1
|
van den Bosch M, Kellner KF, Gantchoff MG, Patterson BR, Barber-Meyer SM, Beyer DE, Erb JD, Isaac EJ, MacFarland DM, Moore SA, Norton DC, Petroelje TR, Price Tack JL, Roell BJ, Schrage M, Belant JL. Habitat selection of resident and non-resident gray wolves: implications for habitat connectivity. Sci Rep 2023; 13:20415. [PMID: 37990118 PMCID: PMC10663587 DOI: 10.1038/s41598-023-47815-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/18/2023] [Indexed: 11/23/2023] Open
Abstract
Habitat selection studies facilitate assessing and predicting species distributions and habitat connectivity, but habitat selection can vary temporally and among individuals, which is often ignored. We used GPS telemetry data from 96 Gray wolves (Canis lupus) in the western Great Lakes region of the USA to assess differences in habitat selection while wolves exhibited resident (territorial) or non-resident (dispersing or floating) movements and discuss implications for habitat connectivity. We used a step-selection function (SSF) to assess habitat selection by wolves exhibiting resident or non-resident movements, and modeled circuit connectivity throughout the western Great Lakes region. Wolves selected for natural land cover and against areas with high road densities, with no differences in selection among wolves when resident, dispersing, or floating. Similar habitat selection between resident and non-resident wolves may be due to similarity in environmental conditions, when non-resident movements occur largely within established wolf range rather than near the periphery or beyond the species range. Alternatively, non-resident wolves may travel through occupied territories because higher food availability or lower human disturbance outweighs risks posed by conspecifics. Finally, an absence of differences in habitat selection between resident and non-resident wolf movements may be due to other unknown reasons. We recommend considering context-dependency when evaluating differences in movements and habitat use between resident and non-resident individuals. Our results also provide independent validation of a previous species distribution model and connectivity analysis suggesting most potential wolf habitat in the western Great Lakes region is occupied, with limited connectivity to unoccupied habitat.
Collapse
Affiliation(s)
- M van den Bosch
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA.
| | - K F Kellner
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| | - M G Gantchoff
- Department of Biology, University of Dayton, Dayton, OH, USA
| | - B R Patterson
- Ontario Ministry of Natural Resources, Wildlife Research and Development Section, Trent University, Peterborough, ON, Canada
| | | | - D E Beyer
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| | - J D Erb
- Minnesota Department of Natural Resources, Forest Wildlife Populations and Research Group, Grand Rapids, MN, USA
| | - E J Isaac
- Grand Portage Band of Lake Superior Chippewa, Biology and Environment, Grand Portage, MN, USA
| | - D M MacFarland
- Wisconsin Department of Natural Resources, Office of Applied Science, Rhinelander, WI, USA
| | - S A Moore
- Grand Portage Band of Lake Superior Chippewa, Biology and Environment, Grand Portage, MN, USA
| | - D C Norton
- Wildlife Division, Michigan Department of Natural Resources, Marquette, MI, USA
| | - T R Petroelje
- Wildlife Division, Michigan Department of Natural Resources, Marquette, MI, USA
| | - J L Price Tack
- Wisconsin Department of Natural Resources, Office of Applied Science, Rhinelander, WI, USA
| | - B J Roell
- Wildlife Division, Michigan Department of Natural Resources, Marquette, MI, USA
| | - M Schrage
- Fond du Lac Resource Management Division, Cloquet, MN, USA
| | - J L Belant
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
2
|
Torretta E, Corradini A, Pedrotti L, Bani L, Bisi F, Dondina O. Hide-and-Seek in a Highly Human-Dominated Landscape: Insights into Movement Patterns and Selection of Resting Sites of Rehabilitated Wolves ( Canis lupus) in Northern Italy. Animals (Basel) 2022; 13:ani13010046. [PMID: 36611657 PMCID: PMC9817923 DOI: 10.3390/ani13010046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/18/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
Assessing the behavioural responses of floating wolves to human presence is crucial for investigating the chance of wolf populations expanding into urbanised landscapes. We studied the movement ecology of three rehabilitated wolves in a highly human-dominated landscape (Po Plain, Italy) to explore wolf's plasticity amid widespread human pressure. To reach this aim, we estimated individual 95% utilisation distributions (UD) after the release and inspected both 95% UDs and net squared displacements to identify individual movement patterns; tested for differences in movement patterns during day and night; and analysed the selection of resting sites during dispersal movement in a highly human-altered environment. Both the 95% UDs and step lengths were smaller for wolves settling in suitable areas than for those settling in more urbanised areas. All wolves exhibited strong temporal segregation with humans during all movement phases, particularly while dispersing across highly urbanised areas. Main roads and proximity to built-up areas were shown to limit wolves' dispersal, whereas small-wooded patches that provide shelter during rest facilitated long-distance movements. This study provides important insights into wolf movement and settling in urban and peri-urban areas, providing critical knowledge to promote human-carnivore coexistence.
Collapse
Affiliation(s)
- Elisa Torretta
- Department of Earth and Environmental Sciences, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy
| | - Andrea Corradini
- Animal Ecology Unit, Research and Innovation Centre, Fondazione Edmund Mach, Via Edmund Mach, 1, 38098 San Michele all’Adige, Italy
| | | | - Luciano Bani
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Francesco Bisi
- Environment Analysis and Management Unit, Guido Tosi Research Group, Department of Theoretical and Applied Sciences, Insubria University, Via J. H. Dunant, 3-I, 21100 Varese, Italy
| | - Olivia Dondina
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
- Correspondence:
| |
Collapse
|