1
|
Dong SH, Gao Y, Li Y, Wu D, Chen Y, Chen SH. Coenzyme Q10 microemulsion ion-activated gel: a promising ophthalmic delivery system for enhanced corneal protection and sustained release. BMC Pharmacol Toxicol 2025; 26:87. [PMID: 40253426 PMCID: PMC12008920 DOI: 10.1186/s40360-025-00922-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 04/08/2025] [Indexed: 04/21/2025] Open
Abstract
PURPOSE This study aimed to evaluate a novel microemulsion ion-activated gel system for the ophthalmic delivery of coenzyme Q10 (CoQ10). METHODS Various CoQ10 microemulsion ion-activated formulations were prepared and fully assessed for physical and chemical parameters, assay and related substances, in vitro release, rheological properties, in vitro cytotoxicity and ophthalmic retention. A preliminary pharmacokinetic study was also performed in rabbits. RESULTS The formulations met the specified criteria, showing a droplet size of 24.5 ± 2.0 nm for microemulsions, increasing slightly to 39.6 ± 3.5 nm for the microemulsion gels. They exhibited a 24-hour sustained in vitro release (80.0% ± 3.2%) and increased viscosity upon contact with artificial tears containing Ca2+ and K+ ions. The no-film dissolution method and in vitro models indicated first-order release kinetics (r = 0.987). The preparations demonstrated good tolerance and non-irritating properties, with a Draize score of 0-0.55 in rabbits, and provided a 2-hour extension in drug retention on the ocular surface compared with microemulsions alone. In ultraviolet B (UVB)-exposed rats, corneal epithelial damage was reduced and antioxidant marker levels (superoxide dismutase, malondialdehyde) were significantly improved. CONCLUSION This novel system is a promising preparation for ophthalmic CoQ10 delivery, offering sustained release and protection against UVB-induced corneal damage.
Collapse
Affiliation(s)
- Shao-Hua Dong
- Department of Pharmacy, Hubei Provincial Hospital of Traditional Chinese Medicine, The Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei, 430061, China
| | - Yue Gao
- Department of Pharmacy, Hubei Provincial Hospital of Traditional Chinese Medicine, The Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei, 430061, China.
| | - Yue Li
- Department of Respiratory, Hubei Provincial Hospital of Traditional Chinese Medicine, The Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, No. 4 Liangdaojie Road, Wuchang District, Wuhan, Hubei, 430061, China.
| | - Di Wu
- Department of Pharmacy, The General Hospital of Hubei Armed Police Forces, No.475 Minzhu Road, Wuchang District, Wuhan, 430061, China
| | - Ying Chen
- Department of Pharmacy, General Hospital of Central Theater Command, Wuhan, Hubei, 430070, China
| | - Shu-He Chen
- Department of Pharmacy, Hubei Provincial Hospital of Traditional Chinese Medicine, The Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei, 430061, China
| |
Collapse
|
2
|
Xu Q, Zheng X, Hu L, Zheng J. Impact of transdermal buprenorphine patch combined with celecoxib on improving shoulder pain and function of patients with primary adhesive shoulder capsulitis. BMC Musculoskelet Disord 2024; 25:953. [PMID: 39587547 PMCID: PMC11587633 DOI: 10.1186/s12891-024-07992-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/23/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND One of the main purposes of clinical treatment for adhesive shoulder capsulitis is pain relief. However, patients often fail to achieve a satisfactory therapeutic response. This study aims to evaluate the impact of a combination therapy involving buprenorphine transdermal patch and celecoxib capsules on improving shoulder pain and function of patients with primary adhesive shoulder capsulitis (ASC). METHODS This retrospective observational study consecutively enrolled patients with primary ASC from our hospital Outpatient Department between April 2018 and June 2020. The primary outcome was pain evaluated using the visual analog scale (VAS) score. Secondary outcomes included functional improvement evaluated using the Constant-Murley Shoulder (CMS) score, as well as satisfaction and adverse reactions. RESULTS A total of 198 patients were enrolled and categorized into the celecoxib capsule group (n = 72), buprenorphine transdermal patch group (n = 65), and buprenorphine transdermal patch + celecoxib capsule group (n = 61). Patients treated with buprenorphine transdermal patch + celecoxib capsule have the lowest VAS scores and highest CMS scores at 1, 4, 8 and 12 weeks after treatment (all P < 0.001). Furthermore, there were no significant differences in adverse reactions (P = 0.296) among the three groups. The satisfaction of patient with percutaneous buprenorphine transdermal patch + celecoxib capsule was significantly higher than patients with celecoxib capsules or percutaneous buprenorphine transdermal patch (both P < 0.001). CONCLUSION The combination of buprenorphine transdermal patch with celecoxib capsule may result in good analgesic efficacy and functional improvement in patients with primary ASC. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Qingbang Xu
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430022, China
| | - Xiaolan Zheng
- Department of Gastroenterology, The Fifth People's Hospital of Wuhan City, Wuhan, 430050, China
| | - Ling Hu
- Department of Anesthesiology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, 430064, China
| | - Jing Zheng
- Department of Pain, The Third People's Hospital of Hubei Province, Jianghan University, No. 26 Zhongshan Avenue, Wuhan, Hubei, 430022, China.
| |
Collapse
|
3
|
Rehman M, Tahir N, Sohail MF, Qadri MU, Duarte SOD, Brandão P, Esteves T, Javed I, Fonte P. Lipid-Based Nanoformulations for Drug Delivery: An Ongoing Perspective. Pharmaceutics 2024; 16:1376. [PMID: 39598500 PMCID: PMC11597327 DOI: 10.3390/pharmaceutics16111376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Oils and lipids help make water-insoluble drugs soluble by dispersing them in an aqueous medium with the help of a surfactant and enabling their absorption across the gut barrier. The emergence of microemulsions (thermodynamically stable), nanoemulsions (kinetically stable), and self-emulsifying drug delivery systems added unique characteristics that make them suitable for prolonged storage and controlled release. In the 1990s, solid-phase lipids were introduced to reduce drug leakage from nanoparticles and prolong drug release. Manipulating the structure of emulsions and solid lipid nanoparticles has enabled multifunctional nanoparticles and the loading of therapeutic macromolecules such as proteins, nucleic acid, vaccines, etc. Phospholipids and surfactants with a well-defined polar head and carbon chain have been used to prepare bilayer vesicles known as liposomes and niosomes, respectively. The increasing knowledge of targeting ligands and external factors to gain control over pharmacokinetics and the ever-increasing number of synthetic lipids are expected to make lipid nanoparticles and vesicular systems a preferred choice for the encapsulation and targeted delivery of therapeutic agents. This review discusses different lipids and oil-based nanoparticulate systems for the delivery of water-insoluble drugs. The salient features of each system are highlighted, and special emphasis is given to studies that compare them.
Collapse
Affiliation(s)
- Mubashar Rehman
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Nayab Tahir
- College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan;
- Wellman Center of Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Muhammad Farhan Sohail
- Department of Pharmacy, University of South Asia, Lahore 54000, Pakistan;
- Department of Pharmacy, Faculty of Health and Medical Sciences, The University of Copenhagen, 1172 København, Denmark
| | - Muhammad Usman Qadri
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia; (M.U.Q.); (I.J.)
| | - Sofia O. D. Duarte
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.O.D.D.); (P.B.); (T.E.)
- Associate Laboratory i4HB, Institute for Health and Bio-Economy, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Pedro Brandão
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.O.D.D.); (P.B.); (T.E.)
- Associate Laboratory i4HB, Institute for Health and Bio-Economy, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Almada, Portugal
- Departamento de Química, Centro de Química de Coimbra-Institute of Molecular Sciences (CQC-IMS), Faculdade de Ciências e Tecnologia, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Teresa Esteves
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.O.D.D.); (P.B.); (T.E.)
- Associate Laboratory i4HB, Institute for Health and Bio-Economy, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Ibrahim Javed
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia; (M.U.Q.); (I.J.)
| | - Pedro Fonte
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.O.D.D.); (P.B.); (T.E.)
- Associate Laboratory i4HB, Institute for Health and Bio-Economy, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Center for Marine Sciences (CCMAR), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
| |
Collapse
|
4
|
Qian Y, Wei X, Wang Y, Yin S, Chen J, Dong J. Development of a novel human stratum corneum mimetic phospholipid -vesicle-based permeation assay models for in vitro permeation studies. Drug Dev Ind Pharm 2024; 50:410-419. [PMID: 38497274 DOI: 10.1080/03639045.2024.2331242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 03/05/2024] [Indexed: 03/19/2024]
Abstract
OBJECTIVES To develop and evaluate a novel human stratum corneum (SC) mimetic phospholipid vesicle-based permeation assay (PVPASC) model for in vitro permeation studies. SIGNIFICANCE Due to the increasing restrictions on the use of human and animal skins, artificial skin models have attracted substantial interest in pharmaceuticals and cosmetic industries. In this study, a modified PVPASC model containing both SC lipids and proteins was developed. METHODS The PVPASC model was optimized by altering the lipid composition and adding keratin in the formulation of large liposomes. The barrier properties were monitored by measuring the electrical resistance (ER) and permeability of Rhodamine B (RB). The modified PVPASC model was characterized in terms of the surface topography, solvent influence and storage stability. The permeation studies of the active components in Compound Nanxing Zhitong Plaster (CNZP) were performed to examine the capability of PVPASC in the application of skin penetration. RESULTS The ER and Papp values of RB obtained from the optimized PVPASC model indicated a similar barrier property to porcine ear skin. Scanning electron microscope analysis demonstrated a mimic 'brick-and-mortar' structure. The PVPASC model can be stored for three weeks at -20 °C, and withstand the presence of different receptor medium for 24 h. The permeation studies of the active components demonstrated a good correlation (r2 = 0.9136) of Papp values between the drugs' permeation through the PVPASC model and porcine ear skin. CONCLUSION Keratin contained composite phospholipid vesicle-based permeation assay models have been proven to be potential skin tools in topical/transdermal permeation studies.
Collapse
Affiliation(s)
- Yuerong Qian
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, PR China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Xuchao Wei
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, PR China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Yiwei Wang
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, PR China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
- ANZAC Research Institute, The University of Sydney, Sydney, Australia
| | - Shaoping Yin
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, PR China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Jun Chen
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, PR China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Dong
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, PR China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
| |
Collapse
|
5
|
Dao L, Dong Y, Song L, Sa C. The Fate of 1,8-cineole as a Chemical Penetrant: A Review. Curr Drug Deliv 2024; 21:697-708. [PMID: 37165499 DOI: 10.2174/1567201820666230509101602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/22/2023] [Accepted: 03/13/2023] [Indexed: 05/12/2023]
Abstract
The stratum corneum continues to pose the biggest obstacle to transdermal drug delivery. Chemical penetrant, the first generation of transdermal drug delivery system, offers a lot of potential. In order to fully examine the permeation mechanism of 1,8-cineole, a natural monoterpene, this review summarizes the effects of permeation-enhancing medications on drugs that are lipophilic and hydrophilic as well as the toxicity of this substance on the skin and other tissues. For lower lipophilic drugs, 1,8-cineole appears to have a stronger osmotic-enhancing impact. An efficient and secure tactic would be to combine enhancers and dose forms. 1,8-cineole is anticipated to be further developed in the transdermal drug delivery system and even become a candidate drug for brain transport due to its permeability and low toxicity.
Collapse
Affiliation(s)
- Ligema Dao
- School of Mongolian Medicine, Inner Mongolian Medical University, Hohhot, China
| | - Yu Dong
- School of Pharmacy, Inner Mongolian Medical University, Hohhot, China
| | - Lin Song
- School of Mongolian Medicine, Inner Mongolian Medical University, Hohhot, China
| | - Chula Sa
- School of Mongolian Medicine, Inner Mongolian Medical University, Hohhot, China
| |
Collapse
|
6
|
Pries R, Jeschke S, Leichtle A, Bruchhage KL. Modes of Action of 1,8-Cineol in Infections and Inflammation. Metabolites 2023; 13:751. [PMID: 37367909 DOI: 10.3390/metabo13060751] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
The monoterpene 1,8-Cineol is a natural plant-based therapeutic agent that is commonly applied to treat different inflammatory diseases due to its mucolytic, anti-microbial and anti-inflammatory properties. It has become increasingly clear in the recent years that 1,8-Cineol spreads almost everywhere in the human body after its oral administration, from the gut to the blood to the brain. Its anti-microbial potential and even its anti-viral effects have been observed to include numerous bacteria and fungi species. Many recent studies help to better understand the cellular and molecular immunological consequences of 1,8-Cineol treatment in inflammatory diseases and further provide information concerning the mechanistic modes of action in the regulation of distinct inflammatory biosynthetic pathways. This review aims to present a holistic and understandable overview of the different aspects of 1,8-Cineol in infections and inflammation.
Collapse
Affiliation(s)
- Ralph Pries
- Department of Otorhinolaryngology, University of Luebeck, 23538 Luebeck, Germany
| | - Stephanie Jeschke
- Department of Otorhinolaryngology, University of Luebeck, 23538 Luebeck, Germany
| | - Anke Leichtle
- Department of Otorhinolaryngology, University of Luebeck, 23538 Luebeck, Germany
| | | |
Collapse
|
7
|
Investigation of β-caryophyllene as terpene penetration enhancer: Role of stratum corneum retention. Eur J Pharm Sci 2023; 183:106401. [PMID: 36750147 DOI: 10.1016/j.ejps.2023.106401] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/07/2023]
Abstract
Terpenes are usually used as penetration enhancers (PE) for transdermal drug delivery (TDD) of various molecules. However, TDD of hydrophilic macromolecules is becoming an urgent challenge due to their potent activities. The aim of this study was to investigate the potential application of β-caryophyllene (β-CP), a sequiterpene, as PE for TDD of hydrophilic macromolecules for the first time. Commonly used PEs, namely azone and 1,8-cineole (1,8-CN), were applied as controls. Transepidermal water loss (TEWL) analysis revealed that the reduction of skin barrier function caused by β-CP was reversible. Transdermal experiments showed that when skin was treated with β-CP or azone, there was a significant permeation-enhancing effect on fluorescein isothiocyanate (FITC) and FITC-dextran with different molecular weight (MW) of 4k or 10k. CLSM analysis confirmed that β-CP and azone can facilitate the penetration of FD-4k through epidermis and dermis. However, the cytotoxicity of azone against epidermal keratinocytes was significantly higher than β-CP and 1,8-CN. Additionally, application of β-CP and 1,8-CN didn't increase erythema index (EI) but the EI values of azone group increased significantly and irreversibly, indicating the high biocompatibility of the natural terpenes. β-CP had better permeation-enhancing effect and higher stratum corneum (SC) retention than 1,8-CN due to its increased carbon chain length and lipophilicity, as further demonstrated by molecular dynamics (MD) simulation studies. Skin electrical resistance (SER) and attenuated total reflection fourier transform infrared spectroscopy (ATR-FTIR) studies revealed a significant interfering effect of β-CP on SC lipids. Taken together, β-CP exhibited significant penetration enhancement of hydrophilic macromolecules due to its SC retention and SC lipid fluidization ability.
Collapse
|
8
|
Liu B, Xin Q, Zhang M, Chen J, Lu Q, Zhou X, Li X, Zhang W, Feng W, Pei H, Sun J. Research Progress on Mango Post-Harvest Ripening Physiology and the Regulatory Technologies. Foods 2022; 12:foods12010173. [PMID: 36613389 PMCID: PMC9818659 DOI: 10.3390/foods12010173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Mango (Mangifera indica L.) is an important tropical fruit with a delicate taste, pleasant aroma, and high nutritional value. In recent years, with the promotion of the rural revitalization strategy and the development of the poverty alleviation industry, China has gradually become an important mango producer. However, the short shelf life of mango fruit, the difficulty in regulating the postharvest quality, and the lack of preservation technology are the main problems that need to be solved in China's mango industry. In this paper, the physiological changes and mechanisms of mango during postharvest ripening were summarized, including sugar and acid changes, pigment synthesis and accumulation, and aroma formation and accumulation. The physical, chemical, and biological technologies (such as endogenous phytohormones, temperature, light, chemical preservatives, and edible coatings) commonly used in the regulation of mango postharvest ripening and their action principles were emphatically expounded. The shortcomings of the existing mango postharvest ripening regulation technology and physiological mechanism research were analyzed in order to provide a reference for the industrial application and development of mango postharvest.
Collapse
Affiliation(s)
- Bangdi Liu
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Qi Xin
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Min Zhang
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Jianhu Chen
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Qingchen Lu
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Xinqun Zhou
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Xiangxin Li
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Wanli Zhang
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Wei Feng
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Haisheng Pei
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Jing Sun
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Correspondence:
| |
Collapse
|
9
|
Antiosteoporosis Studies of 20 Medicine Food Homology Plants Containing Quercetin, Rutin, and Kaempferol: TCM Characteristics, In Vivo and In Vitro Activities, Potential Mechanisms, and Food Functions. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5902293. [PMID: 35399639 PMCID: PMC8989562 DOI: 10.1155/2022/5902293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/28/2022] [Accepted: 03/05/2022] [Indexed: 11/24/2022]
Abstract
Dietary nutraceutical compounds have been evidenced as backbone for bone health in recent years. It is reported that medicine food homology (MFH) plants have multiple nutraceutical compounds. Based on our literature research, 20 MFH plants caught our attention because they contain three popular antiosteoporosis compounds simultaneously: quercetin, rutin, and kaempferol. According to traditional Chinese medicine (TCM), their characteristics including natures, flavors, attributive to meridian tropism, and efficacies were listed. The relationships between TCM efficacies, such as “heat clearing,” “tonic,” and “the interior warming,” and antiosteoporosis pharmacological actions such as antioxidant and immune regulation were discussed. The in vivo antiosteoporosis effects of the 20 MFH plants were summarized. The in vitro antiosteoporosis activities and related mechanisms of the 20 plants and quercetin, rutin, kaempferol were detailed. The TGF-β-Smad signaling, fibroblast growth factor, and Wnt/β-catenin signaling on bone formation and the RANKL signaling, NF-κB signaling, and macrophage-colony-stimulating factor on bone resorption were identified. From food point, these 20 MFH plants could be classified as condiment, vegetable, fruit, tea and related products, beverage, etc. Based on the above discussion, these 20 MFH plants could be used as daily food supplements for the prevention and treatment against osteoporosis.
Collapse
|
10
|
Masyita A, Mustika Sari R, Dwi Astuti A, Yasir B, Rahma Rumata N, Emran TB, Nainu F, Simal-Gandara J. Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food Chem X 2022; 13:100217. [PMID: 35498985 PMCID: PMC9039924 DOI: 10.1016/j.fochx.2022.100217] [Citation(s) in RCA: 235] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/08/2022] [Accepted: 01/14/2022] [Indexed: 02/06/2023] Open
Abstract
Essential oils (EOs) are volatile and concentrated liquids extracted from different parts of plants. Bioactive compounds found in EOs, especially terpenes and terpenoids possess a wide range of biological activities including anticancer, antimicrobial, anti-inflammatory, antioxidant, and antiallergic. Available literature confirms that EOs exhibit antimicrobial and food preservative properties that are considered as a real potential application in food industry. Hence, the purpose of this review is to present an overview of current knowledge of EOs for application in pharmaceutical and medical industries as well as their potential as food preservatives in food industry.
Collapse
Affiliation(s)
- Ayu Masyita
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia
| | - Reka Mustika Sari
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan 20222, Sumatera Utara, Indonesia
- Cellulosic and Functional Materials Research Centre, Universitas Sumatera Utara, Jl. Bioteknologi No.1, Medan 20155, Indonesia
| | - Ayun Dwi Astuti
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia
| | - Budiman Yasir
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia
- Sekolah Tinggi Ilmu Farmasi Makassar, Makassar 90242, Sulawesi Selatan, Indonesia
| | - Nur Rahma Rumata
- Sekolah Tinggi Ilmu Farmasi Makassar, Makassar 90242, Sulawesi Selatan, Indonesia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain
| |
Collapse
|
11
|
Xu DP, Lin LQ, Wu BX, Lin MY, Chen QX. Interim analysis report of kuanxiong aerosol in improving angina and quality of life after percutaneous coronary intervention. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.4103/wjtcm.wjtcm_26_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
12
|
Zhou W, Sun Y, Zou L, Zhou L, Liu W. Effect of Galangal Essential Oil Emulsion on Quality Attributes of Cloudy Pineapple Juice. Front Nutr 2021; 8:751405. [PMID: 34869525 PMCID: PMC8640080 DOI: 10.3389/fnut.2021.751405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022] Open
Abstract
Galangal essential oil is obtained from the rhizomes of galangal with proven anti-inflammatory, antioxidant, antiviral, and antimicrobial properties, which are valuable in the food industry. To explore the effect of galangal essential oil on the quality of pineapple juice, 0.05, 0.1, 0.2, and 0.4% galangal essential emulsion were added, and their influence on the physical stability, physicochemical properties, microbial quantity, and aroma profiles of cloudy pineapple juice were evaluated. The essential oil emulsion of galangal is a milky white liquid with a strong aroma of galangal. The pH values of emulsion increased from 4.35 to 5.05 with the increase in essential oil concentration, and there was no significant difference in the particle size of the pineapple juice. The results showed that the galangal essential oil emulsion was stable and the stability of the cloudy pineapple juice was significantly enhanced by the essential oil emulsion determined using LUMiSizer. The cloudy pineapple juice with a 0.2% essential oil emulsion showed the most stability during storage. The lightness of the cloudy pineapple juice increased instantly with the essential oil emulsion addition. In addition, the microbial quantity of the cloudy pineapple juice was decreased by the individual essential oil emulsion or combined with thermal treatment to hold a longer shelf life. The microbial counts in pineapple juice treated by 0.4% essential oil emulsion and thermal treatment only increased from 1.06 to 1.59 log CFU/ml after 4 days of storage at 25°C. Additionally, the pH and total soluble solids showed a slightly increasing trend; however, the value of titratable acidity, free radical scavenging capacity, and ascorbic acid content of the cloudy pineapple juice showed no significant change. Finally, the results of the electronic nose showed that the aroma components of the pineapple juice were changed by the essential oil emulsion and thermal treatment, and the difference was especially evident in the content of the sulfur, sulfur organic, and aromatics compounds. Consequently, the results indicated that galangal essential oil emulsion can be used as juice additives to improve the quality attributes and extend the shelf-life of cloudy pineapple juice.
Collapse
Affiliation(s)
- Wei Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China.,Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Guangdong, China
| | - Yuefang Sun
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Liqiang Zou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Lei Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Wei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
13
|
Yin S, Dong M, Dong J, Gu W, Lu S, Yao J, Chen J. Transdermal Delivery of Chinese Medicine. NOVEL DRUG DELIVERY SYSTEMS FOR CHINESE MEDICINES 2021:77-94. [DOI: 10.1007/978-981-16-3444-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|