1
|
Ijaz F, Sameeullah M, Farid A, Malik MS, Batool N, Mirza B, Timko MP, Liu H, Lössl AG, Waheed MT. In silico designing and characterization of outer membrane protein (OmpC) gene from Salmonella enterica and its expression in Nicotiana tabacum for developing a plant-based vaccine against salmonellosis. Microb Pathog 2025; 199:107225. [PMID: 39675439 DOI: 10.1016/j.micpath.2024.107225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 11/28/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Salmonella, a gram-negative bacteria, is the leading cause of foodborne illness globally. Two serovars of Salmonella, S. enteritidis and S. typhimurium are responsible for the majority of human salmonellosis. Prolonged salmonellosis caused by Salmonella species leads to the development of colon cancer, which is 3rd most common cancer in the world. Porins in the outer membrane of Salmonella can be used to elicit immune response. The production of plant-based vaccine against salmonellosis and the subsequent colon cancer using outer membrane proteins can be helpful for the people of developing countries. In this study, OmpC protein from Salmonella enteritidis was subjected to various bioinformatics tools which exhibited OmpC vaccine construct to be sufficiently immunogenic, non-allergenic, non-toxic and non-homologous to human proteins. Docking analysis showed strong interaction of OmpC vaccine model with TLR-4. After in silico analysis, this vaccine construct was expressed in tobacco plants via Agrobacterium-mediated transformation. Gateway® cloning was used to clone OmpC gene. Transformation and integration of transgene within tobacco plants was confirmed through conventional PCR. qRT-PCR was done for expression analysis and copy number calculated was 2. The expressed OmpC protein accumulated up to 0.42 % of total soluble protein. Immunization of mice with total soluble protein (TSP) and purified OmpC protein generated significant level of anti-OmpC antibodies. The vaccine candidate also demonstrated significant protective effect in mice upon challenging with Salmonella typhimurium. To the best of our knowledge, this is the first study reporting the expression of OmpC antigen in plants for potential use as vaccine against salmonellosis.
Collapse
Affiliation(s)
- Fatima Ijaz
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Sameeullah
- Department of Field Crops, Faculty of Agriculture and Natural Sciences, Abant Izzet Baysal University, Golkoy Campus, Bolu, Turkey; Centre for Innovative Food Technologies Development, Application and Research, Bolu Abant Izzet Baysal University, Bolu, 14030, Türkiye
| | | | - Muhammad Suleman Malik
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Neelam Batool
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Bushra Mirza
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Michael P Timko
- Department of Biology, University of Virginia, Virginia, USA
| | - Hai Liu
- Department of Biology, University of Virginia, Virginia, USA
| | | | - Mohammad Tahir Waheed
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
2
|
Imdad MJ, Khan MN, Alam HS, Khan AB, Mirani ZA, Khan A, Ahmed F. Design and in silico analysis of mRNA vaccine construct against Salmonella. J Biomol Struct Dyn 2023; 41:7248-7264. [PMID: 36093938 DOI: 10.1080/07391102.2022.2119280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/24/2022] [Indexed: 10/14/2022]
Abstract
Salmonella infections are continuously growing. Causative serovars have gained enhanced drug resistance and virulence. Current vaccines have fallen short of providing sufficient protection. mRNA vaccines have come up with huge success against SARS-CoV-2; Pfizer-BioNTech and Moderna vaccines have resulted in >90% efficacy with efficient translocation, expression, and presentation of antigen to the host immune system. Herein, based on the same approach a mRNA vaccine construct has been designed and analyzed against Salmonella by joining regions of genes of outer membrane proteins C and F of S. Typhi through a flexible linker. Construct was flanked by regulatory regions that have previously shown better expression and translocation of encoded protein. GC content of the construct was improved to attain structural and thermodynamic stability and smooth translation. Sites of strong binding miRNAs were removed through codon optimization. Protein encoded by this construct is structurally plausible, highly antigenic, non-allergen to humans, and does not cross-react to the human proteome. It is enriched in potent, highly antigenic, and conserved linear and conformational epitopes. Most conserved conformational epitopes of core protein lie on extended beta hairpins exposed to the cellular exterior. Stability and thermodynamic attributes of the final construct were found highly comparable to the Pfizer-BioNTech vaccine construct. Both contain a stable stem-loop structure downstream of the start codon and do not offer destabilizing secondary structures upstream of the start codon. Given structural and thermodynamic stability, effective immune response, and epitope composition the construct is expected to provide broad-spectrum protection against clinically important Salmonella serovars.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Muhammad Janees Imdad
- Department of Microbiology, University of Karachi, Karachi, Pakistan
- Microbiology Section, FMRRC, Pakistan Council of Scientific and Industrial Research Laboratories Complex, Karachi, Pakistan
| | - Muhammad Naseem Khan
- Microbiology Section, FMRRC, Pakistan Council of Scientific and Industrial Research Laboratories Complex, Karachi, Pakistan
| | | | - Abdul Basit Khan
- Microbiology Section, FMRRC, Pakistan Council of Scientific and Industrial Research Laboratories Complex, Karachi, Pakistan
| | - Zulfiqar Ali Mirani
- Microbiology Section, FMRRC, Pakistan Council of Scientific and Industrial Research Laboratories Complex, Karachi, Pakistan
| | - Adnan Khan
- Department of Microbiology, University of Karachi, Karachi, Pakistan
| | - Faraz Ahmed
- Microbiology Section, FMRRC, Pakistan Council of Scientific and Industrial Research Laboratories Complex, Karachi, Pakistan
| |
Collapse
|
3
|
Su Y, Zhu L, Wu Y, Liu Z, Xu W. Progress and challenges in bacterial whole-cell-components Aptamer advanced screening and site identification. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
Valero-Pacheco N, Blight J, Aldapa-Vega G, Kemlo P, Pérez-Toledo M, Wong-Baeza I, Kurioka A, Perez-Shibayama C, Gil-Cruz C, Sánchez-Torres LE, Pastelin-Palacios R, Isibasi A, Reyes-Sandoval A, Klenerman P, López-Macías C. Conservation of the OmpC Porin Among Typhoidal and Non-Typhoidal Salmonella Serovars. Front Immunol 2020; 10:2966. [PMID: 31998292 PMCID: PMC6962181 DOI: 10.3389/fimmu.2019.02966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 12/03/2019] [Indexed: 01/31/2023] Open
Abstract
Salmonella enterica infections remain a challenging health issue, causing significant morbidity and mortality worldwide. Current vaccines against typhoid fever display moderate efficacy whilst no licensed vaccines are available for paratyphoid fever or invasive non-typhoidal salmonellosis. Therefore, there is an urgent need to develop high efficacy broad-spectrum vaccines that can protect against typhoidal and non-typhoidal Salmonella. The Salmonella outer membrane porins OmpC and OmpF, have been shown to be highly immunogenic antigens, efficiently eliciting protective antibody, and cellular immunity. Furthermore, enterobacterial porins, particularly the OmpC, have a high degree of homology in terms of sequence and structure, thus making them a suitable vaccine candidate. However, the degree of the amino acid conservation of OmpC among typhoidal and non-typhoidal Salmonella serovars is currently unknown. Here we used a bioinformatical analysis to classify the typhoidal and non-typhoidal Salmonella OmpC amino acid sequences into different clades independently of their serological classification. Further, our analysis determined that the porin OmpC contains various amino acid sequences that are highly conserved among both typhoidal and non-typhoidal Salmonella serovars. Critically, some of these highly conserved sequences were located in the transmembrane β-sheet within the porin β-barrel and have immunogenic potential for binding to MHC-II molecules, making them suitable candidates for a broad-spectrum Salmonella vaccine. Collectively, these findings suggest that these highly conserved sequences may be used for the rational design of an effective broad-spectrum vaccine against Salmonella.
Collapse
Affiliation(s)
- Nuriban Valero-Pacheco
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades del Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico.,Nuffield Department of Medicine, The Henry Wellcome Building for Molecular Physiology, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Joshua Blight
- Nuffield Department of Medicine, The Henry Wellcome Building for Molecular Physiology, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Gustavo Aldapa-Vega
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades del Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Phillip Kemlo
- Nuffield Department of Medicine, The Henry Wellcome Building for Molecular Physiology, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Marisol Pérez-Toledo
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades del Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Isabel Wong-Baeza
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Ayako Kurioka
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | | | - Cristina Gil-Cruz
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Luvia E Sánchez-Torres
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - Armando Isibasi
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades del Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Arturo Reyes-Sandoval
- Nuffield Department of Medicine, The Henry Wellcome Building for Molecular Physiology, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Constantino López-Macías
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades del Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Visiting Professor of Immunology, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,Mexican Translational Immunology Research Group, FOCIS Centres of Excellence, Cuernavaca, Mexico
| |
Collapse
|
5
|
Thulasingam M, Damodharan S, Madhana Vigneshwari G, P J Pandaranayaka E, Elizabeth Hanna L, Usha R, Krishnaswamy S. Characterization of Salmonella typhi OmpC and OmpF porins engineered with HIV-gp41 epitope on the surface loops. Proteins 2017; 85:657-664. [PMID: 28076882 DOI: 10.1002/prot.25246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/29/2016] [Accepted: 12/18/2016] [Indexed: 11/11/2022]
Abstract
Porins form trimers in the outer membrane and help transport nutrients and waste products across the bacterial cell membrane. Porin loops are suitable candidates as display systems due to their high immunogenicity and presentation at the bacterial cell surface. In this study, Salmonella typhi porins (OmpC and OmpF) engineered with the Kennedy peptide from gp41 of HIV were characterised. The chimeric OmpC carrying the Kennedy peptide in loop7 did not trimerise, whereas the chimeric OmpF with the epitope in loop5 formed trimers and also was recognised by the antibodies in the HIV patient serum. The results suggest that chimeric S. typhi OmpF may be taken further as a potential candidate to develop as an epitope display system. Proteins 2017; 85:657-664. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Subha Damodharan
- School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, India
| | | | | | - Luke Elizabeth Hanna
- National Institute for Research in Tuberculosis, Indian Council of Medical Research, Chennai, 600031, India
| | - Ramakrishnan Usha
- School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, India
| | - Sankaran Krishnaswamy
- School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, India.,Institute of Mathematical Sciences, Chennai, 600113, India
| |
Collapse
|
6
|
Tripathy DR, Pandey NK, Dinda AK, Ghosh S, Singha Roy A, Dasgupta S. An insight into the ribonucleolytic and antiangiogenic activity of buffalo lactoferrin. J Biomol Struct Dyn 2015; 33:184-95. [DOI: 10.1080/07391102.2013.865564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Jha R, Kumar A, Saxena A, Tamuly S, Saxena MK. Cloning, sequencing and in silico analysis of omp C of salmonella typhimurium. ISRN VETERINARY SCIENCE 2012; 2012:512848. [PMID: 23762587 PMCID: PMC3658560 DOI: 10.5402/2012/512848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 12/26/2011] [Indexed: 11/23/2022]
Abstract
Salmonella Typhimurium is an important pathogen having a broad host range. In human population it causes mostly gastroenteritis but there are reports in which it was found to be responsible to cause several lethal diseases like endocarditis and meningitis. Poultry products are the major sources of this organism in India as these are consumed at various stages of cooking. The available vaccines have their own limitations such as short-term immunity. Outer membrane proteins have shown some promising potential, so in the present study Omp C of Salmonella Typhimurium was cloned and sequenced to explore the possibility of development of r-DNA vaccine against Salmonella Typhimurium for poultry. The sequence of Omp C was studied for antigenic indexing, epitope mapping, and MHC mapping using various bioinformatic tools. The ORF analysis revealed a complete coding region of approximately 1000 bp. Five major and 13 minor B-cell epitopes were identified having an antigenic index of 1.7. The sequences also showed major histocompatibility complex (MHC) class I and class II binding region indicating a potential of eliciting cell-mediated immune response. The findings indicate that Omp C may be proven as promising candidate for development of r-DNA vaccine against Salmonella Typhimurium.
Collapse
Affiliation(s)
- Richa Jha
- Department of Molecular Biology and Genetic Engineering, G.B. Pant University of Agriculture & Technology, Pantnagar 263145, India
| | - Anil Kumar
- Department of Molecular Biology and Genetic Engineering, G.B. Pant University of Agriculture & Technology, Pantnagar 263145, India
| | - Anjani Saxena
- Animal Biotechnology Center, Department of Veterinary Physiology & Biochemistry, G.B. Pant University of Agriculture & Technology, Pantnagar 263145, India
| | - Shantanu Tamuly
- Animal Biotechnology Center, Department of Veterinary Physiology & Biochemistry, G.B. Pant University of Agriculture & Technology, Pantnagar 263145, India
| | - M. K. Saxena
- Animal Biotechnology Center, Department of Veterinary Physiology & Biochemistry, G.B. Pant University of Agriculture & Technology, Pantnagar 263145, India
| |
Collapse
|
8
|
Sundara Baalaji N, Mathew MK, Krishnaswamy S. Functional assay of Salmonella typhi OmpC using reconstituted large unilamellar vesicles: a general method for characterization of outer membrane proteins. Biochimie 2006; 88:1419-24. [PMID: 16765505 DOI: 10.1016/j.biochi.2006.05.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Accepted: 05/11/2006] [Indexed: 10/24/2022]
Abstract
The immunodominant trimeric beta-barrel outer membrane protein OmpC from Salmonella typhi, the causative agent of typhoid, has been functionally characterized here. The activity in the vesicle environment was studied in vitro using OmpC reconstituted into proteoliposomes. Passage of polysaccharides and polyethyleneglycols through OmpC has been examined to determine the permeability properties. The relative rate of neutral solute flux yields a radius of 1.1 nm for the S. typhi OmpC pore. This is almost double the pore size of Escherichia coli. This provides an example of large pore size present in the porins that form trimers as in the general bacterial porin family. The method used in this study provides a good membrane model for functional studies of porins.
Collapse
Affiliation(s)
- N Sundara Baalaji
- Center of Excellence in Bioinformatics, School of Biotechnology, Madurai-Kamaraj University, Palkalainagar, Madurai 625021, India
| | | | | |
Collapse
|
9
|
Likhatskaya GN, Solov'eva TF, Novikova OD, Issaeva MP, Gusev KV, Kryzhko IB, Trifonov EV, Nurminski EA. Homology Models of theYersinia PseudotuberculosisandYersinia PestisGeneral Porins and Comparative Analysis of Their Functional and Antigenic Regions. J Biomol Struct Dyn 2005; 23:163-74. [PMID: 16060690 DOI: 10.1080/07391102.2005.10507056] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The amino acid sequences of the Yersinia pseudotuberculosis porin (YPS) and Y. pestis porin (YPT) have recently deduced but their three-dimensional structures were not known. These sequences were analyzed using the servers 3D-PSSM and PredPort. The YPS and YPT porins were shown to have a high degree of identity (above 50%) in primary and secondary structures. The three-dimensional models of the Yersinia pseudotuberculosis porin (YPS) and Y. pestis porin (YPT) were obtained using the homology modeling approach, SWISS-MODEL Protein Modeling Server and 3-D structure of PhoE porin from E. coli as template. The superposition of the Calpha-atoms of the monomers of the Yersinia porins and PhoE porin gave a root mean square deviations of 0.47 A and 0.43 A for YPS and YPT respectively. Yersinia porins were found to be very similar in their three-dimensional structure to other non-specific enterobacterial porins, having the same features of overall fold and disposition of loop L3. The intrinsic structures of the monomer pores of YPS and YPT were investigated and their conductances were predicted with the program HOLE. The good correspondence between the theoretical and experimental magnitudes of YPS conductance was found. The Yersinia porins were determined to be unusual in containing the substitution, Glu replaced by Val, in a highly conserved pentapeptide (Pro-Glu-Phe-Gly-Gly-Asp), located in the loop L3 tip that disturbs the functionally important cluster of the acidic amino acids in the constriction site. Comparative analysis of structural organization of YPS and E. coli OmpF porin in the regions involved in subunit association and pore lumen was performed. The YPS porin functional properties were predicted. The differences between these porins in polar interactions playing a significant role in stabilization of the porin trimers were found and discussed in term of the variations in trimer stability. The Yersinia porins were shown to have the highest degree of the structural similarity. The differences between the porins were observed in their external loops. Their loops L6 and loops L8 showed 71.4 and 52.9% of sequence identity, respectively. The arrangement of charged residues clustered in the channel external vestibule of these porins was found to be also different suggesting the possible differences in their functional properties. The surface exposed regions of Yersinia porins involved in their potential sequential antigenic determinants were compared. The structural basis of their cross reactivity and antigenic differences is discussed.
Collapse
Affiliation(s)
- G N Likhatskaya
- Pacific Institute of Bioorganic Chemistry of Far East Branch of Russian Academy of Sciences, Vladivostok, pr. 100 let Vladivostoku 159, 690022 Russia.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Kumar PD, Krishnaswamy S. Overexpression, refolding, and purification of the major immunodominant outer membrane porin OmpC from Salmonella typhi: characterization of refolded OmpC. Protein Expr Purif 2005; 40:126-33. [PMID: 15721780 DOI: 10.1016/j.pep.2004.12.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2004] [Revised: 12/11/2004] [Indexed: 10/25/2022]
Abstract
The major immunodominant integral outer membrane protein C (OmpC) from Salmonella typhi Ty21a was overexpressed, without the signal peptide, in Escherichia coli. The protein aggregates as inclusion bodies (IBs) in the cytoplasm. OmpC from IBs was solubilized with 4 M urea and refolded. This involved rapid dilution of unfolded OmpC into a refolding buffer containing polyoxyethylene-9-lauryl ether (C(12)E(9)) and glycerol. The refolded OmpC (rfOmpC) was shown to be structurally similar to the native OmpC by SDS-PAGE, Western blotting, tryptic digestion, ultrafiltration, circular dichroism, and fluorescence spectroscopic techniques. Crystals of rfOmpC were obtained in preliminary crystallization trials. The rfOmpC also sets a stage for rational design by recombinant DNA technology for vaccine design and high resolution structure determination.
Collapse
Affiliation(s)
- P D Kumar
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai 625 021, India
| | | |
Collapse
|
11
|
Arockiasamy A, Murthy GS, Rukmini MR, Sundara Baalaji N, Katpally UC, Krishnaswamy S. Conformational epitope mapping of OmpC, a major cell surface antigen from Salmonella typhi. J Struct Biol 2004; 148:22-33. [PMID: 15363785 DOI: 10.1016/j.jsb.2004.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2003] [Revised: 03/14/2004] [Indexed: 10/26/2022]
Abstract
The outer membrane protein OmpC, a trimer made of 16 stranded beta-barrel monomers, is a major cell surface antigen from the human pathogen Salmonella typhi. The relative stability of the epitopes recognising a Salmonella specific MAb (referred as MPN5) and an Enterobacteria specific MAb (referred as P7D8) and the role of the trimeric organisation has been probed using gel electrophoresis and monoclonal antibodies. The assembly of the trimer and the stability of the beta-barrel are found to be important for epitope presentation. The Salmonella specific conformational epitope is found to be more stable than the Enterobacteria specific one. The important residues of the Salmonella specific (Asp 25 of loop 1, Asp 340 of loop 8, Lys 334 of loop 8, and Tyr 210 of loop 5) and the Enterobacteria specific (Asp 25 of loop 1, Tyr 210 of loop 5, and Lys 152 of loop 4) conformational epitope have been identified using monoclonal antibodies, chemical modification, and solid phase binding methods.
Collapse
Affiliation(s)
- A Arockiasamy
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, 625 021, India
| | | | | | | | | | | |
Collapse
|
12
|
Williams KM, Bigley EC. Identification of an I-Ed-restricted T-cell epitope of Escherichia coli outer membrane protein F. Infect Immun 2004; 72:3907-13. [PMID: 15213134 PMCID: PMC427395 DOI: 10.1128/iai.72.7.3907-3913.2004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A predominant T-cell epitope of Escherichia coli outer membrane protein F (OmpF) that encompasses amino acids 295 to 314 was identified in H-2(d) mice. BALB/c-derived T-cell hybridomas generated against this region were CD3(+), CD4(+), CD8(-), and T-cell receptor alphabeta(+) and secreted TH-1-associated cytokines (interleukin-2 [IL-2] and gamma interferon), but not a TH-2-associated cytokine (IL-4), when restimulated with peptide 295-314. Class II(+) mouse lymphoma (A20) cells, but not class II(-) mouse mastocytoma (P815) cells, supported IL-2 secretion of hybridomas when substituted for syngeneic splenocytes as antigen-presenting cells (APCs). Antibodies specific for I-E(d) blocked IL-2 secretion by hybridomas, but I-A(d)-specific antiserum did not. When transfected L cells expressing I-A(d) (AalphaAbeta(d)), I-E(d) (EalphaEbeta(d)), or the hybrid molecule I-EalphaAbeta(d) were used as APCs, hybridomas recognized peptide only when presented by the I-E(d)-transfected cells. When peptide 295-314 truncated at either the C or the N terminus of the sequence was used, the minimal epitope was determined. Critical residues were determined by using alanine-substituted peptide analogues. T-cell hybridomas were only stimulated by peptides that encompassed amino acids 295 to 303 (9-mer), and the core sequence required a minimum of three additional amino acids at either the amino or the carboxy terminus to induce IL-2 secretion. Critical residues were determined to be phenylalanine at position 295, threonine at position 300, and tyrosines at positions 301 and 302. This study is the first to identify a minimal T-cell epitope and major histocompatibility complex restriction element of the OmpF protein and confirms previous observations that there is considerable degeneracy in the length of peptides that can bind I-E(d) and variability in the amino acid composition of the C and N termini of these peptides.
Collapse
Affiliation(s)
- Kristina M Williams
- Center for Food Safety and Applied Nutrition, Immunobiology Branch, Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD 20708, USA.
| | | |
Collapse
|