1
|
Abdi MH, Zamiri B, Pazuki G, Sardari S, Pearson CE. Pathogenic CANVAS-causing but not nonpathogenic RFC1 DNA/RNA repeat motifs form quadruplex or triplex structures. J Biol Chem 2023; 299:105202. [PMID: 37660923 PMCID: PMC10563062 DOI: 10.1016/j.jbc.2023.105202] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023] Open
Abstract
Biallelic expansions of various tandem repeat sequence motifs are possible in RFC1 (replication factor C subunit 1), encoding the DNA replication/repair protein RFC1, yet only certain repeat motifs cause cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS). CANVAS presents enigmatic puzzles: The pathogenic path for CANVAS neither is known nor is it understood why some, but not all expanded, motifs are pathogenic. The most common pathogenic repeat is (AAGGG)n•(CCCTT)n, whereas (AAAAG)n•(CTTTT)n is the most common nonpathogenic motif. While both intronic motifs can be expanded and transcribed, only r(AAGGG)n is retained in the mutant RFC1 transcript. We show that only the pathogenic forms unusual nucleic acid structures. Specifically, DNA and RNA of the pathogenic d(AAGGG)4 and r(AAGGG)4 form G-quadruplexes in potassium solution. Nonpathogenic repeats did not form G-quadruplexes. Triple-stranded structures are formed by the pathogenic motifs but not by the nonpathogenic motifs. G- and C-richness of the pathogenic strands favor formation of G•G•G•G-tetrads and protonated C+-G Hoogsteen base pairings, involved in quadruplex and triplex structures, respectively, stabilized by increased hydrogen bonds and pi-stacking interactions relative to A-T Hoogsteen pairs that could form by the nonpathogenic motif. The ligand, TMPyP4, binds the pathogenic quadruplexes. Formation of quadruplexes and triplexes by pathogenic repeats supports toxic-DNA and toxic-RNA modes of pathogenesis at the RFC1 gene and the RFC1 transcript. Our findings with short repeats provide insights into the disease specificity of pathogenic repeat motif sequences and reveal nucleic acid structural features that may be pathogenically involved and targeted therapeutically.
Collapse
Affiliation(s)
- Mohammad Hossein Abdi
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Bita Zamiri
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Gholamreza Pazuki
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Soroush Sardari
- Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Christopher E Pearson
- Program of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Kunkler CN, Schiefelbein GE, O'Leary NJ, McCown PJ, Brown JA. A single natural RNA modification can destabilize a U•A-T-rich RNA•DNA-DNA triple helix. RNA (NEW YORK, N.Y.) 2022; 28:1172-1184. [PMID: 35820700 PMCID: PMC9380742 DOI: 10.1261/rna.079244.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Recent studies suggest noncoding RNAs interact with genomic DNA, forming RNA•DNA-DNA triple helices, as a mechanism to regulate transcription. One way cells could regulate the formation of these triple helices is through RNA modifications. With over 140 naturally occurring RNA modifications, we hypothesize that some modifications stabilize RNA•DNA-DNA triple helices while others destabilize them. Here, we focus on a pyrimidine-motif triple helix composed of canonical U•A-T and C•G-C base triples. We employed electrophoretic mobility shift assays and microscale thermophoresis to examine how 11 different RNA modifications at a single position in an RNA•DNA-DNA triple helix affect stability: 5-methylcytidine (m5C), 5-methyluridine (m5U or rT), 3-methyluridine (m3U), pseudouridine (Ψ), 4-thiouridine (s4U), N 6-methyladenosine (m6A), inosine (I), and each nucleobase with 2'-O-methylation (Nm). Compared to the unmodified U•A-T base triple, some modifications have no significant change in stability (Um•A-T), some have ∼2.5-fold decreases in stability (m5U•A-T, Ψ•A-T, and s4U•A-T), and some completely disrupt triple helix formation (m3U•A-T). To identify potential biological examples of RNA•DNA-DNA triple helices controlled by an RNA modification, we searched RMVar, a database for RNA modifications mapped at single-nucleotide resolution, for lncRNAs containing an RNA modification within a pyrimidine-rich sequence. Using electrophoretic mobility shift assays, the binding of DNA-DNA to a 22-mer segment of human lncRNA Al157886.1 was destabilized by ∼1.7-fold with the substitution of m5C at known m5C sites. Therefore, the formation and stability of cellular RNA•DNA-DNA triple helices could be influenced by RNA modifications.
Collapse
Affiliation(s)
- Charlotte N Kunkler
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Grace E Schiefelbein
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Nathan J O'Leary
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Phillip J McCown
- Michigan Medicine, Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jessica A Brown
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
3
|
Matsuno Y, Yamashita T, Wagatsuma M, Yamakage H. Convergence in LINE-1 nucleotide variations can benefit redundantly forming triplexes with lncRNA in mammalian X-chromosome inactivation. Mob DNA 2019; 10:33. [PMID: 31384315 PMCID: PMC6664574 DOI: 10.1186/s13100-019-0173-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/08/2019] [Indexed: 01/01/2023] Open
Abstract
Background Associations between X-inactive transcript (Xist)–long noncoding RNA (lncRNA) and chromatin are critical intermolecular interactions in the X-chromosome inactivation (XCI) process. Despite high-resolution analyses of the Xist RNA-binding sites, specific interaction sequences are yet to be identified. Based on elusive features of the association between Xist RNA and chromatin and the possible existence of multiple low-affinity binding sites in Xist RNA, we defined short motifs (≥5 nucleotides), termed as redundant UC/TC (r-UC/TC) or AG (r-AG) motifs, which may help in the mediation of triplex formation between the lncRNAs and duplex DNA. Results The study showed that r-UC motifs are densely dispersed throughout mouse and human Xist/XIST RNAs, whereas r-AG motifs are even more densely dispersed along opossum RNA-on-the-silent X (Rsx) RNA, and also along both full-length and truncated long interspersed nuclear elements (LINE-1s, L1s) of the three species. Predicted secondary structures of the lncRNAs showed that the length range of these sequence motifs available for forming triplexes was even shorter, mainly 5- to 9-nucleotides long. Quartz crystal microbalance (QCM) measurements and Monte Carlo (MC) simulations indicated that minimum-length motifs can reinforce the binding state by increasing the copy number of the motifs in the same RNA or DNA molecule. Further, r-AG motifs in L1s had a similar length-distribution pattern, regardless of the similarities in the length or sequence of L1s across the three species; this also applies to high-frequency mutations in r-AG motifs, which suggests convergence in L1 sequence variations. Conclusions Multiple short motifs in both RNA and duplex DNA molecules could be brought together to form triplexes with either Hoogsteen or reverse Hoogsteen hydrogen bonding, by which their associations are cooperatively enhanced. This novel triplex interaction could be involved in associations between lncRNA and chromatin in XCI, particularly at the sites of L1s. Potential binding of Xist/XIST/Rsx RNAs specifically at L1s is most likely preserved through the r-AG motifs conserved in mammalian L1s through convergence in L1 nucleotide variations and by maintaining a particular r-UC/r-AG motif ratio in each of these lncRNAs, irrespective of their poorly conserved sequences. Electronic supplementary material The online version of this article (10.1186/s13100-019-0173-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yoko Matsuno
- 1Division of Clinical Preventive Medicine, Niigata University, Niigata, Japan
| | - Takefumi Yamashita
- 2Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
4
|
Brown JA, Bulkley D, Wang J, Valenstein ML, Yario TA, Steitz TA, Steitz JA. Structural insights into the stabilization of MALAT1 noncoding RNA by a bipartite triple helix. Nat Struct Mol Biol 2014; 21:633-40. [PMID: 24952594 PMCID: PMC4096706 DOI: 10.1038/nsmb.2844] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/21/2014] [Indexed: 12/29/2022]
Abstract
Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a highly abundant nuclear long noncoding RNA that promotes malignancy. A 3'-stem-loop structure is predicted to confer stability by engaging a downstream A-rich tract in a triple helix, similar to the expression and nuclear retention element (ENE) from the KSHV polyadenylated nuclear RNA. The 3.1-Å-resolution crystal structure of the human MALAT1 ENE and A-rich tract reveals a bipartite triple helix containing stacks of five and four U•A-U triples separated by a C+•G-C triplet and C-G doublet, extended by two A-minor interactions. In vivo decay assays indicate that this blunt-ended triple helix, with the 3' nucleotide in a U•A-U triple, inhibits rapid nuclear RNA decay. Interruption of the triple helix by the C-G doublet induces a 'helical reset' that explains why triple-helical stacks longer than six do not occur in nature.
Collapse
Affiliation(s)
- Jessica A. Brown
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT USA
| | - David Bulkley
- Department of Chemistry, Yale University, New Haven, CT USA
| | - Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT USA
| | - Max L. Valenstein
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT USA
| | - Therese A. Yario
- Howard Hughes Medical Institute, Yale University, New Haven, CT USA
| | - Thomas A. Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT USA
- Department of Chemistry, Yale University, New Haven, CT USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT USA
| | - Joan A. Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT USA
| |
Collapse
|
5
|
Riechert-Krause F, Autenrieth K, Eick A, Weisz K. Spectroscopic and calorimetric studies on the binding of an indoloquinoline drug to parallel and antiparallel DNA triplexes. Biochemistry 2012; 52:41-52. [PMID: 23234257 DOI: 10.1021/bi301381h] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
11-Phenyl-substituted indoloquinolines have been found to exhibit significant antiproliferative potency in cancer cells but to show only moderate affinity toward genomic double-helical DNA. In this study, parallel as well as antiparallel triple-helical DNA targets are employed to evaluate the triplex binding of these ligands. UV melting experiments with parallel triplexes indicate considerable interactions with the drug and a strong preference for TAT-rich triplexes in line with an increasing number of potential intercalation sites of similar binding strength between two TAT base triads. Via substitution of a singly charged aminoethylamine side chain by a longer and doubly charged bis(aminopropyl)amine substituent at the ligand, binding affinities increase and also start to exhibit long-range effects as indicated by a strong correlation between the binding affinity and the overall length of the TAT tract within the triplex stem. Compared to parallel triplexes, an antiparallel triplex with a GT-containing third strand constitutes a preferred target for the indoloquinoline drug. On the basis of pH-dependent titration experiments and corroborated by a Job analysis of continuous variation, binding of the drug to the GT triplex not only is strongly enhanced when the solution pH is lowered from 7 to 5 but also reveals a pH-dependent stoichiometry upon formation of the complex. Calorimetric data demonstrate that stronger binding of a protonated drug at acidic pH is associated with a more exothermic binding process. However, at pH 7 and 5, binding is enthalpically driven with additional favorable entropic contributions.
Collapse
Affiliation(s)
- Fanny Riechert-Krause
- Institute of Biochemistry, Ernst-Moritz-Arndt University Greifswald, Felix-Hausdorff-Strasse 4, D-17487 Greifswald, Germany
| | | | | | | |
Collapse
|
6
|
Daksis JI, Erikson GH. Heteropolymeric triplex-based genomic assay to detect pathogens or single-nucleotide polymorphisms in human genomic samples. PLoS One 2007; 2:e305. [PMID: 17375191 PMCID: PMC1810429 DOI: 10.1371/journal.pone.0000305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Accepted: 02/25/2007] [Indexed: 12/03/2022] Open
Abstract
Human genomic samples are complex and are considered difficult to assay directly without denaturation or PCR amplification. We report the use of a base-specific heteropolymeric triplex, formed by native duplex genomic target and an oligonucleotide third strand probe, to assay for low copy pathogen genomes present in a sample also containing human genomic duplex DNA, or to assay human genomic duplex DNA for Single Nucleotide Polymorphisms (SNP), without PCR amplification. Wild-type and mutant probes are used to identify triplexes containing FVL G1691A, MTHFR C677T and CFTR mutations. The specific triplex structure forms rapidly at room temperature in solution and may be detected without a separation step. YOYO-1, a fluorescent bis-intercalator, promotes and signals the formation of the specific triplex. Genomic duplexes may be assayed homogeneously with single base pair resolution. The specific triple-stranded structures of the assay may approximate homologous recombination intermediates, which various models suggest may form in either the major or minor groove of the duplex. The bases of the stable duplex target are rendered specifically reactive to the bases of the probe because of the activity of intercalated YOYO-1, which is known to decondense duplex locally 1.3 fold. This may approximate the local decondensation effected by recombination proteins such as RecA in vivo. Our assay, while involving triplex formation, is sui generis, as it is not homopurine sequence-dependent, as are “canonical triplexes”. Rather, the base pair-specific heteropolymeric triplex of the assay is conformation-dependent. The highly sensitive diagnostic assay we present allows for the direct detection of base sequence in genomic duplex samples, including those containing human genomic duplex DNA, thereby bypassing the inherent problems and cost associated with conventional PCR based diagnostic assays.
Collapse
|
7
|
Petraccone L, Erra E, Messere A, Montesarchio D, Piccialli G, Barone G, Giancola C. Physico-chemical studies of a DNA triplex containing a new ferrocenemethyl-thymidine residue in the third strand. Biophys Chem 2003; 104:259-70. [PMID: 12834844 DOI: 10.1016/s0301-4622(02)00380-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The stability of a 16-mer DNA triple helix containing a 3-N(ferrocenemethyl)-thymidine residue in the third strand has been investigated in comparison with the unmodified triplex of the same sequence. A complete physico-chemical characterization of the two triple helices on changing the pH by means of calorimetry, circular dichroism and molecular modeling is therefore reported. The thermodynamic parameters were obtained in the pH range 5.5-7.2 by differential scanning calorimetry (DSC). For both triplexes the T(m) and Delta H degrees (T(m)) values increase on decreasing the pH. In the pH range 7.2-6.0 the triplex containing the ferrocenemethyl nucleoside is less stable than the unmodified one, whereas the modified triplex becomes more stable at pH 5.5. Such difference in stability at each pH value is overwhelmingly enthalpic in origin. CD spectra show conformational changes on decreasing the pH for both the triplexes. By spectroscopic pH titration the apparent pK(a) values of the cytosines in the two triplexes could be estimated, with the cytosines in the TFO containing the ferrocenemethyl residue having lower apparent pK(a) values. These results are consistent with the calorimetric data, showing a decrease of the thermodynamic parameters in the pH range 7.2-6.0 and an increase at pH 5.5 for the ferrocenylated triplex with respect to the unmodified one. The thermodynamic and spectroscopic data are also discussed in relation to molecular models.
Collapse
Affiliation(s)
- L Petraccone
- Dipartimento di Chimica, Università Federico II di Napoli, Via Cintia 4, 80126, Naples, Italy
| | | | | | | | | | | | | |
Collapse
|