1
|
Eira A, Gonçalves MBS, Fongang YSF, Domingues C, Jarak I, Mascarenhas-Melo F, Figueiras A. Unlocking the Potential of Ganoderma lucidum (Curtis): Botanical Overview, Therapeutic Applications, and Nanotechnological Advances. Pharmaceutics 2025; 17:422. [PMID: 40284417 PMCID: PMC12030363 DOI: 10.3390/pharmaceutics17040422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/17/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
Background:Ganoderma lucidum (GL), commonly known as the "Lingzhi" or "Reishi" mushroom, has long been recognized for its potential health benefits and medicinal properties in traditional Chinese medicine. The unique potential combination of bioactive compounds present in GL, such as triterpenoids, polysaccharides, and peptides, has inspired interest in leveraging their therapeutic potential In recent years, the emerging field of nanotechnology has opened up new possibilities for using the remarkable properties of GL at the nanoscale. Objetive: The main objective of this review is to explore the unique potential of GL in traditional and innovative therapies, particularly in cancer treatment, and to assess how nanotechnology-based strategies can enhance its therapeutic applications.is to explore. Results: Nanotechnology-based strategies have been investigated for the efficient extraction and purification of bioactive compounds from GL. Additionally, nanocarriers and nanoformulations have been developed to protect these sensitive bioactive compounds from degradation, ensuring their stability during storage and transportation. The use of GL-based nanomaterials has shown promising results in several biomedical applications, namely due to their anticancer activity by targeting cancer cells, inducing apoptosis, and inhibiting tumor growth. Conclusions: The combination of GL and nanotechnology presents an exciting frontier in the development of novel therapeutic and biomedical applications. Nevertheless, further research and development in this interdisciplinary field are warranted to fully exploit the synergistic benefits offered by GL and nanotechnology. Future prospects include the development of robust clinical trials focused on GL nanotechnology-based cancer therapies to clarify mechanisms of actions and optimize formulations, ultimately leading to innovative solutions for human health and well-being.
Collapse
Affiliation(s)
- Ana Eira
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (A.E.); (M.B.S.G.); (C.D.); (I.J.)
| | - Maria Beatriz S. Gonçalves
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (A.E.); (M.B.S.G.); (C.D.); (I.J.)
| | | | - Cátia Domingues
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (A.E.); (M.B.S.G.); (C.D.); (I.J.)
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Group of Pharmaceutical Technology, University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CI MAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ivana Jarak
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (A.E.); (M.B.S.G.); (C.D.); (I.J.)
| | - Filipa Mascarenhas-Melo
- Higher School of Health, Polytechnic Institute of Guarda, 6300-307 Guarda, Portugal
- BRIDGES—Biotechnology Research, Innovation and Design of Health Products, Polytechnic University of Guarda, 6300-559 Guarda, Portugal
| | - Ana Figueiras
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (A.E.); (M.B.S.G.); (C.D.); (I.J.)
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Group of Pharmaceutical Technology, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
2
|
Liu D, Sun X, Qi X, Liang C. Sexual spores in mushrooms: bioactive compounds, factors and molecular mechanisms of spore formation. Arch Microbiol 2025; 207:38. [PMID: 39836288 DOI: 10.1007/s00203-024-04220-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025]
Abstract
Throughout the life cycle of mushrooms, countless spores are released from the fruiting bodies. The spores have significant implications in the food and medicine industries due to pharmacological effects attributed to their bioactive ingredients. Moreover, high concentration of mushroom spores can induce extrinsic allergic reactions in mushroom cultivation workers. Therefore, it is important to study the bioactive ingredients of medicinal mushroom spores and molecular mechanisms of spore formation to develop healthcare products utilizing medicinal mushroom spores and breed sporeless/low- or high-spore-producing strains. This review summarizes the bioactive compounds of mushroom spores, the influence factors and molecular mechanisms of spore formation. Many bioactive compounds extracted from mushroom spores have a wide range of pharmacological activities. Several exogenous factors such as temperature, humidity, light, nutrients, and culture matrix, and endogenous factors such as metabolism-related enzymes activities and expression levels of genes related to sporulation individually or in combination affect the formation, size, and discharge of spores. The future research directions are also discussed for supplying references to analyze the bioactive compounds of spores and the molecular mechanisms of spore formation in mushrooms.
Collapse
Affiliation(s)
- Dongmei Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Xueyan Sun
- Research Center for Environmental Ecology and Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Xiwu Qi
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Chengyuan Liang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
| |
Collapse
|
3
|
Thuy NHL, Tu VL, Thu LNA, Giang TT, Huyen DTK, Loc DH, Tam DNH, Phat NT, Huynh HH, Truyen TTTT, Nguyen QH, Do U, Nguyen D, Dat TV, Minh LHN. Pharmacological Activities and Safety of Ganoderma lucidum Spores: A Systematic Review. Cureus 2023; 15:e44574. [PMID: 37790044 PMCID: PMC10545004 DOI: 10.7759/cureus.44574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 10/05/2023] Open
Abstract
Ganoderma lucidum is traditionally used to prevent and treat some diseases such as liver disorders, hypertension, insomnia, diabetes, and cancer. G. lucidum spore extracts are also reported to share similar bioactivities as extracts from its other parts. However, there is no systematic review that elucidates its pharmacological effect. Our aim is to comprehensively summarise current evidence of G. lucidum spore extracts to clarify its benefits to be applied in further studies. We searched five primary databases: PubMed, Virtual Health Library (VHL), Global Health Library (GHL), System for Information on Grey Literature in Europe (SIGLE), and Google Scholar on September 13, 2021. Articles were selected according to inclusion and exclusion criteria. A manual search was applied to find more relevant articles. Ninety studies that reported the pharmacological effects and/or safety of G. lucidum spores were included in this review. The review found that G. lucidum spore extracts showed quite similar effects as other parts of this medicinal plant including anti-tumor, anti-inflammatory, antioxidant effects, and immunomodulation. G. lucidum sporoderm-broken extract demonstrated higher efficiency than unbroken spore extract. G. lucidum extracts also showed their effects on some genes responsible for the body's metabolism, which implied the benefits in metabolic diseases. The safety of G. lucidum should be investigated in depth as high doses of the extract could increase levels of cancer antigen (CA)72-4, despite no harmful effect shown on body organs. Generally, there is a lot of potential in the studies of compounds with pharmacological effects and new treatments. Sporoderm breaking technique could contribute to the production of extracts with more effective prevention and treatment of diseases. High doses of G. lucidum spore extract should be used with caution as there was a concern about the increase in CA.
Collapse
Affiliation(s)
- Nguyen Huu Lac Thuy
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, VNM
| | - Vo Linh Tu
- Faculty of Traditional Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, VNM
| | - Le Nguyen Anh Thu
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, VNM
| | - Tran Thanh Giang
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, USA
| | - Dao Tang Khanh Huyen
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, VNM
| | - Duong Hoang Loc
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, VNM
| | - Dao Ngoc Hien Tam
- Department of Regulatory Affairs, Asia Shine Trading & Service Company Ltd, Ho Chi Minh City, VNM
| | - Nguyen Tuan Phat
- Faculty of Medicine, Hue University of Medicine and Pharmacy, Hue, VNM
- Department of Cardiovascular Research, Methodist Hospital Southlake, Merrillville, USA
| | - Hong-Han Huynh
- International Master Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, TWN
| | | | - Quang-Hien Nguyen
- Department of Cardiovascular Research, Methodist Hospital Southlake, Merrillville, USA
| | - Uyen Do
- Science Department, Lone Star College, Houston, USA
| | - Dang Nguyen
- Department of Medical Engineering, University of South Florida, Tampa, USA
| | - Truong Van Dat
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, VNM
| | - Le Huu Nhat Minh
- Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei, TWN
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, TWN
| |
Collapse
|
4
|
Li S, Hou W, Li Y, Liu Z, Yun H, Liu Q, Niu H, Liu C, Zhang Y. Modeling and optimization of the protocol of complex chromatography separation of cyclooxygenase-2 inhibitors from Ganoderma lucidum spore. PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:431-442. [PMID: 36958357 DOI: 10.1002/pca.3224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 02/20/2023] [Accepted: 03/08/2023] [Indexed: 06/03/2023]
Abstract
INTRODUCTION The spores of the medicinal fungus Ganoderma lucidum possess hepatoprotective properties. The main components, triterpenes, are particularly beneficial, making the screening and preparation of active triterpenes from Ganoderma lucidum significant. OBJECTIVES We aimed to screen and verify cyclooxygenase-2 inhibitors from G. lucidum spores, establish a rapid online hyphenated technique for the preparation of active ingredients, and analyze the structures of the active ingredients. METHODS Ultrafiltration LC combined with an enzyme inhibition assay and molecular docking was employed to screen and evaluate cyclooxygenase-2 ligands, which were prepared by pressurized liquid extraction coupled online with countercurrent chromatography and semi-preparative LC. The structures of the compounds were identified by nuclear magnetic resonance spectroscopy. RESULTS Six cyclooxygenase-2 inhibitors, namely, ganoderic acids I, C2 , G, B, and A and ganoderenic acid A, were screened and evaluated. They were prepared using the online hyphenated technique, following which their structures were identified. CONCLUSION This study provides opportunities for the discovery and development of new therapeutic drugs from other natural resources, as the present instrumental setup achieved efficient and systematic extraction and isolation of natural products compared with reference separation methods, thus exhibiting significant potential for industrial applications.
Collapse
Affiliation(s)
- Sainan Li
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Wanchao Hou
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Yanjie Li
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Zhen Liu
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Haocheng Yun
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Qiang Liu
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Huazhou Niu
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Chunming Liu
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Yuchi Zhang
- Central Laboratory, Changchun Normal University, Changchun, China
| |
Collapse
|
5
|
Dat TD, Viet ND, Thanh VH, Linh NTT, Ngan NTK, Nam HM, Phong MT, Hieu NH. Optimization of Triterpenoid Extraction from
Ganoderma lucidum
by Ethanol‐Modified Supercritical Carbon Dioxide andthe Biological Properties of the Extract. ChemistrySelect 2022. [DOI: 10.1002/slct.202103444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tran Do Dat
- VNU-HCMC, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| | - Nguyen Duc Viet
- VNU-HCMC, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| | - Vuong Hoai Thanh
- VNU-HCMC, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| | - Ngo Thi Thuy Linh
- VNU-HCMC, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| | - Nguyen Thi Kim Ngan
- VNU-HCMC, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| | - Hoang Minh Nam
- VNU-HCMC, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| | - Mai Thanh Phong
- VNU-HCMC, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| | - Nguyen Huu Hieu
- VNU-HCMC, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| |
Collapse
|
6
|
Dat TD, Viet ND, Thanh VH, Nhi HND, Linh NTT, Ngan NTK, Nam HM, Thanh Phong M, Hieu NH. Optimization of Triterpenoid Extracted from Vietnamese Ganoderma lucidum via Supercritical Extraction Method and Biological Tests. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2032750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Tran Do Dat
- Vnu-hcmc Key Laboratory of Chemical Engineering and Petroleum Processing (Key Cepp Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCm), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Nguyen Duc Viet
- Vnu-hcmc Key Laboratory of Chemical Engineering and Petroleum Processing (Key Cepp Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCm), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Vuong Hoai Thanh
- Vnu-hcmc Key Laboratory of Chemical Engineering and Petroleum Processing (Key Cepp Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCm), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Ho Nguyen Dieu Nhi
- Vnu-hcmc Key Laboratory of Chemical Engineering and Petroleum Processing (Key Cepp Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCm), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Ngo Thi Thuy Linh
- Vnu-hcmc Key Laboratory of Chemical Engineering and Petroleum Processing (Key Cepp Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCm), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Nguyen Thi Kim Ngan
- Vnu-hcmc Key Laboratory of Chemical Engineering and Petroleum Processing (Key Cepp Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCm), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Hoang Minh Nam
- Vnu-hcmc Key Laboratory of Chemical Engineering and Petroleum Processing (Key Cepp Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCm), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Mai Thanh Phong
- Vnu-hcmc Key Laboratory of Chemical Engineering and Petroleum Processing (Key Cepp Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCm), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Nguyen Huu Hieu
- Vnu-hcmc Key Laboratory of Chemical Engineering and Petroleum Processing (Key Cepp Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCm), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| |
Collapse
|