1
|
Lin MC, Liu CC, Liao CS, Ro JH. Neuroprotective Effect of Quercetin during Cerebral Ischemic Injury Involves Regulation of Essential Elements, Transition Metals, Cu/Zn Ratio, and Antioxidant Activity. Molecules 2021; 26:molecules26206128. [PMID: 34684707 PMCID: PMC8538157 DOI: 10.3390/molecules26206128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/22/2022] Open
Abstract
Cerebral ischemia results in increased oxidative stress in the affected brain. Accumulating evidence suggests that quercetin possesses anti-oxidant and anti-inflammatory properties. The essential elements magnesium (Mg), zinc (Zn), selenium (Se), and transition metal iron (Fe), copper (Cu), and antioxidants superoxide dismutase (SOD) and catalase (CAT) are required for brain functions. This study investigates whether the neuroprotective effects of quercetin on the ipsilateral brain cortex involve altered levels of essential trace metals, the Cu/Zn ratio, and antioxidant activity. Rats were intraperitoneally administered quercetin (20 mg/kg) once daily for 10 days before ischemic surgery. Cerebral ischemia was induced by ligation of the right middle cerebral artery and the right common carotid artery for 1 h. The ipsilateral brain cortex was homogenized and the supernatant was collected for biochemical analysis. Results show that rats pretreated with quercetin before ischemia significantly increased Mg, Zn, Se, SOD, and CAT levels, while the malondialdehyde, Fe, Cu, and the Cu/Zn ratio clearly decreased as compared to the untreated ligation subject. Taken together, our findings suggest that the mechanisms underlying the neuroprotective effects of quercetin during cerebral ischemic injury involve the modulation of essential elements, transition metals, Cu/Zn ratio, and antioxidant activity.
Collapse
Affiliation(s)
- Ming-Cheng Lin
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung 406053, Taiwan
- Correspondence: (M.-C.L.); (J.-H.R.); Tel.: +886-4-2239-1647 (M.-C.L.); +886-4-2463-2000 (J.-H.R.)
| | - Chien-Chi Liu
- Department of Nursing, National Taichung University of Science and Technology, Taichung 404336, Taiwan;
| | - Chin-Sheng Liao
- Laboratory Department, Chung-Kang Branch, Cheng-Ching General Hospital, Taichung 407211, Taiwan;
| | - Ju-Hai Ro
- Department of Pharmacy, Chung-Kang Branch, Cheng-Ching Hospital, Taichung 407211, Taiwan
- Correspondence: (M.-C.L.); (J.-H.R.); Tel.: +886-4-2239-1647 (M.-C.L.); +886-4-2463-2000 (J.-H.R.)
| |
Collapse
|
2
|
Zinc in the Brain: Friend or Foe? Int J Mol Sci 2020; 21:ijms21238941. [PMID: 33255662 PMCID: PMC7728061 DOI: 10.3390/ijms21238941] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
Zinc is a trace metal ion in the central nervous system that plays important biological roles, such as in catalysis, structure, and regulation. It contributes to antioxidant function and the proper functioning of the immune system. In view of these characteristics of zinc, it plays an important role in neurophysiology, which leads to cell growth and cell proliferation. However, after brain disease, excessively released and accumulated zinc ions cause neurotoxic damage to postsynaptic neurons. On the other hand, zinc deficiency induces degeneration and cognitive decline disorders, such as increased neuronal death and decreased learning and memory. Given the importance of balance in this context, zinc is a biological component that plays an important physiological role in the central nervous system, but a pathophysiological role in major neurological disorders. In this review, we focus on the multiple roles of zinc in the brain.
Collapse
|
3
|
Tuning stable and unstable aggregates of gallic acid capped gold nanoparticles using Mg2+ as coordinating agent. J Colloid Interface Sci 2017; 494:1-7. [DOI: 10.1016/j.jcis.2017.01.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/12/2017] [Accepted: 01/16/2017] [Indexed: 11/17/2022]
|
4
|
Jiang Q, Guo Z, Zhao Y, Wang F, Mao L. In vivo fluorescence sensing of the salicylate-induced change of zinc ion concentration in the auditory cortex of rat brain. Analyst 2015; 140:197-203. [PMID: 25298977 DOI: 10.1039/c4an01443j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This study demonstrates a fluorescence method for in vivo sensing of the dynamic change of Zn(2+) concentration in auditory cortex microdialysates induced by salicylate with N'-(7-nitro-2,1,3-benzoxadiazole-4-yl)-N,N,N'-tris(pyridine-2-ylmethyl) ethane-1,2-diamine (NBD-TPEA) as a probe. The excellent properties of the NBD-TPEA probe make it possible to achieve a high selectivity for Zn(2+) sensing with the co-existence of amino acids and other metal ions as well as the species commonly existing in the cerebral system. To validate the method for in vivo fluorescence sensing of Zn(2+) in the rat brain, we pre-mix the microdialysates in vivo sampled from the auditory cortex with the NBD-TPEA probe and then perfuse the mixtures into a fluorescent cuvette for continuous-flow fluorescence detection. The method demonstrated here shows a linear relationship between the signal output and Zn(2+) concentration within the concentration range from 0.5 μM to 4 μM, with a detection limit of 156 nM (S/N = 3). The basal level of extracellular Zn(2+) in auditory cortex microdialysates is determined to be 0.52 ± 0.082 μM (n = 4). This value is increased by the injection of 100 mg mL(-1) of salicylate (1 μL min(-1), 5 min, i.p.), reaches a peak at the time point of 90 min, and levels off with time. Such an increase is attenuated by the injection of MK-801, a potent and specific NMDA receptor antagonist, after the pre-injection of 100 mg mL(-1) salicylate for 5 min. This study offers a fluorescence method for in vivo sensing of Zn(2+) in the rat brain that could be useful for the investigations of chemical processes involved in brain functions.
Collapse
Affiliation(s)
- Qin Jiang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | | | | | | | | |
Collapse
|
5
|
Gao X, Yu P, Wang Y, Ohsaka T, Ye J, Mao L. Microfluidic Chip-Based Online Electrochemical Detecting System for Continuous and Simultaneous Monitoring of Ascorbate and Mg2+ in Rat Brain. Anal Chem 2013; 85:7599-605. [DOI: 10.1021/ac401727d] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xia Gao
- College of Chemistry and Chemical
Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory
of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), Beijing 100190,
China
| | - Yuexiang Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory
of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), Beijing 100190,
China
| | - Takeo Ohsaka
- Department of Electronic Chemistry, Interdisciplinary
Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259, Nagatsuta, Midori-ku, Yokohama
226-8502, Japan
| | - Jianshan Ye
- College of Chemistry and Chemical
Engineering, South China University of Technology, Guangzhou 510640, China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory
of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), Beijing 100190,
China
| |
Collapse
|
6
|
Zhuang X, Wang D, Yang L, Yu P, Jiang W, Mao L. Cysteine-modulated colorimetric sensing of extracellular Mg2+ in rat brain based on the strong chelation interaction between dithiothreitol and Mg2+. Analyst 2013; 138:3046-52. [DOI: 10.1039/c3an00235g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Xiong W, Liu T, Wang Y, Chen X, Sun L, Guo N, Zheng H, Zheng L, Ruat M, Han W, Zhang CX, Zhou Z. An inhibitory effect of extracellular Ca2+ on Ca2+-dependent exocytosis. PLoS One 2011; 6:e24573. [PMID: 22028769 PMCID: PMC3196490 DOI: 10.1371/journal.pone.0024573] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Accepted: 08/14/2011] [Indexed: 11/21/2022] Open
Abstract
Aim Neurotransmitter release is elicited by an elevation of intracellular Ca2+ concentration ([Ca2+]i). The action potential triggers Ca2+ influx through Ca2+ channels which causes local changes of [Ca2+]i for vesicle release. However, any direct role of extracellular Ca2+ (besides Ca2+ influx) on Ca2+-dependent exocytosis remains elusive. Here we set out to investigate this possibility on rat dorsal root ganglion (DRG) neurons and chromaffin cells, widely used models for studying vesicle exocytosis. Results Using photolysis of caged Ca2+ and caffeine-induced release of stored Ca2+, we found that extracellular Ca2+ inhibited exocytosis following moderate [Ca2+]i rises (2–3 µM). The IC50 for extracellular Ca2+ inhibition of exocytosis (ECIE) was 1.38 mM and a physiological reduction (∼30%) of extracellular Ca2+ concentration ([Ca2+]o) significantly increased the evoked exocytosis. At the single vesicle level, quantal size and release frequency were also altered by physiological [Ca2+]o. The calcimimetics Mg2+, Cd2+, G418, and neomycin all inhibited exocytosis. The extracellular Ca2+-sensing receptor (CaSR) was not involved because specific drugs and knockdown of CaSR in DRG neurons did not affect ECIE. Conclusion/Significance As an extension of the classic Ca2+ hypothesis of synaptic release, physiological levels of extracellular Ca2+ play dual roles in evoked exocytosis by providing a source of Ca2+ influx, and by directly regulating quantal size and release probability in neuronal cells.
Collapse
Affiliation(s)
- Wei Xiong
- State Key Laboratory of Biomembrane Engineering and Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Tao Liu
- State Key Laboratory of Biomembrane Engineering and Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Yeshi Wang
- State Key Laboratory of Biomembrane Engineering and Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Xiaowei Chen
- State Key Laboratory of Biomembrane Engineering and Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Lei Sun
- State Key Laboratory of Biomembrane Engineering and Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Ning Guo
- State Key Laboratory of Biomembrane Engineering and Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Hui Zheng
- State Key Laboratory of Biomembrane Engineering and Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Lianghong Zheng
- State Key Laboratory of Biomembrane Engineering and Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Martial Ruat
- CNRS, UPR9040, Institut de Neurobiologie Alfred Fessard-IFR 2118, Gif sur Yvette, France
| | - Weiping Han
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, Agency for Science, Technology, and Research, Singapore, Singapore
| | - Claire Xi Zhang
- State Key Laboratory of Biomembrane Engineering and Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China
- * E-mail: (ZZ); (CXZ)
| | - Zhuan Zhou
- State Key Laboratory of Biomembrane Engineering and Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China
- * E-mail: (ZZ); (CXZ)
| |
Collapse
|
8
|
Zhang Z, Zhao L, Lin Y, Yu P, Mao L. Online electrochemical measurements of Ca2+ and Mg2+ in rat brain based on divalent cation enhancement toward electrocatalytic NADH oxidation. Anal Chem 2010; 82:9885-91. [PMID: 21058688 DOI: 10.1021/ac102605n] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This study describes a novel electrochemical approach to effective online monitoring of electroinactive Ca(2+) and Mg(2+) in the rat brain based on the current enhancement of divalent cations toward electrocatalytic oxidation of NADH. Cyclic voltammetry for NADH oxidation at the electrodes modified with the polymerized film of toluidine blue O (TBO) reveals that the current of such an electrocatalytic oxidation process is remarkably enhanced by divalent cations such as Ca(2+) and Mg(2+). The current enhancement is thus used to constitute an electrochemical method for the measurements of Ca(2+) and Mg(2+) in a continuous-flow system with the polyTBO-modified electrode as the detector. Upon being integrated with in vivo microdialysis, the electrochemical method is successfully applied in investigating on cerebral Ca(2+) and Mg(2+) of living animals in two aspects: (1) online simultaneous measurements of the basal levels of Ca(2+) and Mg(2+) in the brain of the freely moving rats by using ethyleneglcol-bis(2-aminoethylether) tetraacetic acid (EGTA) as the selective masking agent for Ca(2+) to differentiate the net current responses selectively for Ca(2+) and Mg(2+); and (2) online continuous monitoring of the cerebral Mg(2+) following the global ischemia by using Ca(2+)-masking agent (i.e., EGTA) to completely eliminate the interference from Ca(2+). Compared with the existing methods for the measurements of cerebral Ca(2+) and Mg(2+), the method demonstrated here is advantageous in terms of its simplicity both in instrumentation and in the experimental procedures and near real-time nature, and is thus highly anticipated to find wide applications in understanding of chemical events involved in some physiological and pathological processes.
Collapse
Affiliation(s)
- Zipin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), Beijing 100190, China
| | | | | | | | | |
Collapse
|
9
|
Su CK, Sun YC, Tzeng SF, Yang CS, Wang CY, Yang MH. In vivo monitoring of the transfer kinetics of trace elements in animal brains with hyphenated inductively coupled plasma mass spectrometry techniques. MASS SPECTROMETRY REVIEWS 2010; 29:392-424. [PMID: 19437493 DOI: 10.1002/mas.20240] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The roles of metal ions to sustain normal function and to cause dysfunction of neurological systems have been confirmed by various studies. However, because of the lack of adequate analytical method to monitor the transfer kinetics of metal ions in the brain of a living animal, research on the physiopathological roles of metal ions in the CNS remains in its early stages and more analytical efforts are still needed. To explicitly model the possible links between metal ions and physiopathological alterations, it is essential to develop in vivo monitoring techniques that can bridge the gap between metalloneurochemistry and neurophysiopathology. Although inductively coupled plasma mass spectrometry (ICP-MS) is a very powerful technique for multiple trace element analyses, when dealing with chemically complex microdialysis samples, the detection capability is largely limited by instrumental sensitivity, selectivity, and contamination that arise from the experimental procedure. As a result, in recent years several high efficient and clean on-line sample pretreatment systems have been developed and combined with microdialysis and ICP-MS for the continuous and in vivo determination of the concentration-time profiles of metal ions in the extracellular space of rat brain. This article reviews the research relevant to the development of analytical techniques for the in vivo determination of dynamic variation in the concentration levels of metal ions in a living animal.
Collapse
Affiliation(s)
- Cheng-Kuan Su
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | | | | | | | | | | |
Collapse
|
10
|
Chung SY, Cheng FC, Lee MS, Lin JY, Lin MC, Wang MF. Ginkgo biloba leaf extract (EGb761) combined with neuroprotective agents reduces the infarct volumes of gerbil ischemic brain. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2010; 34:803-17. [PMID: 17080546 DOI: 10.1142/s0192415x06004302] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Ginkgo biloba exerts many pharmacological actions. It possesses antioxidant properties, the ability of neurotransmitter/receptor modulation and antiplatelet activation factor. This research is designed to investigate the neuroprotective effects of long-term treatment with EGb761 (a standard form of the extract of Ginkgo biloba leaf) in combination with MgSO(4), FK506, or MK-801 on the infarct volume of male gerbils' brain induced by unilateral middle cerebral artery occlusion (MCAO). Thirty-five gerbils fed a standard diet were intragastrically given water or EGb761 (100 mg/kg/day) for one week. Five randomized groups were established: control (n = 7), EGb761 (n = 8), EGb761 + MgSO(4) (n = 7), EGb761 + FK506 (n = 7), and EGb761 + MK-801 (n = 6). The three drug-combination groups were injected with MgSO(4) (90 mg/kg), FK506 (0.5 mg/kg), or MK-801 (1 mg/kg), respectively 30 min before MCAO. Gerbils were anesthetized and craniectomized to expose the right middle cerebral artery (MCA). The right MCA was constricted with an 8-0 suture to produce a permanent ligation for 24 hours. Postmortem infarct volumes were determined by quantitative image analysis of 2,3,5-triphenyltetrazolium chloride (TTC)-stained brain sections. Results showed that the total infarct volumes of the four treated groups either EGb761 alone or in combination with drugs were lower than the control group by 36.1% (EGb761 alone), 40.3% (EGb761 + MgSO(4)), 35.3% (EGb761 + FK506), and 56.4% (EGb761 + MK-801), respectively (p < 0.01). The main affected areas of the brain in the four treated groups were significantly focused between 4 and 6 mm from the frontal pole, when compared to the control group (p < 0.01). All animals in the five groups had infarctions in both cortex and subcortex. These results indicate that long-term pre-treatment of EGb761 administered either alone or in combination with drugs significantly effective neuroprotection on infarct volume in gerbil ischemic brains.
Collapse
Affiliation(s)
- Shu-Ying Chung
- Department of Food and Nutrition, Providence University, 433 Taichung, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
11
|
Parlayan S, Başoğlu A, Ocak M, Alp H, Kantekin H, Ocak Ü. Complexation of metal ions with the novel diazadithia crown ether carrying two anthryl pendants in acetonitrile–tetrahydrofuran. J INCL PHENOM MACRO 2009. [DOI: 10.1007/s10847-009-9688-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Galasso SL, Dyck RH. The role of zinc in cerebral ischemia. MOLECULAR MEDICINE (CAMBRIDGE, MASS.) 2007; 13:380-7. [PMID: 17622314 PMCID: PMC1952671 DOI: 10.2119/2007–00044.galasso] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 04/25/2007] [Indexed: 11/06/2022]
Abstract
Ischemic stroke is one of the most pervasive life-threatening neurological conditions for which there currently exists limited therapeutic intervention beyond prevention. As calcium-focused neuroprotective strategies have met with limited clinical success, it is imperative that alternative therapeutic targets be considered in the attempt to antagonize ischemic-mediated injury. As such, zinc, which is able to function both as a signaling mediator and neurotoxin, has been implicated in cerebral ischemia. While zinc was first purported to have a role in cerebral ischemia nearly twenty years ago, our understanding of how zinc mediates ischemic injury is still in its relative infancy. Within this review, we examine some of the studies by which zinc has exerted either neuroprotective or neurotoxic effects during global and focal cerebral ischemia.
Collapse
Affiliation(s)
- Sherri L Galasso
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Richard H Dyck
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Address correspondence and reprint requests to Richard H Dyck, Department of Psychology, University of Calgary, 2500 University Drive N.W. Calgary, Alberta T2N 1N4. Phone: 403-220-4206; Fax: 403-282-8249;
| |
Collapse
|
13
|
Abstract
Ischemic stroke is one of the most pervasive life-threatening neurological conditions for which there currently exists limited therapeutic intervention beyond prevention. As calcium-focused neuroprotective strategies have met with limited clinical success, it is imperative that alternative therapeutic targets be considered in the attempt to antagonize ischemic-mediated injury. As such, zinc, which is able to function both as a signaling mediator and neurotoxin, has been implicated in cerebral ischemia. While zinc was first purported to have a role in cerebral ischemia nearly twenty years ago, our understanding of how zinc mediates ischemic injury is still in its relative infancy. Within this review, we examine some of the studies by which zinc has exerted either neuroprotective or neurotoxic effects during global and focal cerebral ischemia.
Collapse
Affiliation(s)
- Sherri L Galasso
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
14
|
Tseng WC, Chen PH, Tsay TS, Chen BH, Huang YL. Continuous multi-element (Cu, Mn, Ni, Se) monitoring in saline and cell suspension using on-line microdialysis coupled with simultaneous electrothermal atomic absorption spectrometry. Anal Chim Acta 2006; 576:2-8. [PMID: 17723606 DOI: 10.1016/j.aca.2006.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2005] [Revised: 02/17/2006] [Accepted: 03/01/2006] [Indexed: 02/05/2023]
Abstract
We have developed a microdialysis sampling technique coupled on-line with simultaneous electrothermal atomic absorption spectrometry (SIMAAS) for the continuous monitoring of copper (Cu), manganese (Mn), nickel (Ni), and selenium (Se) in saline solutions and in cell suspensions. These trace elements are considered to be those associated most significantly with oxidative stress in biological systems. We employed ultrapure saline (0.9% NaCl) as the perfusate and, thus, the dialysate samples contained a high concentration of salt in the matrix. The use of modifiers [Pd coupled with Mg(NO3)2] prevented the target elements from undergoing evaporation at a pyrolysis temperature of 1200 degrees C, a process that effectively eliminated interference from NaCl. The excellent linearity, detection limits, and precision of the SIMAAS technique allowed the Cu, Mn, Ni, and Se concentrations to be determined in saline. For the on-line microdialysis-SIMAAS system, the ultrapure saline was perfused at a flow rate of 1 microL/min. The probe recoveries of Cu, Mn, Ni, and Se in saline were 57.9, 65.0, 65.5, and 67.9%, respectively. A standard saline solution was measured continuously by the on-line system to ensure long-term stability; each measurement fell within a range of two standard deviations. We determined the on-line spiked recoveries of Cu, Mn, Ni, and Se (101.3, 88.8, 91.3, and 98.5%, respectively) by adding a spiking standard into the stirred saline. The spiked recoveries (Cu, 37.5%; Mn, 3.8%; Ni, 71.1%; Se, 33.8%) were also determined through on-line spiking of a standard into the stirred cell suspension; these values demonstrate that Cu, Mn, and Se were depleted in the cell suspension, but Ni was not. The use of this on-line microdialysis-SIMAAS system permitted the in situ, dynamic, and continuous monitoring of Cu, Mn, Ni, and Se in cell suspensions at a temporal resolution of 20 min.
Collapse
Affiliation(s)
- Wei-Chang Tseng
- Department of Medical Technology, Fooyin University, Kaohsiung, Taiwan
| | | | | | | | | |
Collapse
|
15
|
Kitamura Y, Iida Y, Abe J, Mifune M, Kasuya F, Ohta M, Igarashi K, Saito Y, Saji H. Release of vesicular Zn2+ in a rat transient middle cerebral artery occlusion model. Brain Res Bull 2006; 69:622-5. [PMID: 16716828 DOI: 10.1016/j.brainresbull.2006.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Accepted: 03/07/2006] [Indexed: 11/24/2022]
Abstract
In the brain, Zn(2+) is stored in synaptic vesicles of a subgroup of glutamatergic nerve terminals. Although it has been reported that this Zn(2+) is released upon the excitation of nerves in vitro, there has been little study of the release of Zn(2+) during ischemia in vivo. Here, using brain microdialysis, the release of vesicular Zn(2+) was investigated in vivo. When the vesicular Zn(2+) was released into the synaptic cleft by a depolarizing stimulation achieved by perfusion with Ringer's solution containing high K(+) (100mM KCl), a significant increase in the extracellular concentration of Zn(2+) could be detected by microdialysis. Then, we investigated the release of vesicular Zn(2+) in a rat transient middle cerebral artery occlusion model using microdialysis. Consequently, the extracellular Zn(2+) level in the cortex increased within 15 min of the start of occlusion and reached a peak at 30 min, which was about twice the basal level. After 30 min, it declined with time returning to the basal level 15 min after reperfusion, which was performed after 60 min of occlusion. The results suggest that vesicular Zn(2+) would be released into the synaptic cleft during brain ischemia in vivo.
Collapse
Affiliation(s)
- Youji Kitamura
- Graduate School of Medicine and Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kitamura Y, Iida Y, Abe J, Mifune M, Kasuya F, Ohta M, Igarashi K, Saito Y, Saji H. In Vivo Measurement of Presynaptic Zn2+ Release during Forebrain Ischemia in Rats. Biol Pharm Bull 2006; 29:821-3. [PMID: 16595927 DOI: 10.1248/bpb.29.821] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies have suggested that during forebrain ischemia, considerable Zn2+ is released from synaptic vesicles of gultamatergic neuronal terminals and accumulates in hippocampal CA1 pyramidal neurons, leading to delayed neuronal death. However, since a time lag exists between the accumulation of Zn2+ and the occurrence of ischemia and there are conflicting reports about the amount of Zn2+ released, the level of released Zn2+ during ischemia in vivo is still unclear. In this study, we investigated the temporal change of extracellular Zn2+ in the hippocampal CA1 area using microdialysis and the accumulation of Zn2+ in hippocampal CA1 neurons with TSQ staining in rats with a transient forebrain ischemia. The level of extracellular Zn2+ in the CA1 area increased transiently reaching a peak 15 min after occlusion, then decreased with time, returning to the basal level 15 min after reperfusion. In addition, at this peak, the level of extracellular Zn2+ was about twice the basal level. Assessment of the intracellular Zn2+ in hippocampal neurons with TSQ revealed that Zn2+ accumulate at 24 h, but not 0 and 6 h after ischemia. These results suggest that, although the synaptic vesicular Zn2+ is released into the synaptic cleft during ischemia in vivo, the amount of released Zn2+ might not be so excessive, and it does not accumulate in hippocampal CA1 pyramidal neurons immediately after ischemia.
Collapse
Affiliation(s)
- Youji Kitamura
- Graduate School of Medicine and Dentistry and Pharmaceutical Sciences, Okayama University, Tsushimanaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|