1
|
Ren Y, Zhang T, Liu J, Ma F, Chen J, Li P, Xiao G, Sun C, Zhang Y. MONet: cancer driver gene identification algorithm based on integrated analysis of multi-omics data and network models. Exp Biol Med (Maywood) 2025; 250:10399. [PMID: 39968416 PMCID: PMC11834253 DOI: 10.3389/ebm.2025.10399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/22/2025] [Indexed: 02/20/2025] Open
Abstract
Cancer progression is orchestrated by the accrual of mutations in driver genes, which endow malignant cells with a selective proliferative advantage. Identifying cancer driver genes is crucial for elucidating the molecular mechanisms of cancer, advancing targeted therapies, and uncovering novel biomarkers. Based on integrated analysis of Multi-Omics data and Network models, we present MONet, a novel cancer driver gene identification algorithm. Our method utilizes two graph neural network algorithms on protein-protein interaction (PPI) networks to extract feature vector representations for each gene. These feature vectors are subsequently concatenated and fed into a multi-layer perceptron model (MLP) to perform semi-supervised identification of cancer driver genes. For each mutated gene, MONet assigns the probability of being potential driver, with genes identified in at least two PPI networks selected as candidate driver genes. When applied to pan-cancer datasets, MONet demonstrated robustness across various PPI networks, outperforming baseline models in terms of both the area under the receiver operating characteristic curve and the area under the precision-recall curve. Notably, MONet identified 37 novel driver genes that were missed by other methods, including 29 genes such as APOBEC2, GDNF, and PRELP, which are corroborated by existing literature, underscoring their critical roles in cancer development and progression. Through the MONet framework, we successfully identified known and novel candidate cancer driver genes, providing biologically meaningful insights into cancer mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yusen Zhang
- School of Mathematics and Statistics, Shandong University, Weihai, Shandong, China
| |
Collapse
|
2
|
Stepanenko AA, Sosnovtseva AO, Valikhov MP, Chernysheva AA, Abramova OV, Naumenko VA, Chekhonin VP. The need for paradigm shift: prognostic significance and implications of standard therapy-related systemic immunosuppression in glioblastoma for immunotherapy and oncolytic virotherapy. Front Immunol 2024; 15:1326757. [PMID: 38390330 PMCID: PMC10881776 DOI: 10.3389/fimmu.2024.1326757] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Despite significant advances in our knowledge regarding the genetics and molecular biology of gliomas over the past two decades and hundreds of clinical trials, no effective therapeutic approach has been identified for adult patients with newly diagnosed glioblastoma, and overall survival remains dismal. Great hopes are now placed on combination immunotherapy. In clinical trials, immunotherapeutics are generally tested after standard therapy (radiation, temozolomide, and steroid dexamethasone) or concurrently with temozolomide and/or steroids. Only a minor subset of patients with progressive/recurrent glioblastoma have benefited from immunotherapies. In this review, we comprehensively discuss standard therapy-related systemic immunosuppression and lymphopenia, their prognostic significance, and the implications for immunotherapy/oncolytic virotherapy. The effectiveness of immunotherapy and oncolytic virotherapy (viro-immunotherapy) critically depends on the activity of the host immune cells. The absolute counts, ratios, and functional states of different circulating and tumor-infiltrating immune cell subsets determine the net immune fitness of patients with cancer and may have various effects on tumor progression, therapeutic response, and survival outcomes. Although different immunosuppressive mechanisms operate in patients with glioblastoma/gliomas at presentation, the immunological competence of patients may be significantly compromised by standard therapy, exacerbating tumor-related systemic immunosuppression. Standard therapy affects diverse immune cell subsets, including dendritic, CD4+, CD8+, natural killer (NK), NKT, macrophage, neutrophil, and myeloid-derived suppressor cell (MDSC). Systemic immunosuppression and lymphopenia limit the immune system's ability to target glioblastoma. Changes in the standard therapy are required to increase the success of immunotherapies. Steroid use, high neutrophil-to-lymphocyte ratio (NLR), and low post-treatment total lymphocyte count (TLC) are significant prognostic factors for shorter survival in patients with glioblastoma in retrospective studies; however, these clinically relevant variables are rarely reported and correlated with response and survival in immunotherapy studies (e.g., immune checkpoint inhibitors, vaccines, and oncolytic viruses). Our analysis should help in the development of a more rational clinical trial design and decision-making regarding the treatment to potentially improve the efficacy of immunotherapy or oncolytic virotherapy.
Collapse
Affiliation(s)
- Aleksei A. Stepanenko
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N.I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anastasiia O. Sosnovtseva
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Marat P. Valikhov
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N.I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anastasia A. Chernysheva
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Olga V. Abramova
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Victor A. Naumenko
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vladimir P. Chekhonin
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N.I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
3
|
Chen E, Ling AL, Reardon DA, Chiocca EA. Lessons learned from phase 3 trials of immunotherapy for glioblastoma: Time for longitudinal sampling? Neuro Oncol 2024; 26:211-225. [PMID: 37995317 PMCID: PMC10836778 DOI: 10.1093/neuonc/noad211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023] Open
Abstract
Glioblastoma (GBM)'s median overall survival is almost 21 months. Six phase 3 immunotherapy clinical trials have recently been published, yet 5/6 did not meet approval by regulatory bodies. For the sixth, approval is uncertain. Trial failures result from multiple factors, ranging from intrinsic tumor biology to clinical trial design. Understanding the clinical and basic science of these 6 trials is compelled by other immunotherapies reaching the point of advanced phase 3 clinical trial testing. We need to understand more of the science in human GBMs in early trials: the "window of opportunity" design may not be best to understand complex changes brought about by immunotherapeutic perturbations of the GBM microenvironment. The convergence of increased safety of image-guided biopsies with "multi-omics" of small cell numbers now permits longitudinal sampling of tumor and biofluids to dissect the complex temporal changes in the GBM microenvironment as a function of the immunotherapy.
Collapse
Affiliation(s)
- Ethan Chen
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Alexander L Ling
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Falter J, Lohmeier A, Eberl P, Stoerr EM, Koskimäki J, Falter L, Rossmann J, Mederer T, Schmidt NO, Proescholdt M. CXCR2-Blocking Has Context-Sensitive Effects on Rat Glioblastoma Cell Line Outgrowth (S635) in an Organotypic Rat Brain Slice Culture Depending on Microglia-Depletion (PLX5622) and Dexamethasone Treatment. Int J Mol Sci 2023; 24:16803. [PMID: 38069130 PMCID: PMC10706712 DOI: 10.3390/ijms242316803] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
In glioblastoma (GBM), the interplay of different immune cell subtypes, cytokines, and/or drugs shows high context-dependencies. Interrelations between the routinely applied dexamethasone (Dex) and microglia remain elusive. Here, we exploited rat organotypic brain slice co-cultures (OBSC) to examine the effects on a rat GBM cell line (S635) outgrowth resulting from the presence of Dex and pretreatment with the colony-stimulating factor receptor 1 (CSF1-R) inhibitor PLX5622: in native OBSC (without PLX5622-pretreatment), a diminished S635 spheroid outgrowth was observable, whereas Dex-treatment enhanced outgrowth in this condition compared to PLX5622-pretreated OBSC. Screening the supernatants of our model with a proteome profiler, we found that CXCL2 was differentially secreted in a Dex- and PLX5622-dependent fashion. To analyze causal interrelations, we interrupted the CXCL2/CXCR2-axis: in the native OBSC condition, CXCR2-blocking resulted in increased outgrowth, in combination with Dex, we found potentiated outgrowth. No effect was found in the PLX5622-pretreated. Our method allowed us to study the influence of three different factors-dexamethasone, PLX5622, and CXCL2-in a well-controlled, simplified, and straight-forward mechanistic manner, and at the same time in a more realistic ex vivo scenario compared to in vitro studies. In our model, we showed a GBM outgrowth enhancing synergism between CXCR2-blocking and Dex-treatment in the native condition, which was levelled by PLX5622-pretreatment.
Collapse
Affiliation(s)
- Johannes Falter
- Department of Neurosurgery, University Hospital Regensburg, 93042 Regensburg, Germany
| | - Annette Lohmeier
- Department of Neurosurgery, University Hospital Regensburg, 93042 Regensburg, Germany
| | - Petra Eberl
- Department of Neurosurgery, University Hospital Regensburg, 93042 Regensburg, Germany
| | - Eva-Maria Stoerr
- Department of Neurosurgery, University Hospital Regensburg, 93042 Regensburg, Germany
| | - Janne Koskimäki
- Department of Neurosurgery, Oulu University Hospital, P.O. Box 25, 90029 Oulu, Finland
| | - Lena Falter
- Department of Anesthesiology, Caritas Hospital St. Josef Regensburg, 93053 Regensburg, Germany
| | - Jakob Rossmann
- Department of Neurosurgery, University Hospital Regensburg, 93042 Regensburg, Germany
| | - Tobias Mederer
- Department of Neurosurgery, University Hospital Regensburg, 93042 Regensburg, Germany
| | - Nils Ole Schmidt
- Department of Neurosurgery, University Hospital Regensburg, 93042 Regensburg, Germany
| | - Martin Proescholdt
- Department of Neurosurgery, University Hospital Regensburg, 93042 Regensburg, Germany
| |
Collapse
|
5
|
Agar MR, Nowak AK, Hovey EJ, Barnes EH, Simes J, Vardy JL, Wheeler HR, Kong BY, Leonard R, Hall M, Tim E, Spyridopoulos D, Sim HW, Lwin Z, Dowling A, Harrup R, Jennens R, Kichenadasse G, Dunlop T, Gzell C, Koh ES. Acetazolamide versus placebo for cerebral oedema requiring dexamethasone in recurrent and/or progressive high-grade glioma: phase II randomised placebo-controlled double-blind study. BMJ Support Palliat Care 2023; 13:354-362. [PMID: 36807048 DOI: 10.1136/spcare-2022-004119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/23/2023] [Indexed: 02/19/2023]
Abstract
OBJECTIVES Symptoms of raised intracranial pressure (ICP) in recurrent high-grade glioma (HGG) generally require corticosteroid treatment, often causing toxicity with variable effects on ICP symptoms. Acetazolamide reduces ICP when used in other clinical non-cancer settings. The aim of the study was to explore whether the addition of oral acetazolamide enables safe dexamethasone dose reduction in management of raised ICP in recurrent HGG. METHODS Participants had recurrent HGG with any of dexamethasone recommencement, dose increase or dependency; prior/current bevacizumab was an exclusion. Eligible participants were randomised 1:1 to acetazolamide or placebo for 8 weeks. Standardised protocols were used for dexamethasone dosing, with planned dose decrease from day 5 once ICP symptoms were stable. The primary endpoint was a composite of dexamethasone dose reduction and stable Karnofsky Performance Status Secondary endpoints included toxicity and feasibility. RESULTS Thirty participants (15 per group) were enrolled (mean age 58 years) from seven Australian sites. The mean baseline dexamethasone dose was 6.2 mg. Mean duration on study treatment was 38 days (placebo group) and 31 days (acetazolamide group) with nine participants (30%) completing all study treatments (six placebo, three acetazolamide). Study withdrawal was due to adverse events (n=6; one placebo, five acetazolamide) and disease progression (n=6 (three per arm)). Four participants (13%) (two per arm) were stable responders. Ten participants experienced a total of 13 serious adverse events (acetazolamide arm: five participants (33%), six events, two related). CONCLUSIONS The study closed early due to poor accrual and increasing availability of bevacizumab. The addition of acetazolamide did not facilitate dexamethasone reduction. TRIAL REGISTRATION NUMBER ACTRN12615001072505.
Collapse
Affiliation(s)
- Meera R Agar
- Palliative Care, Liverpool Hospital, Liverpool, New South Wales, Australia
- Health, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Anna K Nowak
- Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Medical School, The University of Western Australia, Crawley, Western Australia, Australia
| | - Elizabeth J Hovey
- Nelune Comprehensive Cancer Centre, Prince of Wales Hospital, Randwick, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | | | - John Simes
- NHMRC Clinical Trials Centre, Camperdown, New South Wales, Australia
- Medical Oncology, Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia
| | - Janette L Vardy
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Medical Oncology, Concord Repatriation General Hospital, Concord, New South Wales, Australia
| | - Helen R Wheeler
- Medical Oncology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Benjamin Y Kong
- NHMRC Clinical Trials Centre, Camperdown, New South Wales, Australia
- Medical Oncology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Robyn Leonard
- NHMRC Clinical Trials Centre, Camperdown, New South Wales, Australia
| | - Merryn Hall
- NHMRC Clinical Trials Centre, Camperdown, New South Wales, Australia
| | - Evonne Tim
- NHMRC Clinical Trials Centre, Camperdown, New South Wales, Australia
| | | | - Hao-Wen Sim
- NHMRC Clinical Trials Centre, Camperdown, New South Wales, Australia
- Medical Oncology, Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia
| | - Zarnie Lwin
- Medical Oncology, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Anthony Dowling
- Medical Oncology, St Vincent's Hospital Melbourne Pty Ltd, Fitzroy, Victoria, Australia
| | - Rosemary Harrup
- Medical Oncology, Royal Hobart Hospital, Hobart, Tasmania, Australia
| | - Ross Jennens
- Medical Oncology, Epworth HealthCare, Richmond, Victoria, Australia
| | - Ganessan Kichenadasse
- Flinders Centre for Innovation in Health Care, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Tracey Dunlop
- Medical Oncology, St George Hospital, Kogarah, New South Wales, Australia
| | - Cecelia Gzell
- Genesis Care Pty Ltd, Darlinghurst, New South Wales, Australia
| | - Eng-Siew Koh
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Radiation Oncology, Liverpool Hospital, Liverpool, New South Wales, Australia
| |
Collapse
|
6
|
Mbugua SN. Targeting Tumor Microenvironment by Metal Peroxide Nanoparticles in Cancer Therapy. Bioinorg Chem Appl 2022; 2022:5041399. [PMID: 36568636 PMCID: PMC9788889 DOI: 10.1155/2022/5041399] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Solid tumors have a unique tumor microenvironment (TME), which includes hypoxia, low acidity, and high hydrogen peroxide and glutathione (GSH) levels, among others. These unique factors, which offer favourable microenvironments and nourishment for tumor development and spread, also serve as a gateway for specific and successful cancer therapies. A good example is metal peroxide structures which have been synthesized and utilized to enhance oxygen supply and they have shown great promise in the alleviation of hypoxia. In a hypoxic environment, certain oxygen-dependent treatments such as photodynamic therapy and radiotherapy fail to respond and therefore modulating the hypoxic tumor microenvironment has been found to enhance the antitumor impact of certain drugs. Under acidic environments, the hydrogen peroxide produced by the reaction of metal peroxides with water not only induces oxidative stress but also produces additional oxygen. This is achieved since hydrogen peroxide acts as a reactive substrate for molecules such as catalyse enzymes, alleviating tumor hypoxia observed in the tumor microenvironment. Metal ions released in the process can also offer distinct bioactivity in their own right. Metal peroxides used in anticancer therapy are a rapidly evolving field, and there is good evidence that they are a good option for regulating the tumor microenvironment in cancer therapy. In this regard, the synthesis and mechanisms behind the successful application of metal peroxides to specifically target the tumor microenvironment are highlighted in this review. Various characteristics of TME such as angiogenesis, inflammation, hypoxia, acidity levels, and metal ion homeostasis are addressed in this regard, together with certain forms of synergistic combination treatments.
Collapse
Affiliation(s)
- Simon Ngigi Mbugua
- Department of Chemistry, Kisii University, P.O. Box 408-40200, Kisii, Kenya
| |
Collapse
|
7
|
Challenges in glioblastoma immunotherapy: mechanisms of resistance and therapeutic approaches to overcome them. Br J Cancer 2022; 127:976-987. [DOI: 10.1038/s41416-022-01864-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/23/2022] [Accepted: 05/12/2022] [Indexed: 11/08/2022] Open
|