1
|
Chen Y, Xu J, Li P, Shi L, Zhang S, Guo Q, Yang Y. Advances in the use of local anesthetic extended-release systems in pain management. Drug Deliv 2024; 31:2296349. [PMID: 38130151 PMCID: PMC10763865 DOI: 10.1080/10717544.2023.2296349] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023] Open
Abstract
Pain management remains among the most common and largely unmet clinical problems today. Local anesthetics play an indispensable role in pain management. The main limitation of traditional local anesthetics is the limited duration of a single injection. To address this problem, catheters are often placed or combined with other drugs in clinical practice to increase the time that local anesthetics act. However, this method does not meet the needs of clinical analgesics. Therefore, many researchers have worked to develop local anesthetic extended-release types that can be administered in a single dose. In recent years, drug extended-release systems have emerged dramatically due to their long duration and efficacy, providing more possibilities for the application of local anesthetics. This paper summarizes the types of local anesthetic drug delivery systems and their clinical applications, discusses them in the context of relevant studies on local anesthetics, and provides a summary and outlook on the development of local anesthetic extended-release agents.
Collapse
Affiliation(s)
- Yulu Chen
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Jingmei Xu
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Ping Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, China
| | - Liyang Shi
- College of Biology, Hunan University, Changsha, China
| | - Sha Zhang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yong Yang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
2
|
Mehmood Y, Shahid H, ul Huq UI, Rafeeq H, Khalid HMB, Uddin MN, Kazi M. Microsponge-Based Gel Loaded with Immunosuppressant as a Simple and Valuable Strategy for Psoriasis Therapy: Determination of Pro-Inflammatory Response through Cytokine IL-2 mRNA Expression. Gels 2023; 9:871. [PMID: 37998961 PMCID: PMC10670748 DOI: 10.3390/gels9110871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/16/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023] Open
Abstract
Tacrolimus (TL) is a topical calcineurin inhibitor immunosuppressive drug widely used to manage various skin disorders. Herein, we report a TL-loaded microsphere gel formulation with severe atopic dermatitis effects that are required to manage skin disorders. The current study adopted a modified emulsion solvent evaporation technique to synthesize TL-loaded microspheres, which were further converted into gels for skin use. Characterization of the synthesized formulation was performed by differential dynamic light scattering, scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, X-ray crystallography, Brunauer-Emmett-Teller (BET) analysis, differential scanning calorimetry, and drug release. A Franz diffusion cell was used to study the diffusion of TL for up to 8 h at pH 6.8 and 5.5. Evaluation of cell viability was determined by MTT assay and showed higher IC50 values compared to the plain drug. RNA extraction, real-time polymerase chain reaction (RT-PCR), and reverse transcription were also performed to determine the expression levels of the anti-inflammatory cytokine IL-2. Particle size determination was performed by a zeta sizer, and the TL microsphere size was 1745 ± 70 nm with a good polydispersity (0.337 ± 0.12). The drug entrapment efficiency was also very good at 60% ± 10, and the drug release was 93.9% ± 3.5 within 8 h. An in vitro diffusion study of the formulation also showed improved permeability at both pH values (4.5 and 5.5). The findings of the hemolytic tests demonstrated that TL-MG at concentrations of 50, 100, and 200 mg/mL did not produce any hemolysis. A dose-dependent pattern of cytotoxicity was found during the cell viability assay, with an IC50 value of 787.55 ± 12.78 µg/mL. There was a significant decrease in the IL-2 level in the TL-MG group compared to the other groups. TL-MG microspheres were nontoxic carriers for tacrolimus delivery, with greater loading capacity, a significant release profile, and enhanced cellular uptake with improved permeability.
Collapse
Affiliation(s)
- Yasir Mehmood
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad P.O. Box 38000, Pakistan
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University Faisalabad, Faisalabad P.O. Box 38000, Pakistan
| | - Hira Shahid
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad P.O. Box 38000, Pakistan;
| | | | - Hamza Rafeeq
- Department of Biochemistry, Riphah International University, Faisalabad Campus, Faisalabad P.O. Box 38000, Pakistan;
- Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad P.O. Box 38000, Pakistan
| | - Hafiz Muhammad Bilal Khalid
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad P.O. Box 38000, Pakistan
| | - Mohammad N. Uddin
- College of Pharmacy, Mercer University, 3001 Mercer University Drive, Atlanta, GA 30341, USA;
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
3
|
Hanif S, Syed MA, Rashid AJ, Alharby TN, Algahtani MM, Alanazi M, Alanazi J, Sarfraz RM. Validation of a Novel RP-HPLC Technique for Simultaneous Estimation of Lignocaine Hydrochloride and Tibezonium Iodide: Greenness Estimation Using AGREE Penalties. Molecules 2023; 28:molecules28083418. [PMID: 37110652 PMCID: PMC10144333 DOI: 10.3390/molecules28083418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Herein, we reported an HPLC method for the simultaneous determination of tibezonium iodide (TBN) and lignocaine hydrochloride (LGN). The method was developed according to the International Conference for Harmonization guidelines (ICH) Q2R1 using Agilent® 1260 with a mobile phase consisting of acetonitrile and phosphate buffer (pH 4.5) in a volumetric ratio of 70:30 and flowing through a C8 Agilent® column at 1 mL/min. The results revealed that TBN and LGN peaks were isolated at 4.20 and 2.33 min, respectively, with a resolution of 2.59. The accuracy of TBN and LGN was calculated to be 100.01 ± 1.72% and 99.05 ± 0.65% at 100% concentration, respectively. Similarly, the respective precision was 100.03 ± 1.61% and 99.05 ± 0.48%. The repeatability for TBN and LGN was found to be 99.05 ± 0.48% and 99.19 ± 1.72%, respectively, indicating that the method was precise. The respective regression co-efficient (r2) for TBN and LGN was found to be 0.9995 and 0.9992. Moreover, the LOD and LOQ values for TBN were 0.012 and 0.037 µg/mL, respectively, while for LGN, they were 0.115 and 0.384 µg/mL, respectively. The calculated greenness of the method for ecological safety was found to be 0.83, depicting a green contour on the AGREE scale. No interfering peaks were found when the analyte was estimated in dosage form and in volunteers' saliva, depicting the specificity of the method. Conclusively, a robust, fast, accurate, precise and specific method was successfully validated to estimate TBN and LGN.
Collapse
Affiliation(s)
- Sana Hanif
- College of Pharmacy, University of Sargodha, Sargodha 40162, Pakistan
- Faculty of Pharmacy, The University of Lahore, Lahore 54590, Pakistan
| | - Muhammad Ali Syed
- Faculty of Pharmacy, The University of Lahore, Lahore 54590, Pakistan
- Department of Pharmaceutical Sciences, Faculty of Chemistry and Life Sciences, Government College University Lahore, Lahore 54000, Pakistan
| | - Ahmad Junaid Rashid
- Quality Control Department, Pacific Pharmaceuticals Limited, Lahore 54000, Pakistan
| | - Tareq Nafea Alharby
- Department of Clinical Pharmacy, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| | - Mohammad M Algahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muteb Alanazi
- Department of Clinical Pharmacy, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| | - Jowaher Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| | | |
Collapse
|
4
|
HPLC Method Validation for the Estimation of Lignocaine HCl, Ketoprofen and Hydrocortisone: Greenness Analysis Using AGREE Score. Int J Mol Sci 2022; 24:ijms24010440. [PMID: 36613881 PMCID: PMC9820389 DOI: 10.3390/ijms24010440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
In the current study, the reversed-phased high-pressure liquid chromatography (RP-HPLC) method was proposed for the estimation of lignocaine hydrochloride (LIG), hydrocortisone (HYD) and Ketoprofen (KET) according to International Conference for Harmonization (ICH) Q2 R1 guidelines, in a gel formulation. The chromatographic evaluation was executed using Shimadzu RP-HPLC, equipped with a C8 column and detected using UV at 254 nm wavelength, using acetonitrile and buffer (50:50) as a mobile phase and diluent, at flow rate 1 mL/min and n injection volume of 20 μL. The retention time for LIG, HYD, and KET were 1.54, 2.57, and 5.78 min, correspondingly. The resultant values of analytical recovery demonstrate accuracy and precision of the method and was found specific in identification of the drugs from dosage form and marketed products. The limit of detection (LOD) for LIG, HYD, and KET were calculated to be 0.563, 0.611, and 0.669 ppm, while the limit of quantification (LOQ) was estimated almost at 1.690, 1.833, and 0.223 ppm, respectively. The AGREE software was utilized to evaluate the greenness score of the proposed method, and it was found greener in score (0.76). This study concluded that the proposed method was simple, accurate, precise, robust, economical, reproducible, and suitable for the estimation of drugs in transdermal gels.
Collapse
|
5
|
Syed MA, Hanif S, Ain NU, Syed HK, Zahoor AF, Khan IU, Abualsunun WA, Jali AM, Qahl SH, Sultan MH, Madkhali OA, Ahmed RA, Abbas N, Hussain A, Qayyum MA, Irfan M. Assessment of Binary Agarose-Carbopol Buccal Gels for Mucoadhesive Drug Delivery: Ex Vivo and In Vivo Characterization. Molecules 2022; 27:7004. [PMID: 36296596 PMCID: PMC9608223 DOI: 10.3390/molecules27207004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 07/30/2023] Open
Abstract
Agarose (AG) is a naturally occurring biocompatible marine seaweed extract that is converted to hydrocolloid gel in hot water with notable gel strength. Currently, its mucoadhesion properties have not been fully explored. Therefore, the main aim of this study was to evaluate the mucoadhesive potential of AG binary dispersions in combination with Carbopol 934P (CP) as mucoadhesive gel preparations. The gels fabricated via homogenization were evaluated for ex vivo mucoadhesion, swelling index (SI), dissolution and stability studies. The mucoadhesive properties of AG were concentration dependent and it was improved by the addition of CP. Maximum mucoadhesive strength (MS) (27.03 g), mucoadhesive flow time (FT) (192.2 min), mucoadhesive time in volunteers (MT) (203.2 min) and SI (23.6% at 4 h) were observed with formulation F9. The mucoadhesive time investigated in volunteers (MT) was influenced by AG concentration and was greater than corresponding FT values. Formulations containing 0.3%, w/v AG (F3 and F9) were able to sustain the release (~99%) for both drugs till 3 h. The optimized formulation (F9) did not evoke any inflammation, irritation or pain in the buccal cavity of healthy volunteers and was also stable up to 6 months. Therefore, AG could be considered a natural and potential polymer with profound mucoadhesive properties to deliver drugs through the mucosal route.
Collapse
Affiliation(s)
- Muhammad Ali Syed
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan or
- Faculty of Pharmacy, The University of Lahore, Lahore 54590, Pakistan or
| | - Sana Hanif
- Faculty of Pharmacy, The University of Lahore, Lahore 54590, Pakistan or
| | - Noor ul Ain
- Department of Medicine, Fatima Jinnah Medical University Lahore, Lahore 54000, Pakistan
| | - Haroon Khalid Syed
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan or
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad 54590, Pakistan
| | - Ikram Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan or
| | - Walaa A. Abualsunun
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdulmajeed M. Jali
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Safa H. Qahl
- Department of Biology, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| | - Muhammad H. Sultan
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Osama A. Madkhali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Rayan A. Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Nasir Abbas
- University College of Pharmacy, University of The Punjab, Lahore 38000, Pakistan
| | - Amjad Hussain
- University College of Pharmacy, University of The Punjab, Lahore 38000, Pakistan
| | - Muhammad Abdul Qayyum
- Department of Chemistry, Division of Science & Technology, University of Education, Lahore 5600, Pakistan
| | - Muhammad Irfan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan or
| |
Collapse
|
6
|
Evaluating Novel Agarose-Based Buccal Gels Scaffold: Mucoadhesive and Pharmacokinetic Profiling in Healthy Volunteers. Pharmaceutics 2022; 14:pharmaceutics14081592. [PMID: 36015217 PMCID: PMC9413753 DOI: 10.3390/pharmaceutics14081592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/17/2022] [Accepted: 07/27/2022] [Indexed: 01/06/2023] Open
Abstract
Agarose (AG) forms hydrocolloid in hot water and possesses a noteworthy gel strength. However, no reasonable scientific work on investigating the mucoadhesive character of AG has been reported. Therefore, the current study was designed to develop AG and carbopol (CP) based buccal gel scaffold for simultaneous release of benzocaine (BZN) and tibezonium iodide (TIB). Gels’ scaffold formulations (F1−F12) were prepared with varied concentrations (0.5−1.25% w/v) of AG and CP alone or their blends (AG-CP) using homogenization technique. The prepared formulations were characterized for solid-state, physicochemical, in vitro, ex vivo, and in vivo mucoadhesive studies in healthy volunteers. The results showed that mucoadhesive property of AG was concentration dependent but improved by incorporating CP in the scaffolds. The ex vivo mucoadhesive time reached >36 h when AG was used alone or blended with CP at 1% w/v concentration or above. The optimized formulation (F10) depicted >98% drugs release within 8 h and was also storage stable up to six months. The salivary concentration of BZN and TIB from formulation F10 yielded a Cmax value of 9.97 and 8.69 µg/mL at 2 and 6 h (tmax), respectively. In addition, the FTIR, PXRD, and DSC results confirmed the presence of no unwanted interaction among the ingredients. Importantly, the mucoadhesive study performed on healthy volunteers did not provoke any signs of inflammation, pain, or swelling. Clearly, it was found from the results that AG-CP scaffold provided better mucoadhesive properties in comparison to pure AG or CP. Conclusively, the developed AG based mucoadhesive drug delivery system could be considered a potential alternative for delivering drugs through the mucoadhesive buccal route.
Collapse
|
7
|
Shakir R, Hanif S, Salawi A, Arshad R, Sarfraz RM, Irfan M, Raza SA, Barkat K, Sabei FY, Almoshari Y, Alshamrani M, Syed MA. Exorbitant Drug Loading of Metformin and Sitagliptin in Mucoadhesive Buccal Tablet: In Vitro and In Vivo Characterization in Healthy Volunteers. Pharmaceuticals (Basel) 2022; 15:686. [PMID: 35745605 PMCID: PMC9227047 DOI: 10.3390/ph15060686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 02/01/2023] Open
Abstract
The aim of the proposed study is to develop a mucoadhesive buccal delivery system for the sustained delivery of metformin (MET) and sitagliptin (SIT) against diabetes mellitus (DM) with improved bioavailability. Polymeric blend of Carbopol® 940 (CP), agarose (AG) or polyvinylpyrrolidone K30 (PVP) as mucoadhesive agents in formulations (R1-R15) were compressed via the direct compression technique. Tablets were characterized for solid state studies, physicochemical and in vivo mucoadhesion studies in healthy volunteers. Outcomes did not reveal any unusual peak or interaction between the drugs and polymers in the physical mixture through Fourier Transform Infrared Spectroscopy (FTIR) and DSC analysis. The mucoadhesive blend of CP and PVP was superior compared to other blends. The formulation R4 revealed exorbitant loading of drugs with complete drug release for 6 h with ex vivo mucoadhesive strength and time of 26.99 g and 8.1 h, respectively. It was further scrutinized to evaluate it as an optimized formulation where it was found to be stable for up to 6 months. The formulation R4 depicted Korsmeyer-Peppas model and first-order mode of release correspondingly for SIT and MET. Moreover, it showed hemocompatibility, biocompatibility and stability with non-significant changes in the dissolution profile. Overall, the CP blend with PVP was found appropriate to yield the desired release coupled with the optimized mucoadhesive properties of the buccal tablets, ensuring sufficient pharmaceutical stability.
Collapse
Affiliation(s)
- Rouheena Shakir
- Department of Pharmaceutics, Faculty of Pharmacy, The University of Lahore, Lahore 54000, Pakistan; (R.S.); (R.A.); (K.B.)
| | - Sana Hanif
- College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan;
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.S.); (F.Y.S.); (Y.A.); (M.A.)
| | - Rabia Arshad
- Department of Pharmaceutics, Faculty of Pharmacy, The University of Lahore, Lahore 54000, Pakistan; (R.S.); (R.A.); (K.B.)
| | | | - Muhammad Irfan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Syed Atif Raza
- Department of Pharmaceutics, Punjab University College of Pharmacy, University of The Punjab, Lahore 54590, Pakistan;
| | - Kashif Barkat
- Department of Pharmaceutics, Faculty of Pharmacy, The University of Lahore, Lahore 54000, Pakistan; (R.S.); (R.A.); (K.B.)
| | - Fahad Y. Sabei
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.S.); (F.Y.S.); (Y.A.); (M.A.)
| | - Yosif Almoshari
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.S.); (F.Y.S.); (Y.A.); (M.A.)
| | - Meshal Alshamrani
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.S.); (F.Y.S.); (Y.A.); (M.A.)
| | - Muhammad Ali Syed
- Department of Pharmaceutics, Faculty of Pharmacy, The University of Lahore, Lahore 54000, Pakistan; (R.S.); (R.A.); (K.B.)
| |
Collapse
|
8
|
Hanif S, Sarfraz RM, Syed MA, Mahmood A, Hussain Z. Smart mucoadhesive buccal chitosan/ HPMC scaffold for sore throat: In vitro, ex vivo and pharmacokinetic profiling in humans. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Javed QUA, Syed MA, Arshad R, Rahdar A, Irfan M, Raza SA, Shahnaz G, Hanif S, Díez-Pascual AM. Evaluation and Optimization of Prolonged Release Mucoadhesive Tablets of Dexamethasone for Wound Healing: In Vitro–In Vivo Profiling in Healthy Volunteers. Pharmaceutics 2022; 14:pharmaceutics14040807. [PMID: 35456641 PMCID: PMC9024596 DOI: 10.3390/pharmaceutics14040807] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 12/17/2022] Open
Abstract
The aim of the projected study was to design and develop a novel strategy for evaluating the mucoadhesive potential of polymeric tablets of dexamethasone (DXM) for local delivery against wounds. Therefore, formulations (Q1–Q7) were synthesized via direct compression method by varying the concentrations of polymers, i.e., ethyl cellulose (EC) and agar extract (AG). Moreover, the mucoadhesive polymeric tablets were characterized via physicochemical, in vitro, ex vivo and in vivo experiments. However, physicochemical characteristics such as FTIR showed no interaction with different polymeric combination. Surface pH of all formulations was normal to slightly alkaline. Highest hydration of up to 6.22% and swelling index was comprehended with maximum concentration of AG (50% of total tablet weight). Whereas, ex vivo and in vivo residence time and mucoadhesion were attributed to the increased concentrations of polymers. Moreover, Q7, (optimized formulation), containing 10% of EC and 40% of AG, exhibited maximum release of DXM (100%) over 8 h, along with sufficient mucoadhesive strength up to 11.73 g, following first-order kinetics having r2 value of 0.9778. Hemostatic effects and epithelialization for triggering and promoting wound healing were highly pronounced in cases of Q7. Furthermore, in vivo residence time was 7.84 h followed by salivary drug concentration (4.2 µg/mL). However, mucoadhesive buccal tablets showed stability for 6 months, thus following the standardization (ICH-Iva) stability zone. In summary, DXM mucoadhesive tablets seem to be an ideal candidate for eradication of wound infections via local targeted delivery.
Collapse
Affiliation(s)
- Qurrat ul Ain Javed
- Department of Pharmaceutics, Faculty of Pharmacy, The University of Lahore, Lahore 54770, Pakistan; (Q.u.A.J.); (M.A.S.); (R.A.)
| | - Muhammad Ali Syed
- Department of Pharmaceutics, Faculty of Pharmacy, The University of Lahore, Lahore 54770, Pakistan; (Q.u.A.J.); (M.A.S.); (R.A.)
| | - Rabia Arshad
- Department of Pharmaceutics, Faculty of Pharmacy, The University of Lahore, Lahore 54770, Pakistan; (Q.u.A.J.); (M.A.S.); (R.A.)
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol P.O. Box 98613-35856, Iran;
| | - Muhammad Irfan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan;
| | - Syed Atif Raza
- Punjab University College of Pharmacy, University of The Punjab, Lahore 54590, Pakistan;
| | - Gul Shahnaz
- Department of Pharmacy, Quaid i Azam University, Islamabad 45320, Pakistan;
| | - Sana Hanif
- Faculty of Pharmacy, The University of Sargodha, Sargodha 40162, Pakistan
- Correspondence: (S.H.); (A.M.D.-P.)
| | - Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
- Correspondence: (S.H.); (A.M.D.-P.)
| |
Collapse
|