1
|
Myo Myo Tint K, Wei X, Wang P, Liu GL, Zhang M, Chi ZM, Chi Z. Biotechnological application of Aureobasidium spp. as a promising chassis for biosynthesis of ornithine-urea cycle-derived bioproducts. Crit Rev Biotechnol 2025; 45:591-605. [PMID: 39161061 DOI: 10.1080/07388551.2024.2382954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/12/2024] [Accepted: 07/03/2024] [Indexed: 08/21/2024]
Abstract
The ornithine-urea cycle (OUC) in fungal cells has biotechnological importance and many physiological functions and is closely related to the acetyl glutamate cycle (AGC). Fumarate can be released from argininosuccinate under the catalysis of argininosuccinate lyase in OUC which is regulated by the Ca2+ signaling pathway and over 93.9 ± 0.8 g/L fumarate can be yielded by the engineered strain of Aureobasidium pullulans var. aubasidani in the presence of CaCO3. Furthermore, 2.1 ± 0.02 mg of L-ornithine (L-Orn)/mg of the protein also can be synthesized via OUC by the engineered strains of Aureobasidum melanogenum. Fumarate can be transformed into many drugs and amino acids and L-Orn can be converted into siderophores (1.7 g/L), putrescine (33.4 g/L) and L-piperazic acid (L-Piz) (3.0 g/L), by different recombinant strains of A. melanogenum. All the fumarate, L-Orn, siderophore, putrescine and L-Piz have many applications. As the yeast-like fungi and the promising chassis, Aureobasidium spp, have many advantages over any other fungal strains. Further genetic manipulation and bioengineering will enhance the biosynthesis of fumarate and L-Orn and their derivates.
Collapse
Affiliation(s)
- Khin Myo Myo Tint
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xin Wei
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Peng Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Guang-Lei Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Mei Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhen-Ming Chi
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
| | - Zhe Chi
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
| |
Collapse
|
2
|
Wang T, Xue H, Liu H, Yuan H, Huang D, Jiang Y. Advancements in metabolic engineering: unlocking the potential of key organic acids for sustainable industrial applications. Front Bioeng Biotechnol 2025; 13:1556516. [PMID: 40134770 PMCID: PMC11933101 DOI: 10.3389/fbioe.2025.1556516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
This review explores the advancements, application potential, and challenges of microbial metabolic engineering strategies for sustainable organic acid production. By integrating gene editing, pathway reconstruction, and dynamic regulation, microbial platforms have achieved enhanced biosynthesis of key organic acids such as pyruvate, lactic acid, and succinic acid. Strategies including by-product pathway knockout, key enzyme overexpression, and improved CO2 fixation have contributed to higher production efficiency. Additionally, utilizing non-food biomass sources, such as lignocellulose, algal feedstocks, and industrial waste, has reduced reliance on conventional carbon sources, supporting sustainability goals. However, challenges remain in substrate inhibition, purification complexity, and metabolic flux imbalances. Addressing these requires omics-driven metabolic optimization, stress-resistant strain development, and biorefinery integration. Future research should focus on system-level design to enhance cost-effectiveness and sustainability, advancing industrial bio-manufacturing of organic acids.
Collapse
Affiliation(s)
- Tengfei Wang
- State Key Laboratory of Green Papermaking and Resource Recycling, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Han Xue
- State Key Laboratory of Green Papermaking and Resource Recycling, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Hongling Liu
- State Key Laboratory of Green Papermaking and Resource Recycling, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Haibo Yuan
- State Key Laboratory of Green Papermaking and Resource Recycling, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Di Huang
- State Key Laboratory of Green Papermaking and Resource Recycling, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Yi Jiang
- State Key Laboratory of Green Papermaking and Resource Recycling, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| |
Collapse
|
3
|
Wang P, Chen H, Wei X, Liu GL, Chi Z, Jiang B, Chi ZM. Efficient calcium fumarate overproduction from xylose and corncob-derived xylose by engineered strains of Aureobasidium pullulans var. Aubasidani DH177. Microb Cell Fact 2024; 23:327. [PMID: 39633333 PMCID: PMC11616135 DOI: 10.1186/s12934-024-02608-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Xylose from lignocellulose is one of the most abundant and important renewable and green raw materials. It is very important how to efficiently transform xylose into useful bioproducts such as fumaric acid and so on. RESULTS In this study, it was found that the GC1 strain (∆gox, in which the GOX gene encoding glucose oxidase which could transform glucose into gluconic acid was removed) of A. pullulans var. aubasidani DH177 had the high ability to utilize xylose and corncob-derived xylose with CO2 fixation derived from CaCO3 to produce calcium fumarate. Overexpression of the XI gene encoding xylose isomerase, the XK gene encoding xylose kinase and the TKL gene coding for transketolase made the strain TKL-4 produce 73.1 g/L of calcium fumarate from xylose. At the same time, the transcriptional levels of the key ASS gene coding for argininosuccinate synthase and the ASL gene coding for argininosuccinate lyase in the ornithine-urea cycle (OUC) were also obviously enhanced. The results also demonstrated that the TKL-4 strain could produce more calcium fumarate from xylose and corncob-derived xylose than from glucose. During 10-liter fermentation, the TKL-4 strain could produce 88.5 g/L of calcium fumarate from xylose, the productivity was 0.52 g/h/L. Meanwhile, it could yield 85.6 g/L of calcium fumarate from corncob-derived xylose and the productivity was 0.51 g/h/L. During the same fermentation, the TKL-4 strain could transform the mixture containing 75.0 g/L glucose and 45.0 g/L xylose to produce 78.7 ± 1.1 g/L calcium fumarate. CONCLUSIONS This indicated that the TKL-4 strain constructed in this study indeed could actively transform xylose and corncob-derived xylose into calcium fumarate through the green ways.
Collapse
Affiliation(s)
- Peng Wang
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China
| | - Hao Chen
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China
| | - Xin Wei
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China
| | - Guang-Lei Liu
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China
| | - Zhe Chi
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Bo Jiang
- Department of Urology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, Shandong, 266000, China.
| | - Zhen-Ming Chi
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
| |
Collapse
|
4
|
Sikandar A, Rao W, He H, Chen B, Xu X, Wu H. Metabolomics and histopathological analysis of two tomato cultivars after co-infection with soil-borne pathogens (Southern root-knot nematode and Fusarium wilt fungus). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108983. [PMID: 39094484 DOI: 10.1016/j.plaphy.2024.108983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/09/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Southern root-knot nematode (Meloidogyne incognita) and Fusarium wilt fungus (Fusarium oxysporum) are one of the most predominant pathogens responsible for substantial agricultural yield reduction of tomato. The current study planned to assess the effects of M. incognita (Mi) and F. oxysporum (Fo) and their co-infection on two tomato cultivars, Zhongza 09 (ZZ09) and Gailing Maofen 802 (GLM802). The present study examined the effects of co-infection on leaf morphology, chlorophyll content, leaf area, and histopathology. The present study used metabolomics to evaluate plant-pathogen interactions. The outcomes of the current study revealed that chlorophyll content and leaf area decreased more in GLM802 during co-infection. In co-infection (Fo + Mi), the chlorophyll content reduction in ZZ09 was 11%, while in GLM802 the reduction reached up to 31% as compared to control. Moreover, the reduction in leaf are in ZZ09 was 31%, however, in the GLM802 reduction was observed 54% as compared to control plants. Similarly, GLM802 stems exhibited larger brown patches on their vascular bundles than ZZ09 stems. The rate of browning of GLM802 stems was 247% more than ZZ09, during co-infection. Moreover, GLM802 roots exhibited a higher abundance of hyphae and larger galls than ZZ09 roots. In metabolic studies, glutathione, succinic acid, and 2-isopropylmalic acid decreased, whereas spermine and fumaric acid increased in GLM802 co-infected stems. It indicates that GLM802 is weakly resistant; therefore, F. oxysporum and other pathogens readily damage tissue. In the co-infected stem of ZZ09, L-asparagine and shikimic acid increased, but pipecolic acid, L-saccharine, and 2-isopropylmalic acid declined. L-asparagine was crucial in preserving the stability of nitrogen metabolism, chlorophyll synthesis, and leaf growth in ZZ09. Shikimic acid's substantial accumulation could explain the limited extent of browning observed in the vascular bundles of ZZ09. Thus, the present study provides insight into M. incognita and F. oxysporum co-infection in two tomato cultivars, which may aid breeding efforts to generate commercially viable resistant cultivars. However, further research on the relationship between M. incognita and F. oxysporum in different host plants is required in the future.
Collapse
Affiliation(s)
- Aatika Sikandar
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Wenkai Rao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Heliang He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Bochang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Xiongbiao Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Haiyan Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
5
|
Chauhan K, Rao A. Clean-label alternatives for food preservation: An emerging trend. Heliyon 2024; 10:e35815. [PMID: 39247286 PMCID: PMC11379619 DOI: 10.1016/j.heliyon.2024.e35815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 09/10/2024] Open
Abstract
Consumer demand for natural or 'clean-label' food ingredients has risen over the past 50 years and continues growing. Consumers have become more aware of their health and, therefore, insist on transparency in the list of ingredients. Preservatives are the most crucial food additives, ensuring food safety and security. Despite tremendous technological advancements, food preservation remains a significant challenge worldwide, primarily because most are synthetic and non-biodegradable. As a result, the food industry is placing more value on microbiota and other natural sources for bio-preservation, leading to the substitution of conventional processing and chemical preservatives with natural alternatives to ensure 'clean-label.' General Standard for Food Additives (GSFA) includes some of these 'clean-label' options in its list of additives. However, they are very rarely capable of replacing a synthetic preservative on a 'one-for-one' basis, putting pressure on researchers to decipher newer, cleaner, and more economical alternatives. Academic and scientific research has led to the discovery of several plant, animal, and microbial metabolites that may function as effective bio-preservatives. However, most have not yet been put in the market or are under trial. Hence, the present review aims to summarise such relevant and potential metabolites with bio-preservative properties comprehensively. This article will help readers comprehend recent innovations in the 'clean-label' era, provide informed choices to consumers, and improve the business of regulatory approvals.
Collapse
Affiliation(s)
- Kanika Chauhan
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Alka Rao
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
- Academy of Scientific and Innovation Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, India
- Food Safety and Standards Authority of India (FSSAI), New Delhi 110002, India
| |
Collapse
|
6
|
Sharma N, Koul M, Joshi NC, Dufossé L, Mishra A. Fungal-Bacterial Combinations in Plant Health under Stress: Physiological and Biochemical Characteristics of the Filamentous Fungus Serendipita indica and the Actinobacterium Zhihengliuella sp. ISTPL4 under In Vitro Arsenic Stress. Microorganisms 2024; 12:405. [PMID: 38399809 PMCID: PMC10892705 DOI: 10.3390/microorganisms12020405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Fungal-bacterial combinations have a significant role in increasing and improving plant health under various stress conditions. Metabolites secreted by fungi and bacteria play an important role in this process. Our study emphasizes the significance of secondary metabolites secreted by the fungus Serendipita indica alone and by an actinobacterium Zhihengliuella sp. ISTPL4 under normal growth conditions and arsenic (As) stress condition. Here, we evaluated the arsenic tolerance ability of S. indica alone and in combination with Z. sp. ISTPL4 under in vitro conditions. The growth of S. indica and Z. sp. ISTPL4 was measured in varying concentrations of arsenic and the effect of arsenic on spore size and morphology of S. indica was determined using confocal microscopy and scanning electron microscopy. The metabolomics study indicated that S. indica alone in normal growth conditions and under As stress released pentadecanoic acid, glycerol tricaprylate, L-proline and cyclo(L-prolyl-L-valine). Similarly, d-Ribose, 2-deoxy-bis(thioheptyl)-dithioacetal were secreted by a combination of S. indica and Z. sp. ISTPL4. Confocal studies revealed that spore size of S. indica decreased by 18% at 1.9 mM and by 15% when in combination with Z. sp. ISTPL4 at a 2.4 mM concentration of As. Arsenic above this concentration resulted in spore degeneration and hyphae fragmentation. Scanning electron microscopy (SEM) results indicated an increased spore size of S. indica in the presence of Z. sp. ISTPL4 (18 ± 0.75 µm) compared to S. indica alone (14 ± 0.24 µm) under normal growth conditions. Our study concluded that the suggested combination of microbial consortium can be used to increase sustainable agriculture by combating biotic as well as abiotic stress. This is because the metabolites released by the microbial combination display antifungal and antibacterial properties. The metabolites, besides evading stress, also confer other survival strategies. Therefore, the choice of consortia and combination partners is important and can help in developing strategies for coping with As stress.
Collapse
Affiliation(s)
- Neha Sharma
- Amity Institute of Microbial Technology, Amity University, Noida 201313, India; (N.S.); (N.C.J.)
| | - Monika Koul
- Department of Botany, Hansraj College, University of Delhi, Delhi 110007, India;
| | - Naveen Chandra Joshi
- Amity Institute of Microbial Technology, Amity University, Noida 201313, India; (N.S.); (N.C.J.)
| | - Laurent Dufossé
- Chemistry and Biotechnology of Natural Products, CHEMBIOPRO, Université de La Réunion, ESIROI Agroalimentaire, 15 Avenue René Cassin, CS 92003, CEDEX 9, F-97744 Saint-Denis, France
| | - Arti Mishra
- Department of Botany, Hansraj College, University of Delhi, Delhi 110007, India;
- Umeå Plant Science Center, Department of Plant Physiology, Umeå University, 90187 Umeå, Sweden
| |
Collapse
|
7
|
Zhou S, Ding N, Han R, Deng Y. Metabolic engineering and fermentation optimization strategies for producing organic acids of the tricarboxylic acid cycle by microbial cell factories. BIORESOURCE TECHNOLOGY 2023; 379:128986. [PMID: 37001700 DOI: 10.1016/j.biortech.2023.128986] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
The organic acids of the tricarboxylic acid (TCA) pathway are important platform compounds and are widely used in many areas. The high-productivity strains and high-efficient and low-cost fermentation are required to satisfy a huge market size. The high metabolic flux of the TCA pathway endows microorganisms potential to produce high titers of these organic acids. Coupled with metabolic engineering and fermentation optimization, the titer of the organic acids has been significantly improved in recent years. Herein, we discuss and compare the recent advances in synthetic pathway engineering, cofactor engineering, transporter engineering, and fermentation optimization strategies to maximize the biosynthesis of organic acids. Such engineering strategies were mainly based on the TCA pathway and glyoxylate pathway. Furthermore, organic-acid-secretion enhancement and renewable-substrate-based fermentation are often performed to assist the biosynthesis of organic acids. Further strategies are also discussed to construct high-productivity and acid-resistant strains for industrial large-scale production.
Collapse
Affiliation(s)
- Shenghu Zhou
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Nana Ding
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, China
| | - Runhua Han
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Yu Deng
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
8
|
Kloetzer L, Blaga AC, Caşcaval D, Galaction AI. Selective pertraction of dicarboxylic acids from simulated Rhizopus oryzae fermentation broths. Sci Rep 2023; 13:7170. [PMID: 37137961 PMCID: PMC10156872 DOI: 10.1038/s41598-023-34100-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 04/24/2023] [Indexed: 05/05/2023] Open
Abstract
Fumaric, malic and succinic acids have been selectively separated by facilitated pertraction with Amberlite LA-2, using n-heptane as liquid membrane. The feed phase consisted on viscous aqueous solution with similar mixture of carboxylic acids and viscosity as those of Rhizopus oryzae fermentation broth. Due to the differences between the acidities and molecule size of these acids, it is possible to selectively recover fumaric acid from the initial solution. The pH-gradient between the feed and stripping phases, as well as carrier concentration in the liquid membrane represent the main process parameters influencing the pertraction selectivity. Among them, Amberlite LA-2 concentration exhibits the most important control on the selectivity factor S, the maximum value of S being reached for carrier concentration of 30 g/l. The increase of feed phase viscosity amplified the magnitude of these influences on pertraction selectivity, due to the hindrance of acids diffusion towards the region where their reaction with Amberlite LA-2 occurs, effect more important for malic acid. Therefore, by modifying the viscosity from 1 to 24 cP, the maximum value of selectivity factor was increased from 12 to 18.8.
Collapse
Affiliation(s)
- Lenuta Kloetzer
- Department of Organic, Biochemical, and Food Engineering, "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iasi, Iasi, Romania
| | - Alexandra Cristina Blaga
- Department of Organic, Biochemical, and Food Engineering, "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iasi, Iasi, Romania
| | - Dan Caşcaval
- Department of Organic, Biochemical, and Food Engineering, "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iasi, Iasi, Romania.
| | - Anca Irina Galaction
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, "Grigore T. Popa" University of Medicine and Pharmacy of Iasi, Iasi, Romania
| |
Collapse
|
9
|
Hu S, Fei M, Fu B, Yu M, Yuan P, Tang B, Yang H, Sun D. Development of probiotic E. coli Nissle 1917 for β-alanine production by using protein and metabolic engineering. Appl Microbiol Biotechnol 2023; 107:2277-2288. [PMID: 36929190 DOI: 10.1007/s00253-023-12477-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/18/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023]
Abstract
β-alanine has been used in food and pharmaceutical industries. Although Escherichia coli Nissle 1917 (EcN) is generally considered safe and engineered as living therapeutics, engineering EcN for producing industrial metabolites has rarely been explored. Here, by protein and metabolic engineering, EcN was engineered for producing β-alanine from glucose. First, an aspartate-α-decarboxylase variant ADCK43Y with improved activity was identified and over-expressed in EcN, promoting the titer of β-alanine from an undetectable level to 0.46 g/L. Second, directing the metabolic flux towards L-aspartate increased the titer of β-alanine to 0.92 g/L. Third, the yield of β-alanine was elevated to 1.19 g/L by blocking conversion of phosphoenolpyruvate to pyruvate, and further increased to 2.14 g/L through optimizing culture medium. Finally, the engineered EcN produced 11.9 g/L β-alanine in fed-batch fermentation. Our work not only shows the potential of EcN as a valuable industrial platform, but also facilitates production of β-alanine via fermentation. KEY POINTS: • Escherichia coli Nissle 1917 (EcN) was engineered as a β-alanine producing cell factory • Identification of a decarboxylase variant ADCK43Y with improved activity • Directing the metabolic flux to L-ASP and expressing ADCK43Y elevated the titer of β-alanine to 11.9 g/L.
Collapse
Affiliation(s)
- Shilong Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Mingyue Fei
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Beibei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Mingjing Yu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Panhong Yuan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Biao Tang
- Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Hua Yang
- Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Dongchang Sun
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
10
|
Hou C, Tian L, Lian G, Fan LH, Li ZJ. Conversion of acetate and glyoxylate to fumarate by a cell-free synthetic enzymatic biosystem. Synth Syst Biotechnol 2023; 8:235-241. [PMID: 36970069 PMCID: PMC10033897 DOI: 10.1016/j.synbio.2023.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/04/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Fumarate is a value-added chemical that is widely used in food, medicine, material, and agriculture industries. With the rising attention to the demand for fumarate and sustainable development, many novel alternative ways that can replace the traditional petrochemical routes emerged. The in vitro cell-free multi-enzyme catalysis is an effective method to produce high value chemicals. In this study, a multi-enzyme catalytic pathway comprising three enzymes for fumarate production from low-cost substrates acetate and glyoxylate was designed. The acetyl-CoA synthase, malate synthase, and fumarase from Escherichia coli were selected and the coenzyme A achieved recyclable. The enzymatic properties and optimization of reaction system were investigated, reaching a fumarate yield of 0.34 mM with a conversion rate of 34% after 20 h of reaction. We proposed and realized the conversion of acetate and glyoxylate to fumarate in vitro using a cell-free multi-enzyme catalytic system, thus providing an alternative approach for the production of fumarate.
Collapse
|
11
|
Dissecting key residues of a C4-dicarboxylic acid transporter to accelerate malate export in Myceliophthora. Appl Microbiol Biotechnol 2023; 107:609-622. [PMID: 36542100 DOI: 10.1007/s00253-022-12336-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
Efficient transporters are necessary for high concentration and purity of desired products during industrial production. In this study, we explored the mechanism of substrate transport and preference of the C4-dicarboxylic acid transporter AoMAE in the fungus Myceliophthora thermophila, and investigated the roles of 18 critical amino acid residues within this process. Among them, the residue Arg78, forming a hydrogen bond network with Arg23, Phe25, Thr74, Leu81, His82, and Glu94 to stabilize the protein conformation, is irreplaceable for the export function of AoMAE. Furthermore, varying the residue at position 100 resulted in changes to the size and shape of the substrate binding pocket, leading to alterations in transport efficiencies of both malic acid and succinic acid. We found that the mutation T100S increased malate production by 68%. Using these insights, we successfully generated an AoMAE variant with mutation T100S and deubiquitination, exhibiting an 81% increase in the selective export activity of malic acid. Simply introducing this version of AoMAE into M. thermophila wild-type strain increased production of malic acid from 1.22 to 54.88 g/L. These findings increase our understanding of the structure-function relationships of organic acid transporters and may accelerate the process of engineering dicarboxylic acid transporters with high efficiency. KEY POINTS: • This is the first systematical analysis of key residues of a malate transporter in fungi. • Protein engineering of AoMAE led to 81% increase of malate export activity. • Arg78 was essential for the normal function of AoMAE in M. thermophila. • Substitution of Thr100 affected export efficiency and substrate selectivity of AoMAE.
Collapse
|
12
|
Wu N, Zhang J, Chen Y, Xu Q, Song P, Li Y, Li K, Liu H. Recent advances in microbial production of L-malic acid. Appl Microbiol Biotechnol 2022; 106:7973-7992. [PMID: 36370160 DOI: 10.1007/s00253-022-12260-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/14/2022]
Abstract
Over the last few decades, increasing concerns regarding fossil fuel depletion and excessive CO2 emissions have led to extensive fundamental studies and industrial trials regarding microbial chemical production. As an additive or precursor, L-malic acid has been shown to exhibit distinctive properties in the food, pharmaceutical, and daily chemical industries. L-malic acid is currently mainly fabricated through a fumarate hydratase-based biocatalytic conversion route, wherein petroleum-derived fumaric acid serves as a substrate. In this review, for the first time, we comprehensively describe the methods of malic acid strain transformation, raw material utilization, malic acid separation, etc., especially recent progress and remaining challenges for industrial applications. First, we summarize the various pathways involved in L-malic acid biosynthesis using different microorganisms. We also discuss several strain engineering strategies for improving the titer, yield, and productivity of L-malic acid. We illustrate the currently available alternatives for reducing production costs and the existing strategies for optimizing the fermentation process. Finally, we summarize the present challenges and future perspectives regarding the development of microbial L-malic acid production. KEY POINTS: • A range of wild-type, mutant, laboratory-evolved, and metabolically engineered strains which could produce L-malic acid were comprehensively described. • Alternative raw materials for reducing production costs and the existing strategies for optimizing the fermentation were sufficiently summarized. • The present challenges and future perspectives regarding the development of microbial L-malic acid production were elaboratively discussed.
Collapse
Affiliation(s)
- Na Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Jiahui Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Yaru Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Qing Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Ping Song
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Yingfeng Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Ke Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China.
| | - Hao Liu
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China.
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science & Technology, Tianjin, China.
| |
Collapse
|
13
|
The ornithine-urea cycle involves fumaric acid biosynthesis in Aureobasidium pullulans var. aubasidani, a green and eco-friendly process for fumaric acid production. Synth Syst Biotechnol 2022; 8:33-45. [DOI: 10.1016/j.synbio.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
|
14
|
Jia X, Jiang J, Liu L, Meng L, Chen L, Zhao J. Two Innovative Fumaric Acid Bridging Lanthanide-Encapsulated Hexameric Selenotungstates Containing Mixed Building Units and Electrochemical Performance for Detecting Mycotoxin. Inorg Chem 2022; 61:10965-10976. [PMID: 35793494 DOI: 10.1021/acs.inorgchem.2c01682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two particular fumaric acid bridging lanthanide-encapsulated selenotungstates [H2N(CH3)2]16Na8[Ln3(H2O)7]2 [W4O8(C4H2O4) (C4H3O4)]2[SeW6O25]2[B-α-SeW9O33]4·46H2O [Ln = Ce3+ (1), La3+ (2)] were acquired by the deliberately designed step-by-step synthetic strategy, which are composed of four trilacunary Keggin [B-α-SeW9O33]8- and two original [SeW6O25]10- building units together with one fumaric acid bridging heterometallic [Ln3(H2O)7]2[W4O8(C4H2O4) (C4H3O4)]228+ entity. Particularly, this heterometallic cluster contains four fumaric acid ligands, which play two different roles: one works as the pendant decorating the cluster and the other acts as the linker connecting the whole structure. In addition, the 1@DDA hybrid material was produced through the cation exchange of 1 and dimethyl distearylammonium chloride (DDA·Cl) and its beehive-shaped film of 1@DDA was prepared by the breath figure method, which can be further used to establish an electrochemical biosensor for detecting a kind of mycotoxin-ochratoxin A (OX-A). The 1@DDA beehive-shaped film-based electrochemical biosensor exhibits good reproducibility and specific sensing toward OX-A with a low detection limit of 29.26 pM. These results highlight the huge feasibility of long-chain flexible ligands in building lanthanide-encapsulated selenotungstates with structural complexity and further demonstrate great electrochemical application potentiality of polyoxometalate-involved materials in bioanalysis, tumor diagnosis, and iatrology.
Collapse
Affiliation(s)
- Xiaodan Jia
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Jun Jiang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Lulu Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Lina Meng
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
15
|
Rhizopus oryzae for Fumaric Acid Production: Optimising the Use of a Synthetic Lignocellulosic Hydrolysate. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8060278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The hydrolysis of lignocellulosic biomass opens an array of bioconversion possibilities for producing fuels and chemicals. Microbial fermentation is particularly suited to the conversion of sugar-rich hydrolysates into biochemicals. Rhizopus oryzae ATCC 20344 was employed to produce fumaric acid from glucose, xylose, and a synthetic lignocellulosic hydrolysate (glucose–xylose mixture) in batch and continuous fermentations. A novel immobilised biomass reactor was used to investigate the co-fermentation of xylose and glucose. Ideal medium conditions and a substrate feed strategy were then employed to optimise the production of fumaric acid. The batch fermentation of the synthetic hydrolysate at optimal conditions (urea feed rate 0.625mgL−1h−1 and pH 4) produced a fumaric acid yield of 0.439gg−1. A specific substrate feed rate (0.164gL−1h−1) that negated ethanol production and selected for fumaric acid was determined. Using this feed rate in a continuous fermentation, a fumaric acid yield of 0.735gg−1 was achieved; this was a 67.4% improvement. A metabolic analysis helped to determine a continuous synthetic lignocellulosic hydrolysate feed rate that selected for fumaric acid production while achieving the co-fermentation of glucose and xylose, thus avoiding the undesirable carbon catabolite repression. This work demonstrates the viability of fumaric acid production from lignocellulosic hydrolysate; the process developments discovered will pave the way for an industrially viable process.
Collapse
|
16
|
Zhang J, Wu N, Ou W, Li Y, Liang Y, Peng C, Li Y, Xu Q, Tong Y. Peptide supplementation relieves stress and enhances glycolytic flux in filamentous fungi during organic acid bioproduction. Biotechnol Bioeng 2022; 119:2471-2481. [PMID: 35665482 DOI: 10.1002/bit.28152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/09/2022] [Accepted: 05/24/2022] [Indexed: 11/07/2022]
Abstract
Filamentous fungi occupy a uniquely favorable position in the bioproduction of organic acids. Intracellular stress is the main stimulator in filamentous fungi to produce and accumulate organic acids with high flux. However, stress can affect the physiological activities of filamentous fungi, thereby deteriorating their fermentation performance. Herein, we report that peptide supplementation during Rhizopus oryzae fermentation significantly improved fumaric acid production. Specifically, fumaric acid productivity was elevated by approximately 100%, fermentation duration was shortened from 72 to 36 h, while maintaining the final titer. Furthermore, transcriptome profile analysis and biochemical assays indicated that the overall capabilities of the stress defense systems (enzymatic and nonenzymatic) were significantly improved in R. oryzae. Consequently, glycolytic metabolism was distinctly enhanced, which eventually resulted in improved fumaric acid production and reduced fermentation duration. We expect our findings and efforts to provide essential insights into the optimization of the fermentation performance of filamentous fungi in industrial biotechnology and fermentation engineering.
Collapse
Affiliation(s)
- Jiahui Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Na Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Wen Ou
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Yingfeng Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Yingchao Liang
- National Engineering Research Center of Corn Deep Processing, Jilin COFCO Biochemistry Co., Ltd., Changchun, China
| | - Chao Peng
- Nutrition & Health Research Institute, COFCO Corporation, Beijing, China
| | - Yi Li
- National Engineering Research Center of Corn Deep Processing, Jilin COFCO Biochemistry Co., Ltd., Changchun, China
| | - Qing Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Yi Tong
- National Engineering Research Center of Corn Deep Processing, Jilin COFCO Biochemistry Co., Ltd., Changchun, China.,Nutrition & Health Research Institute, COFCO Corporation, Beijing, China
| |
Collapse
|
17
|
Sebastian J, Osorio-Gonzalez C, Rouissi T, Hegde K, Brar SK. Bioderived fumaric acid for sustainable production of key active pharmaceutical ingredients: Dimethyl fumarate and Monomethyl fumarate. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Parsaei M, Akhbari K. MOF-801 as a Nanoporous Water-Based Carrier System for In Situ Encapsulation and Sustained Release of 5-FU for Effective Cancer Therapy. Inorg Chem 2022; 61:5912-5925. [PMID: 35377632 DOI: 10.1021/acs.inorgchem.2c00380] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nanoporous metal-organic frameworks (MOFs) have been gaining a reputation for their drug delivery applications. In the current work, MOF-801 was successfully prepared by a facile, cost-efficient, and environmentally friendly approach through the reaction of ZrCl4 and fumaric acid as organic linkers to deliver 5-fluorouracil (5-FU). The prepared nanostructure was fully characterized by a series of analytical techniques including Fourier transform infrared spectroscopy, powder X-ray diffraction, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, UV-vis spectroscopy, 1H NMR spectroscopy, thermogravimetric analysis, high-performance liquid chromatography, and Brunauer-Emmett-Teller analysis. MOF-801 could be used for the delivery of the anticancer drug 5-FU due to its high surface area, suitable pore size, and biocompatible ingredients. Based on in vitro loading and release studies, a high 5-FU loading capacity and pH-dependent drug release behavior were observed. Moreover, the interactions between the structure of MOFs and 5-FU were investigated through Monte Carlo simulation calculations. An in vitro cytotoxicity test was done, and the results indicated that 5-FU@MOF-801 was more potent than 5-FU on SW480 cancerous cells, indicating the highlighted role of this drug delivery system. Finally, the kinetics of drug release was investigated.
Collapse
Affiliation(s)
- Mozhgan Parsaei
- School of Chemistry, College of Science, University of Tehran, Tehran 14155-6455, Iran
| | - Kamran Akhbari
- School of Chemistry, College of Science, University of Tehran, Tehran 14155-6455, Iran
| |
Collapse
|
19
|
The Effect of pH, Metal Ions, and Insoluble Solids on the Production of Fumarate and Malate by Rhizopus delemar in the Presence of CaCO3. Catalysts 2022. [DOI: 10.3390/catal12030263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Calcium carbonate has been extensively used as a neutralising agent in acid-forming microbial processes. The effect of increasing calcium carbonate concentrations on Rhizopus delemar has not been previously investigated. In this study, an evaluation of fumaric acid (FA) and malic acid (MA) production was conducted at three CaCO3 concentrations in shake flask cultivations. Increased CaCO3 concentrations resulted in the co-production of FA and MA in the first 55 h of the fermentation (regime 1), and the subsequent depletion of FA thereafter (regime 2). Three factors were highlighted as likely causes of this response: insoluble solids, metal ion concentrations, and pH. Further shake flask cultivations as well as a continuous fermentation with immobilised R. delemar were used to explore the effect of the three factors on regime 1 and 2. Insoluble solids were found to have no effect on the response in either regime 1 or 2. Increasing the aqueous calcium ion concentrations to 10g/L resulted in a three-fold increase in MA titres (regime 1). Moreover, an increase in pH above 7 was associated with a drop in FA concentrations in regime 2. Further tests established that this was due to the hydration of FA to MA, influenced by high pH conditions ( 7 or higher), nitrogen starvation, and glucose depletion. Anaerobic conditions were also found to significantly improve the hydration process. This study presents the first investigation in which the production of FA followed by in situ hydration of FA to MA with R. delemar has been achieved.
Collapse
|
20
|
Abstract
The industrial relevance of organic acids is high; because of their chemical properties, they can be used as building blocks as well as single-molecule agents with a huge annual market. Organic acid chemical platforms can derive from fossil sources by petrochemical refining processes, but most of them also represent natural metabolites produced by many cells. They are the products, by-products or co-products of many primary metabolic processes of microbial cells. Thanks to the potential of microbial cell factories and to the development of industrial biotechnology, from the last decades of the previous century, the microbial-based production of these molecules has started to approach the market. This was possible because of a joint effort of microbial biotechnologists and biochemical and process engineers that boosted natural production up to the titer, yield and productivity needed to be industrially competitive. More recently, the possibility to utilize renewable residual biomasses as feedstock not only for biofuels, but also for organic acids production is further augmenting the sustainability of their production, in a logic of circular bioeconomy. In this review, we briefly present the latest updates regarding the production of some industrially relevant organic acids (citric fumaric, itaconic, lactic and succinic acid), discussing the challenges and possible future developments of successful production.
Collapse
|
21
|
Kloetzer L, Tucaliuc A, Galaction AI, Caşcaval D. Fractionation of dicarboxylic acids produced by Rhizopus oryzae using reactive extraction. Sci Rep 2022; 12:2020. [PMID: 35132158 PMCID: PMC8821547 DOI: 10.1038/s41598-022-06069-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/21/2022] [Indexed: 11/09/2022] Open
Abstract
Fumaric, malic, and succinic acids have been selectively separated from their mixture obtained by Rhizopus oryzae fermentation using reactive extraction with Amberlite LA-2 dissolved in three solvents with different dielectric constants (n-heptane, n-butyl acetate, and dichloromethane). This technique allows recovering preferentially fumaric acid from the mixture, the raffinate containing only malic and succinic acids. The extractant concentration and organic phase polarity control the efficiency and selectivity of acids extraction. The increase of aqueous phase viscosity reduces the extraction yield for all studied acids, but exhibits a positively effect on separation selectivity. By using Amberlite LA-2 concentration equal to that stoichiometrically required for interfacial reaction with fumaric acid and mixing intensity which does not allow higher diffusion rates for larger molecules (malic and succinic acids), the maximum value of fumaric acid extraction rate exceeds 90%, while the selectivity factor value becomes 20. Regardless of the extraction system, the complete separation of fumaric acid from their mixture is possible by multi-stage extraction process, adjusting the extractant concentration in each stage. At higher values of aqueous phase viscosity, more extraction stages are required, while the increase of solvent polarity reduce the required number of stages for total recovery of fumaric acid.
Collapse
Affiliation(s)
- Lenuta Kloetzer
- "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University, D. Mangeron 73, 700050, Iasi, Romania
| | - Alexandra Tucaliuc
- "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University, D. Mangeron 73, 700050, Iasi, Romania
| | - Anca-Irina Galaction
- Faculty of Medical Bioengineering, "Grigore T. Popa" University of Medicine and Pharmacy, M. Kogalniceanu 9-13, 700454, Iasi, Romania
| | - Dan Caşcaval
- "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University, D. Mangeron 73, 700050, Iasi, Romania.
| |
Collapse
|
22
|
Continuous Production of Fumaric Acid with Immobilised Rhizopus oryzae: The Role of pH and Urea Addition. Catalysts 2022. [DOI: 10.3390/catal12010082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Fumaric acid is widely used in the food and beverage, pharmaceutical and polyester resin industries. Rhizopus oryzae is the most successful microorganism at excreting fumaric acid compared to all known natural and genetically modified organisms. It has previously been discovered that careful control of the glucose feed rate can eliminate the by-product formation of ethanol. Two key parameters affecting fumaric acid excretion were identified, namely the medium pH and the urea feed rate. A continuous fermentation with immobilised R. oryzae was utilised to determine the effect of these parameters. It was found that the selectivity for fumaric acid production increased at high glucose consumption rates for a pH of 4, different from the trend for pH 5 and 6, achieving a yield of 0.93 gg−1. This yield is higher than previously reported in the literature. Varying the urea feed rate to 0.255 mgL−1h−1 improved the yield of fumaric acid but experienced a lower glucose uptake rate compared to higher urea feed rates. An optimum region has been found for fumaric acid production at pH 4, a urea feed rate of 0.625 mgL−1h−1 and a glucose feed rate of 0.329 gL−1h−1.
Collapse
|
23
|
Takeuchi M, Amao Y. Biocatalytic fumarate synthesis from pyruvate and CO 2 as a feedstock. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00039c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The biocatalytic synthesis of fumarate from CO2 and pyruvate vial-malate as an intermediate in an aqueous medium using a biocatalytic system consisting of malate dehydrogenase and fumarase in the presence of NADH is developed.
Collapse
Affiliation(s)
- Mika Takeuchi
- Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Yutaka Amao
- Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
- Research Centre of Artificial Photosynthesis (ReCAP), Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
24
|
Zhang G, Ren X, Liang X, Wang Y, Feng D, Zhang Y, Xian M, Zou H. Improving the Microbial Production of Amino Acids: From Conventional Approaches to Recent Trends. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0390-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
25
|
Cascaval D, Galaction AI, Tucaliuc A, Kloetzer L. Direct Extraction of Fumaric Acid from Rhizopus oryzae Suspensions-Interfacial Mass Transfer. Biomolecules 2021; 11:1563. [PMID: 34827561 PMCID: PMC8615409 DOI: 10.3390/biom11111563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022] Open
Abstract
Experimental studies on the reactive extraction of fumaric acid with Amberlite LA-2 from Rhizopus oryzae suspensions using three solvents with different dielectric constants varying from 9.08 to 1.90 (dichloromethane, n-butyl acetate, and n-heptane, respectively) underlined the particular behavior of the extraction system in the presence of fungal biomass. The interfacial mass flow of the reaction product was found to be significantly affected by the biomass, due mainly to its adsorption onto the phase separation interface, this leading to the appearance of a physical barrier against the solute's transfer. However, the magnitude of the adsorption phenomenon was found to depend on Rhizopus oryzae's affinity for the solvent phase, which increased significantly from dichloromethane to n-heptane. The negative influence of the biomass on the interfacial mass transfer can be partially counteracted by adding 1-octanol into the organic phase, improving the solvent's ability to solve the fumaric acid-Amberlite LA-2 complex and simplifying the reactive extraction mechanism, effects that were found to be more important for low-polar solvents. Consequently, for the same mixing intensity, the maximum amplification factor was reached for n-heptane, its value being almost 5-6 times higher than that obtained for dichloromethane and over 2 times higher than that obtained with n-butyl acetate.
Collapse
Affiliation(s)
- Dan Cascaval
- Cristofor Simionescu Faculty of Chemical Engineering and Environmental Protection, Gheorghe Asachi Technical University, D. Mangeron 73, 700050 Iasi, Romania; (D.C.); (A.T.)
| | - Anca-Irina Galaction
- Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy, M. Kogalniceanu 9-13, 700454 Iasi, Romania;
| | - Alexandra Tucaliuc
- Cristofor Simionescu Faculty of Chemical Engineering and Environmental Protection, Gheorghe Asachi Technical University, D. Mangeron 73, 700050 Iasi, Romania; (D.C.); (A.T.)
| | - Lenuta Kloetzer
- Cristofor Simionescu Faculty of Chemical Engineering and Environmental Protection, Gheorghe Asachi Technical University, D. Mangeron 73, 700050 Iasi, Romania; (D.C.); (A.T.)
| |
Collapse
|
26
|
Sebastian J, Dominguez KV, Brar SK, Rouissi T. Fumaric acid production using alternate fermentation mode by immobilized Rhizopus oryzae-a greener production strategy. CHEMOSPHERE 2021; 281:130858. [PMID: 34020187 DOI: 10.1016/j.chemosphere.2021.130858] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 05/03/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
The current work investigates the impact of using immobilized Rhizopus oryzae NRRL 1526 for bioproduction of fumaric acid using agro-industrial residues as feedstock. This use of agro-industrial residues, a renewable feedstock, for the production of bio-based platform chemical makes the process cost-competitive as well as greener by preventing the release of assimilable organic carbon to the environment, thereby reducing the generation of greenhouse gases. Immobilization of R. oryzae has been proposed previously to alleviate operational difficulties confronted during free mycelial fungal fermentation. To this effect, three synthetic refuse materials namely polystyrene foam, polyester sponge and polyurethane foam were investigated for their suitability towards fumaric acid bioproduction. Polystyrene foam was identified as the most suitable support material for immobilization as well as fumaric acid production. In addition to the considerable reduction in the lag-phase (from 48 to 24 h) the reduction in the size of the support material from cubes of 1 cm to beads of 0.1-0.3 cm led to a 42% improvement in fumaric acid production (27 g/L against 19 g/L). Growing the polystyrene foam bead immobilized R. oryzae on apple pomace ultrafiltration sludge as sole feedstock yielded a final fumaric acid titer of 7.9 g/L whereas free mycelial fermentation yielded 6.3 g/L. Moreover, upon operating the fermentation with intermittent feeding, a three-fold increase (1.7 g/L to 5.1 g/L) in fumaric acid production was obtained upon supplementation of the apple pomace sludge media with molasses, an agro-industrial residue, as feed.
Collapse
Affiliation(s)
- Joseph Sebastian
- INRS-ETE, Université Du Québec, 490, Rue de La Couronne, Québec, G1K 9A9, Canada
| | | | - Satinder Kaur Brar
- INRS-ETE, Université Du Québec, 490, Rue de La Couronne, Québec, G1K 9A9, Canada; Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, ON, M3J 1P3, Canada.
| | - Tarek Rouissi
- INRS-ETE, Université Du Québec, 490, Rue de La Couronne, Québec, G1K 9A9, Canada
| |
Collapse
|
27
|
Gueche YA, Sanchez-Ballester NM, Bataille B, Aubert A, Rossi JC, Soulairol I. Investigating the Potential Plasticizing Effect of Di-Carboxylic Acids for the Manufacturing of Solid Oral Forms with Copovidone and Ibuprofen by Selective Laser Sintering. Polymers (Basel) 2021; 13:polym13193282. [PMID: 34641098 PMCID: PMC8513101 DOI: 10.3390/polym13193282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 12/11/2022] Open
Abstract
In selective laser sintering (SLS), the heating temperature is a critical parameter for printability but can also be deleterious for the stability of active ingredients. This work aims to explore the plasticizing effect of di-carboxylic acids on reducing the optimal heating temperature (OHT) of polymer powder during SLS. First, mixtures of copovidone and di-carboxylic acids (succinic, fumaric, maleic, malic and tartaric acids) as well as formulations with two forms of ibuprofen (acid and sodium salt) were prepared to sinter solid oral forms (SOFs), and their respective OHT was determined. Plasticization was further studied by differential scanning calorimetry (DSC) and Fourier-transform infrared spectroscopy (FTIR). Following this, the printed SOFs were characterized (solid state, weight, hardness, disintegration time, drug content and release). It was found that all acids (except tartaric acid) reduced the OHT, with succinic acid being the most efficient. In the case of ibuprofen, only the acid form demonstrated a plasticizing effect. DSC and FTIR corroborated these observations showing a decrease in the glass transition temperature and the presence of interactions, respectively. Furthermore, the properties of the sintered SOFs were not affected by plasticization and the API was not degraded in all formulations. In conclusion, this study is a proof-of-concept that processability in SLS can improve with the use of di-carboxylic acids.
Collapse
Affiliation(s)
- Yanis Abdelhamid Gueche
- ICGM, University Montpellier, CNRS, ENSCM, 34000 Montpellier, France; (Y.A.G.); (N.M.S.-B.); (B.B.); (A.A.)
| | - Noelia M. Sanchez-Ballester
- ICGM, University Montpellier, CNRS, ENSCM, 34000 Montpellier, France; (Y.A.G.); (N.M.S.-B.); (B.B.); (A.A.)
- Department of Pharmacy, Nîmes University Hospital, 30900 Nimes, France
| | - Bernard Bataille
- ICGM, University Montpellier, CNRS, ENSCM, 34000 Montpellier, France; (Y.A.G.); (N.M.S.-B.); (B.B.); (A.A.)
| | - Adrien Aubert
- ICGM, University Montpellier, CNRS, ENSCM, 34000 Montpellier, France; (Y.A.G.); (N.M.S.-B.); (B.B.); (A.A.)
| | | | - Ian Soulairol
- ICGM, University Montpellier, CNRS, ENSCM, 34000 Montpellier, France; (Y.A.G.); (N.M.S.-B.); (B.B.); (A.A.)
- Department of Pharmacy, Nîmes University Hospital, 30900 Nimes, France
- Correspondence:
| |
Collapse
|
28
|
Kloetzer L, Tucaliuc A, Caşcaval D, Galaction AI. Influence of solvent polarity on reactive extraction of fumaric acid with Amberlite LA-2 from viscous solutions. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.1931327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Lenuta Kloetzer
- ”Gheorghe Asachi” Technical University of Iasi, “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, Dept. Of Organic, Biochemical and Food Engineering, Iasi, Romania
| | - Alexandra Tucaliuc
- ”Gheorghe Asachi” Technical University of Iasi, “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, Dept. Of Organic, Biochemical and Food Engineering, Iasi, Romania
| | - Dan Caşcaval
- ”Gheorghe Asachi” Technical University of Iasi, “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, Dept. Of Organic, Biochemical and Food Engineering, Iasi, Romania
| | - Anca-Irina Galaction
- “Grigore T. Popa” University of Medicine and Pharmacy, Faculty of Medical Bioengineering, Dept. Of Biomedical Science, Iași, Romania
| |
Collapse
|
29
|
de Jongh NW, Swart RM, Nicol W. Fed-batch growth of Rhizopus oryzae: Eliminating ethanol formation by controlling glucose addition. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.107961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Kerboua M, Ahmed MA, Samba N, Aitfella-Lahlou R, Silva L, Boyero JF, Raposo C, Lopez Rodilla JM. Phytochemical Investigation of New Algerian Lichen Species: Physcia Mediterranea Nimis. Molecules 2021; 26:1121. [PMID: 33672591 PMCID: PMC7924039 DOI: 10.3390/molecules26041121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 11/16/2022] Open
Abstract
The present study provides new data concerning the chemical characterisation of Physcia mediterranea Nimis, a rare Mediterranean species belonging to the family Physciaceae. The phytochemical screening was carried out using GC-MS, HPLC-ESI-MS-MS, and NMR techniques. Hot extraction of n-hexane was carried out, followed by separation of the part insoluble in methanol: wax (WA-hex), from the part soluble in methanol (ME-hex). GC-MS analysis of the ME-hex part revealed the presence of methylbenzoic acids such as sparassol and atraric acid and a diterpene with a kaurene skeleton which has never been detected before in lichen species. Out of all the compounds identified by HPLC-ESI-MS-MS, sixteen compounds are common between WA-hex and ME-hex. Most are aliphatic fatty acids, phenolic compounds and depsides. The wax part is characterised by the presence of atranorin, a depside of high biological value. Proton 1H and carbon 13C NMR have confirmed its identification. Atranol, chloroatranol (depsides compound), Ffukinanolide (sesquiterpene lactones), leprolomin (diphenyl ether), muronic acid (triterpenes), and ursolic acid (triterpenes) have also been identified in ME-hex. The results suggested that Physcia mediterranea Nimis is a valuable source of bioactive compounds that could be useful for several applications as functional foods, cosmetics, and pharmaceuticals.
Collapse
Affiliation(s)
- Marwa Kerboua
- Laboratory of Vegetal Biology and Environment, Biology Department, Badji Mokhtar University, Annaba 23000, Algeria; (M.K.); (M.A.A.)
| | - Monia Ali Ahmed
- Laboratory of Vegetal Biology and Environment, Biology Department, Badji Mokhtar University, Annaba 23000, Algeria; (M.K.); (M.A.A.)
| | - Nsevolo Samba
- Chemistry Department, University of Beira Interior, 6201-001 Covilha, Portugal; (N.S.); (R.A.-L.); (L.S.)
- Department of Clinical Analysis and Public Health, University Kimpa Vita, Uige 77, Angola
| | - Radhia Aitfella-Lahlou
- Chemistry Department, University of Beira Interior, 6201-001 Covilha, Portugal; (N.S.); (R.A.-L.); (L.S.)
- Fiber Materials and Environmental Technologies (FibEnTech), University of Beira Interior, 6201-001 Covilhã, Portugal
- Laboratory of Valorisation and Conservation of Biological Resources, Biology Department, Faculty of Sciences, University M’Hamed Bougara, Boumerdes 35000, Algeria
| | - Lucia Silva
- Chemistry Department, University of Beira Interior, 6201-001 Covilha, Portugal; (N.S.); (R.A.-L.); (L.S.)
- Fiber Materials and Environmental Technologies (FibEnTech), University of Beira Interior, 6201-001 Covilhã, Portugal
| | - Juan F. Boyero
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemistry, Chromatographic and mass analysis service (NUCLEUS), University of Salamanca, 37008 Salamanca, Spain; (J.F.B.); (C.R.)
| | - Cesar Raposo
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemistry, Chromatographic and mass analysis service (NUCLEUS), University of Salamanca, 37008 Salamanca, Spain; (J.F.B.); (C.R.)
| | - Jesus Miguel Lopez Rodilla
- Chemistry Department, University of Beira Interior, 6201-001 Covilha, Portugal; (N.S.); (R.A.-L.); (L.S.)
- Fiber Materials and Environmental Technologies (FibEnTech), University of Beira Interior, 6201-001 Covilhã, Portugal
| |
Collapse
|
31
|
Fouilloux H, Thomas CM. Production and Polymerization of Biobased Acrylates and Analogs. Macromol Rapid Commun 2021; 42:e2000530. [DOI: 10.1002/marc.202000530] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/23/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Hugo Fouilloux
- PSL University Chimie ParisTech CNRS Institut de Recherche de Chimie Paris Paris 75005 France
| | - Christophe M. Thomas
- PSL University Chimie ParisTech CNRS Institut de Recherche de Chimie Paris Paris 75005 France
| |
Collapse
|
32
|
Li Y, Yang S, Ma D, Song W, Gao C, Liu L, Chen X. Microbial engineering for the production of C 2-C 6 organic acids. Nat Prod Rep 2021; 38:1518-1546. [PMID: 33410446 DOI: 10.1039/d0np00062k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: up to the end of 2020Organic acids, as building block compounds, have been widely used in food, pharmaceutical, plastic, and chemical industries. Until now, chemical synthesis is still the primary method for industrial-scale organic acid production. However, this process encounters some inevitable challenges, such as depletable petroleum resources, harsh reaction conditions and complex downstream processes. To solve these problems, microbial cell factories provide a promising approach for achieving the sustainable production of organic acids. However, some key metabolites in central carbon metabolism are strictly regulated by the network of cellular metabolism, resulting in the low productivity of organic acids. Thus, multiple metabolic engineering strategies have been developed to reprogram microbial cell factories to produce organic acids, including monocarboxylic acids, hydroxy carboxylic acids, amino carboxylic acids, dicarboxylic acids and monomeric units for polymers. These strategies mainly center on improving the catalytic efficiency of the enzymes to increase the conversion rate, balancing the multi-gene biosynthetic pathways to reduce the byproduct formation, strengthening the metabolic flux to promote the product biosynthesis, optimizing the metabolic network to adapt the environmental conditions and enhancing substrate utilization to broaden the substrate spectrum. Here, we describe the recent advances in producing C2-C6 organic acids by metabolic engineering strategies. In addition, we provide new insights as to when, what and how these strategies should be taken. Future challenges are also discussed in further advancing microbial engineering and establishing efficient biorefineries.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | | | | | | | | | | | | |
Collapse
|
33
|
Galaction AI, Tucaliuc A, Ciobanu C, Caşcaval D. Fumaric acid production by Rhyzopus oryzae in presence of n-dodecane as oxygen-vector. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Capability Enhancement of Fumaric Acid Production by Rhizopus arrhizus Through Carbon-Nitrogen Sources Coordination. Appl Biochem Biotechnol 2020; 193:1231-1237. [PMID: 33237556 DOI: 10.1007/s12010-020-03461-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/08/2020] [Indexed: 10/22/2022]
Abstract
Fumaric acid production from the fermentation process by Rhizopus was considered a potential method. But poor conversion efficiency and low space-time productivity greatly hampered industrial production. Here, we reported improving these problems through carbon-nitrogen sources coordination optimization strategy. Five commonly used nitrogen sources were selected to conduct element analysis and fermentation efficiency comparison. Casein was proven to be the optimum nitrogen source and further investigated in a stirred-tank reactor. It showed that the fermentation cycle was significantly shortened by the application of casein. Combined with optimization of glucose content, the space-time productivity of fumaric acid reached 0.76 g/L h with a yield to 0.31 g/g glucose, which was the highest among the results gotten in the stirred-tank reactor. It illustrated that carbon-nitrogen sources coordination optimization strategy was in favor of the improvement of the fermentation process and laid a promising foundation for the development of fumaric acid industrial production.
Collapse
|
35
|
Rhizopus oryzae Lipase, a Promising Industrial Enzyme: Biochemical Characteristics, Production and Biocatalytic Applications. Catalysts 2020. [DOI: 10.3390/catal10111277] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lipases are biocatalysts with a significant potential to enable a shift from current pollutant manufacturing processes to environmentally sustainable approaches. The main reason of this prospect is their catalytic versatility as they carry out several industrially relevant reactions as hydrolysis of fats in water/lipid interface and synthesis reactions in solvent-free or non-aqueous media such as transesterification, interesterification and esterification. Because of the outstanding traits of Rhizopus oryzae lipase (ROL), 1,3-specificity, high enantioselectivity and stability in organic media, its application in energy, food and pharmaceutical industrial sector has been widely studied. Significant advances have been made in the biochemical characterisation of ROL particularly in how its activity and stability are affected by the presence of its prosequence. In addition, native and heterologous production of ROL, the latter in cell factories like Escherichia coli, Saccharomyces cerevisiae and Komagataella phaffii (Pichia pastoris), have been thoroughly described. Therefore, in this review, we summarise the current knowledge about R. oryzae lipase (i) biochemical characteristics, (ii) production strategies and (iii) potential industrial applications.
Collapse
|
36
|
Li J, Rong L, Zhao Y, Li S, Zhang C, Xiao D, Foo JL, Yu A. Next-generation metabolic engineering of non-conventional microbial cell factories for carboxylic acid platform chemicals. Biotechnol Adv 2020; 43:107605. [DOI: 10.1016/j.biotechadv.2020.107605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/30/2020] [Accepted: 07/27/2020] [Indexed: 01/21/2023]
|
37
|
Sun L, Gong M, Lv X, Huang Z, Gu Y, Li J, Du G, Liu L. Current advance in biological production of short-chain organic acid. Appl Microbiol Biotechnol 2020; 104:9109-9124. [DOI: 10.1007/s00253-020-10917-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 12/31/2022]
|
38
|
Fan T, Liu X, Zhao R, Zhang Y, Liu H, Wang Z, Wang F, Nie K, Deng L. Hydrolysis of food waste by hot water extraction and subsequent Rhizopus fermentation to fumaric acid. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 270:110954. [PMID: 32721361 DOI: 10.1016/j.jenvman.2020.110954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/04/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Food waste is considered a serious global societal problem. How to degrade of food waste in a green and effective way has been to a hot topic. In this work, a method with hot water extraction pretreatment of food waste was investigated and optimized. Under the optimal conditions, more than half of the solid food waste could be transferred to soluble sugars. Meanwhile, in order to improve the tolerance of Rhizopus arrhizus on the food waste hydrolysate, UV combined with chemical mutagenesis were carried out, and a mutant of Rhizopus RH-7-13-807 was obtained. With the mutant strain, the yield of fumaric acid fermented from food waste increased to 1.8 times compared with the original strain, and 23.94 g/L fumaric acid was obtained from the fermentation. Besides, the COD of food waste was evaluated for the degradation of food waste by the Rhizopus RH-7-13-807. The process would decrease the quantity of food waste to be disposed of, and benefit the environment.
Collapse
Affiliation(s)
- Tianyi Fan
- Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, Beijing, 100029, PR China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Xin Liu
- Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, Beijing, 100029, PR China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Ran Zhao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Yapeng Zhang
- Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, Beijing, 100029, PR China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Huan Liu
- Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, Beijing, 100029, PR China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Zheng Wang
- Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, Beijing, 100029, PR China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Fang Wang
- Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, Beijing, 100029, PR China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Kaili Nie
- Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, Beijing, 100029, PR China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| | - Li Deng
- Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, Beijing, 100029, PR China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| |
Collapse
|
39
|
Zhang X, Zhao Y, Liu Y, Wang J, Deng Y. Recent progress on bio-based production of dicarboxylic acids in yeast. Appl Microbiol Biotechnol 2020; 104:4259-4272. [PMID: 32215709 DOI: 10.1007/s00253-020-10537-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/06/2020] [Accepted: 03/09/2020] [Indexed: 12/25/2022]
Abstract
Dicarboxylic acids are widely used in fine chemical and food industries as well as the monomer for polymerisation of high molecular material. Given the problems of environmental contamination and sustainable development faced by traditional production of dicarboxylic acids based on petrol, new approaches such as bio-based production of dicarboxylic acids drew more attentions. The yeast, Saccharomyces cerevisiae, was regarded as an ideal organism for bio-based production of dicarboxylic acids with high tolerance to acidic and hyperosmotic environments, robust growth using a broad range of substrates, great convenience for genetic manipulation, stable inheritance via sub-cultivation, and food compatibility. In this review, the production of major dicarboxylates via S. cerevisiae was concluded and the challenges and opportunities facing were discussed.Key Points• Summary of current production of major dicarboxylic acids by Saccharomyces cerevisiae.• Discussion of influence factors on four-carbon dicarboxylic acids production by Saccharomyces cerevisiae.• Outlook of potential production of five- and six-carbon dicarboxylic acids by Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Xi Zhang
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Yunying Zhao
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Yingli Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing, 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing, 100048, China
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China. .,School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
40
|
Kinetic Modelling of the Coproduction Process of Fumaric and Malic Acids by Rhizopus arrhizus NRRL 1526. Processes (Basel) 2020. [DOI: 10.3390/pr8020188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The production of organic acids by biotechnological processes has experienced a notable impulse with the advent of first and second generation biorefineries and the need of searching for renewable and sustainable feedstock, such as biomass. Fumaric acid is a promising biomonomer for polyamide production and a well-known acidulant and preservative in food and feed industries. Malic acid is a well-known food acidulant with a high market share. The biotechnological Fumaric and Malic acid production via fungi of the Rhizopus genus is being explored nowadays as a process for the valorization of food and food-related waste to obtain food ingredients and key platform chemicals of the so-called biochemical biorefinery. In this work, a preliminary study is performed to find reproducible conditions for the production of the acids by Rhizopus arrhizus NRRL 1526 by controlling fungi morphology and inoculum conditions. Afterwards, several production runs are performed to obtain biomass, glucose, and acid concentration data at different processing time values. Finally, an unstructured, unsegregated model including a logistic-type equation for biomass and potential-type equations for the substrate and the products is fitted to experimental data. We find that the production of the organic acids is mainly non-associated with fungal growth.
Collapse
|
41
|
|
42
|
Swart RM, le Roux F, Naude A, de Jongh NW, Nicol W. Fumarate production with Rhizopus oryzae: utilising the Crabtree effect to minimise ethanol by-product formation. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:22. [PMID: 32021653 PMCID: PMC6995092 DOI: 10.1186/s13068-020-1664-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/21/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND The four-carbon dicarboxylic acids of the tricarboxylic acid cycle (malate, fumarate and succinate) remain promising bio-based alternatives to various precursor chemicals derived from fossil-based feed stocks. The double carbon bond in fumarate, in addition to the two terminal carboxylic groups, opens up an array of downstream reaction possibilities, where replacement options for petrochemical derived maleic anhydride are worth mentioning. To date the most promising organism for producing fumarate is Rhizopus oryzae (ATCC 20344, also referred to as Rhizopus delemar) that naturally excretes fumarate under nitrogen-limited conditions. Fumarate excretion in R. oryzae is always associated with the co-excretion of ethanol, an unwanted metabolic product from the fermentation. Attempts to eliminate ethanol production classically focus on enhanced oxygen availability within the mycelium matrix. In this study our immobilised R. oryzae process was employed to investigate and utilise the Crabtree characteristics of the organism in order to establish the limits of ethanol by-product formation under growth and non-growth conditions. RESULTS All fermentations were performed with either nitrogen excess (growth phase) or nitrogen limitation (production phase) where medium replacements were done between the growth and the production phase. Initial experiments employed excess glucose for both growth and production, while the oxygen partial pressure was varied between a dissolved oxygen of 18.4% and 85%. Ethanol was formed during both growth and production phases and the oxygen partial pressure had zero influence on the response. Results clearly indicated that possible anaerobic zones within the mycelium were not responsible for ethanol formation, hinting that ethanol is formed under fully aerobic conditions as a metabolic overflow product. For Crabtree-positive organisms like Saccharomyces cerevisiae ethanol overflow is manipulated by controlling the glucose input to the fermentation. The same strategy was employed for R. oryzae for both growth and production fermentations. It was shown that all ethanol can be eliminated during growth for a glucose addition rate of 0.07 g L - 1 h - 1 . The production phase behaved in a similar manner, where glucose addition of 0.197 g L - 1 h - 1 resulted in fumarate production of 0.150 g L - 1 h - 1 and a yield of 0.802 g g - 1 fumarate on glucose. Further investigation into the effect of glucose addition revealed that ethanol overflow commences at a glucose addition rate of 0.395 g g - 1 h - 1 on biomass, while the maximum glucose uptake rate was established to be between 0.426 and 0.533 g g - 1 h - 1 . CONCLUSIONS The results conclusively prove that R. oryzae is a Crabtree-positive organism and that the characteristic can be utilised to completely discard ethanol by-product formation. A state referred to as "homofumarate production" was illustrated, where all carbon input exits the cell as either fumarate or respiratory CO 2 . The highest biomass-based "homofumarate production": rate of 0.243 g g - 1 h - 1 achieved a yield of 0.802 g g - 1 on glucose, indicating the bounds for developing an ethanol free process. The control strategy employed in this study in conjunction with the uncomplicated scalability of the immobilised process provides new direction for further developing bio-fumarate production.
Collapse
Affiliation(s)
- Reuben M. Swart
- Department of Chemical Engineering, University of Pretoria, Lynnwood Road, Hatfield, 0002 Pretoria South Africa
| | - Francois le Roux
- Department of Chemical Engineering, University of Pretoria, Lynnwood Road, Hatfield, 0002 Pretoria South Africa
| | - Andre Naude
- Department of Chemical Engineering, University of Pretoria, Lynnwood Road, Hatfield, 0002 Pretoria South Africa
| | - Nicolaas W. de Jongh
- Department of Chemical Engineering, University of Pretoria, Lynnwood Road, Hatfield, 0002 Pretoria South Africa
| | - Willie Nicol
- Department of Chemical Engineering, University of Pretoria, Lynnwood Road, Hatfield, 0002 Pretoria South Africa
| |
Collapse
|