1
|
Hrelia S, Di Renzo L, Bavaresco L, Bernardi E, Malaguti M, Giacosa A. Moderate Wine Consumption and Health: A Narrative Review. Nutrients 2022; 15:175. [PMID: 36615832 PMCID: PMC9824172 DOI: 10.3390/nu15010175] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Although it is clearly established that the abuse of alcohol is seriously harmful to health, much epidemiological and clinical evidence seem to underline the protective role of moderate quantities of alcohol and in particular of wine on health. This narrative review aims to re-evaluate the relationship between the type and dose of alcoholic drink and reduced or increased risk of various diseases, in the light of the most current scientific evidence. In particular, in vitro studies on the modulation of biochemical pathways and gene expression of wine bioactive components were evaluated. Twenty-four studies were selected after PubMed, Scopus and Google Scholar searches for the evaluation of moderate alcohol/wine consumption and health effects: eight studies concerned cardiovascular diseases, three concerned type 2 diabetes, four concerned neurodegenerative diseases, five concerned cancer and four were related to longevity. A brief discussion on viticultural and enological practices potentially affecting the content of bioactive components in wine is included. The analysis clearly indicates that wine differs from other alcoholic beverages and its moderate consumption not only does not increase the risk of chronic degenerative diseases but is also associated with health benefits particularly when included in a Mediterranean diet model. Obviously, every effort must be made to promote behavioral education to prevent abuse, especially among young people.
Collapse
Affiliation(s)
- Silvana Hrelia
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy
| | - Laura Di Renzo
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Tor Vergata, 00133 Rome, Italy
| | - Luigi Bavaresco
- Department of Sustainable Crop Production—Viticulture and Pomology Section, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Elisabetta Bernardi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Marco Malaguti
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy
| | - Attilio Giacosa
- Department of Gastroenterology and Clinical Nutrition, Policlinico di Monza, 20900 Monza, Italy
| |
Collapse
|
2
|
Agri-Food Waste from Apple, Pear, and Sugar Beet as a Source of Protective Bioactive Molecules for Endothelial Dysfunction and Its Major Complications. Antioxidants (Basel) 2022; 11:antiox11091786. [PMID: 36139860 PMCID: PMC9495678 DOI: 10.3390/antiox11091786] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Endothelial damage is recognized as the initial step that precedes several cardiovascular diseases (CVD), such as atherosclerosis, hypertension, and coronary artery disease. It has been demonstrated that the best treatment for CVD is prevention, and, in the frame of a healthy lifestyle, the consumption of vegetables, rich in bioactive molecules, appears effective at reducing the risk of CVD. In this context, the large amount of agri-food industry waste, considered a global problem due to its environmental and economic impact, represents an unexplored source of bioactive compounds. This review provides a summary regarding the possible exploitation of waste or by-products derived by the processing of three traditional Italian crops-apple, pear, and sugar beet-as a source of bioactive molecules to protect endothelial function. Particular attention has been given to the bioactive chemical profile of these pomaces and their efficacy in various pathological conditions related to endothelial dysfunction. The waste matrices of apple, pear, and sugar beet crops can represent promising starting material for producing "upcycled" products with functional applications, such as the prevention of endothelial dysfunction linked to cardiovascular diseases.
Collapse
|
3
|
Fernández-Rojas M, Rodríguez L, Trostchansky A, Fuentes E. Regulation of platelet function by natural bioactive compounds. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Fermentation of Vaccinium floribundum Berries with Lactiplantibacillus plantarum Reduces Oxidative Stress in Endothelial Cells and Modulates Macrophages Function. Nutrients 2022; 14:nu14081560. [PMID: 35458122 PMCID: PMC9027973 DOI: 10.3390/nu14081560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 12/15/2022] Open
Abstract
Accumulating evidence suggests that high consumption of natural antioxidants promotes health by reducing oxidative stress and, thus, the risk of developing cardiovascular diseases. Similarly, fermentation of natural compounds with lactic acid bacteria (LAB), such as Lactiplantibacillus plantarum, enhances their beneficial properties as regulators of the immune, digestive, and cardiovascular system. We investigated the effects of fermentation with Lactiplantibacillus plantarum on the antioxidant and immunomodulatory effects of Pushgay berries (Vaccinium floribundum, Ericaceae family) in human umbilical vein endothelial cells (HUVECs) and macrophage cell line RAW264.7. Polyphenol content was assayed by Folin–Ciocalteu and HPLC-MS/MS analysis. The effects of berries solutions on cell viability or proliferation were assessed by WST8 (2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt and Lactate dehydrogenase (LDH) release, Trypan blue exclusion test, and Alamar blue assay. Antioxidant activity was evaluated by a cell-based chemiluminescent probe for the detection of intracellular H2O2 production in HUVECs. Heme oxygenase-1 (HO-1) expression levels were investigated by RT-qPCR. Glutathione reductase (GR), glutathione peroxidase (Gpx), superoxide dismutase (SOD), and catalase (CAT) activities, as markers of intracellular antioxidant defense, were evaluated by spectrophotometric analysis. The immunomodulatory activity was examined in RAW 264.7 by quantification of inducible nitric oxide synthase (iNOS) and Tumor Necrosis Factor—alpha (TNFα) by RT-qPCR. Data showed that fermentation of Pushgay berries (i) enhances the content of quercetin aglycone, and (ii) increases their intracellular antioxidant activity, as indicated by the reduction in H2O2-induced cell death and the decrease in H2O2-induced HO-1 gene expression in HUVECs treated for 24 h with fermented berries solution (10 µg/mL). Moreover, treatment with Pushgay berries for 72 h (10 µg/mL) promotes cells growth in RAW 264.7, and only fermented Pushgay berries increase the expression of iNOS in the same cell line. Taken together, our results show that LAB fermentation of Pushgay berries enhances their antioxidant and immunomodulatory properties.
Collapse
|
5
|
Zeka K, Marrazzo P, Micucci M, Ruparelia KC, Arroo RRJ, Macchiarelli G, Annarita Nottola S, Continenza MA, Chiarini A, Angeloni C, Hrelia S, Budriesi R. Activity of Antioxidants from Crocus sativus L. Petals: Potential Preventive Effects towards Cardiovascular System. Antioxidants (Basel) 2020; 9:antiox9111102. [PMID: 33182461 PMCID: PMC7697793 DOI: 10.3390/antiox9111102] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/22/2020] [Accepted: 11/06/2020] [Indexed: 12/17/2022] Open
Abstract
The petals of the saffron crocus (Crocus sativus L.) are considered a waste material in saffron production, but may be a sustainable source of natural biologically active substances of nutraceutical interest. The aim of this work was to study the cardiovascular effects of kaempferol and crocin extracted from saffron petals. The antiarrhythmic, inotropic, and chronotropic effects of saffron petal extract (SPE), kaempferol, and crocin were evaluated through in vitro biological assays. The antioxidant activity of kaempferol and crocin was investigated through the 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) assay using rat cardiomyoblast cell line H9c2. The MTT assay was applied to assess the effects of kaempferol and crocin on cell viability. SPE showed weak negative inotropic and chronotropic intrinsic activities but a significant intrinsic activity on smooth muscle with a potency on the ileum greater than on the aorta: EC50 = 0.66 mg/mL versus EC50 = 1.45 mg/mL. Kaempferol and crocin showed a selective negative inotropic activity. In addition, kaempferol decreased the contraction induced by KCl (80 mM) in guinea pig aortic and ileal strips, while crocin had no effect. Furthermore, following oxidative stress, both crocin and kaempferol decreased intracellular ROS formation and increased cell viability in a concentration-dependent manner. The results indicate that SPE, a by-product of saffron cultivation, may represent a good source of phytochemicals with a potential application in the prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Keti Zeka
- Department of Haematology, Cambridge Biomedical Campus, University of Cambridge, Long Road, Cambridge CB2 0PT, UK;
| | - Pasquale Marrazzo
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy; (P.M.); (S.H.)
| | - Matteo Micucci
- Nutraceutical Lab, Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (A.C.); (R.B.)
- Correspondence:
| | - Ketan C. Ruparelia
- Leicester School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (K.C.R.); (R.R.J.A.)
| | - Randolph R. J. Arroo
- Leicester School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (K.C.R.); (R.R.J.A.)
| | - Guido Macchiarelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Vetoio, Coppito 2, 67100 L’Aquila, Italy; (G.M.); (M.A.C.)
| | - Stefania Annarita Nottola
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, La Sapienza University of Rome, 00161 Rome, Italy;
| | - Maria Adelaide Continenza
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Vetoio, Coppito 2, 67100 L’Aquila, Italy; (G.M.); (M.A.C.)
| | - Alberto Chiarini
- Nutraceutical Lab, Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (A.C.); (R.B.)
| | - Cristina Angeloni
- School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino (MC), Italy;
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy; (P.M.); (S.H.)
| | - Roberta Budriesi
- Nutraceutical Lab, Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (A.C.); (R.B.)
| |
Collapse
|
6
|
Aussem A, Ludwig K. The Potential for Reducing Lynch Syndrome Cancer Risk with Nutritional Nrf2 Activators. Nutr Cancer 2020; 73:404-419. [PMID: 32281399 DOI: 10.1080/01635581.2020.1751215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lynch syndrome (LS), is an autosomal dominant disorder predisposing patients to multiple cancers, predominantly colorectal (CRC) and endometrial, and is implicated in 2-4% of all CRC cases. LS is characterized by mutations of four mismatch repair (MMR) genes which code for proteins responsible for recognizing and repairing DNA lesions occurring through multiple mechanisms including oxidative stress (OS). Increased OS can cause DNA mutations and is considered carcinogenic. Due to reduced MMR activity, LS patients have an increased risk of cancer as a result of a decreased ability to recognize and repair DNA lesions caused by OS. Due to its carcinogenic properties, reducing the level of OS may reduce the risk of cancer. Nutritional Nrf2 activators have been shown to reduce the risk of carcinogenesis in the general population through activation of the endogenous antioxidant system. Common nutritional Nrf2 activators include sulforaphane, curcumin, DATS, quercetin, resveratrol, and EGCG. Since LS patients are more susceptible to carcinogenesis caused by OS, it is hypothesized that nutritional Nrf2 activators may have the potential to reduce the risk of cancer in those with LS by modulating OS and inflammation. The purpose of this paper is to review the available evidence in support of this statement.
Collapse
Affiliation(s)
- Andrew Aussem
- Hawthorn University, Whitethorn, California, USA.,McMaster University, Hamilton, Canada
| | - Kirsten Ludwig
- Hawthorn University, Whitethorn, California, USA.,Semel Institute for Neuroscience and Behaviour, University of California, Los Angeles, California, USA
| |
Collapse
|
7
|
Lenzi M, Cocchi V, Novaković A, Karaman M, Sakač M, Mandić A, Pojić M, Barbalace MC, Angeloni C, Hrelia P, Malaguti M, Hrelia S. Meripilus giganteus ethanolic extract exhibits pro-apoptotic and anti-proliferative effects in leukemic cell lines. Altern Ther Health Med 2018; 18:300. [PMID: 30419892 PMCID: PMC6233556 DOI: 10.1186/s12906-018-2366-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/30/2018] [Indexed: 01/19/2023]
Abstract
Background The interest towards botanicals and plant extracts has strongly risen due to their numerous biological effects and ability to counteract chronic diseases development. Among these effects, chemoprevention which represents the possibility to counteract the cancerogenetic process is one of the most studied. The extracts of mushroom Meripilus giganteus (MG) (Phylum of Basidiomycota) showed to exert antimicrobic, antioxidant and antiproliferative effects. Therefore, since its effect in leukemic cell lines has not been previously evaluated, we studied its potential chemopreventive effect in Jurkat and HL-60 cell lines. Methods MG ethanolic extract was characterized for its antioxidant activity and scavenging effect against different radical species. Moreover, its phenolic profile was evaluated by HPLC-MS-MS analyses. Flow cytometry (FCM) analyses of Jurkat and HL-60 cells treated with MG extract (0–750 μg/mL) for 24–72 h- allowed to evaluate its cytotoxicity, pro-apoptotic and anti-proliferative effect. To better characterize MG pro-apoptotic mechanism ROS intracellular level and the gene expression level of FAS, BAX and BCL2 were also evaluated. Moreover, to assess MG extract selectivity towards cancer cells, its cytotoxicity was also evaluated in human peripheral blood lymphocytes (PBL). Results MG extract induced apoptosis in Jurkat and HL-60 cells in a dose- and time- dependent manner by increasing BAX/BCL2 ratio, reducing ROS intracellular level and inducing FAS gene expression level. In fact, reduced ROS level is known to be related to the activation of apoptosis in leukemic cells by the involvement of death receptors. MG extract also induced cell-cycle arrest in HL-60 cells. Moreover, IC50 at 24 h treatment resulted 2 times higher in PBL than in leukemic cell lines. Conclusions Our data suggest that MG extract might be considered a promising and partially selective chemopreventive agent since it is able to modulate different mechanisms in transformed cells at concentrations lower than in non-transformed ones.
Collapse
|
8
|
Davinelli S, Corbi G, Righetti S, Sears B, Olarte HH, Grassi D, Scapagnini G. Cardioprotection by Cocoa Polyphenols and ω-3 Fatty Acids: A Disease-Prevention Perspective on Aging-Associated Cardiovascular Risk. J Med Food 2018; 21:1060-1069. [PMID: 29723102 PMCID: PMC6206547 DOI: 10.1089/jmf.2018.0002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of death today. Many of the biochemical alterations associated with the pathophysiology of CVD can be modified by adequate intakes of bioactive nutrients through a correct diet or supplementation. Recently, there has been growing public and clinical interest in cocoa polyphenols (CPs) and omega-3 (ω-3) fatty acids. A plethora of nutritional intervention trials and experimental studies demonstrates that consumption of these bioactive food compounds is beneficial to promote cardiovascular health. The purpose of this review is to summarize the major cardioprotective effects of CPs and ω-3 fatty acids, providing a scientific rationale for incorporating the combination of these molecules as a nutritional intervention in the prevention of CVD. Although several studies have shown the individual cardioprotective nature of these compounds, a combination treatment with CPs and ω-3 fatty acids may be a promising approach to enhance the preventive value of these molecules and reduce cardiovascular risk factors associated with aging. Therefore, this article also reviews some of the key studies on the interaction between CPs and the metabolism of ω-3 fatty acids.
Collapse
Affiliation(s)
- Sergio Davinelli
- 1 Department of Medicine and Health Sciences " V. Tiberio", University of Molise , Campobasso, Italy
| | - Graziamaria Corbi
- 1 Department of Medicine and Health Sciences " V. Tiberio", University of Molise , Campobasso, Italy
| | | | - Barry Sears
- 3 Inflammation Research Foundation , Peabody, Massachusetts, USA
| | | | - Davide Grassi
- 5 Department of Life, Health and Environmental Sciences, University of L'Aquila , L'Aquila, Italy
| | - Giovanni Scapagnini
- 1 Department of Medicine and Health Sciences " V. Tiberio", University of Molise , Campobasso, Italy
| |
Collapse
|
9
|
Ganesan P, Ramalingam P, Karthivashan G, Ko YT, Choi DK. Recent developments in solid lipid nanoparticle and surface-modified solid lipid nanoparticle delivery systems for oral delivery of phyto-bioactive compounds in various chronic diseases. Int J Nanomedicine 2018; 13:1569-1583. [PMID: 29588585 PMCID: PMC5858819 DOI: 10.2147/ijn.s155593] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Solid lipid nanoparticle (SLN) delivery systems have a wide applicability in the delivery of phyto-bioactive compounds to treat various chronic diseases, including diabetes, cancer, obesity and neurodegenerative diseases. The multiple benefits of SLN delivery include improved stability, smaller particle size, leaching prevention and enhanced lymphatic uptake of the bioactive compounds through oral delivery. However, the burst release makes the SLN delivery systems inadequate for the oral delivery of various phyto-bioactive compounds that can treat such chronic diseases. Recently, the surface-modified SLN (SMSLN) was observed to overcome this limitation for oral delivery of phyto-bioactive compounds, and there is growing evidence of an enhanced uptake of curcumin delivered orally via SMSLNs in the brain. This review focuses on different SLN and SMSLN systems that are useful for oral delivery of phyto-bioactive compounds to treat various chronic diseases.
Collapse
Affiliation(s)
- Palanivel Ganesan
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
- Nanotechnology Research Center and Department of Applied Life Science, Konkuk University, Chungju, Republic of Korea
| | - Prakash Ramalingam
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Govindarajan Karthivashan
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
| | - Young Tag Ko
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Dong-Kug Choi
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
- Nanotechnology Research Center and Department of Applied Life Science, Konkuk University, Chungju, Republic of Korea
| |
Collapse
|
10
|
Cardiopreventive effect of ethanolic extract of Date Palm Pollen against isoproterenol induced myocardial infarction in rats through the inhibition of the angiotensin-converting enzyme. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.etp.2017.06.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
11
|
17β-Estradiol enhances sulforaphane cardioprotection against oxidative stress. J Nutr Biochem 2017; 42:26-36. [DOI: 10.1016/j.jnutbio.2016.12.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 12/06/2016] [Accepted: 12/28/2016] [Indexed: 11/19/2022]
|