accepted: 07/23/2020] [Indexed: 12/21/2022]
Abstract
Degenerative diseases of eye like Age-related macular degeneration (AMD), that affects the central portion of the retina (macula), is one of the leading causes of blindness worldwide especially in the elderly population. It is classified mainly as wet and dry form. With expanding knowledge about the underlying pathophysiology of the disease, various treatment strategies are being employed to halt the course of the disease progression. Hitherto, there is no ideal therapy which can cure the disease completely, and targeting the posterior segment of the eye is yet another challenge. The purpose of this review is to summarize the recent advances in the management and treatment stratagems (therapies, delivery systems and diagnostic tools) pertaining to AMD viz. molecular targeting, stem cell therapy, nanotechnology and exosomes with special reference to newer technologies like artificial intelligence and 3D printing. Furthermore, the role of diet and nutritional supplements in the prevention and treatment of the disease has also been highlighted. The alarming increase in the said disorder around the globe demands exhaustive research and investigations in the treatment zone. This review thus additionally directs the attention towards the challenges and future perspectives of different treatment approaches for AMD.
Collapse
Affiliation(s)
- Reshal Suri
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Yub Raj Neupane
- Department of Pharmacy, National University of Singapore, 117559, Singapore
| | - Gaurav Kumar Jain
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
10
|
Zamboulis A, Nanaki S, Michailidou G, Koumentakou I, Lazaridou M, Ainali NM, Xanthopoulou E, Bikiaris DN. Chitosan and its Derivatives for Ocular Delivery Formulations: Recent Advances and Developments. Polymers (Basel) 2020; 12:E1519. [PMID: 32650536 PMCID: PMC7407599 DOI: 10.3390/polym12071519] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
Chitosan (CS) is a hemi-synthetic cationic linear polysaccharide produced by the deacetylation of chitin. CS is non-toxic, highly biocompatible, and biodegradable, and it has a low immunogenicity. Additionally, CS has inherent antibacterial properties and a mucoadhesive character and can disrupt epithelial tight junctions, thus acting as a permeability enhancer. As such, CS and its derivatives are well-suited for the challenging field of ocular drug delivery. In the present review article, we will discuss the properties of CS that contribute to its successful application in ocular delivery before reviewing the latest advances in the use of CS for the development of novel ophthalmic delivery systems. Colloidal nanocarriers (nanoparticles, micelles, liposomes) will be presented, followed by CS gels and lenses and ocular inserts. Finally, instances of CS coatings, aiming at conferring mucoadhesiveness to other matrixes, will be presented.
Collapse
Affiliation(s)
- Alexandra Zamboulis
- Laboratory of Polymer Chemistry & Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.N.); (G.M.); (I.K.); (M.L.); (N.M.A.); (E.X.)
| | | | | | | | | | | | | | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry & Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.N.); (G.M.); (I.K.); (M.L.); (N.M.A.); (E.X.)
| |
Collapse
|