1
|
Fernandes B, Cavaco-Paulo A, Matamá T. A Comprehensive Review of Mammalian Pigmentation: Paving the Way for Innovative Hair Colour-Changing Cosmetics. BIOLOGY 2023; 12:biology12020290. [PMID: 36829566 PMCID: PMC9953601 DOI: 10.3390/biology12020290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/26/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
The natural colour of hair shafts is formed at the bulb of hair follicles, and it is coupled to the hair growth cycle. Three critical processes must happen for efficient pigmentation: (1) melanosome biogenesis in neural crest-derived melanocytes, (2) the biochemical synthesis of melanins (melanogenesis) inside melanosomes, and (3) the transfer of melanin granules to surrounding pre-cortical keratinocytes for their incorporation into nascent hair fibres. All these steps are under complex genetic control. The array of natural hair colour shades are ascribed to polymorphisms in several pigmentary genes. A myriad of factors acting via autocrine, paracrine, and endocrine mechanisms also contributes for hair colour diversity. Given the enormous social and cosmetic importance attributed to hair colour, hair dyeing is today a common practice. Nonetheless, the adverse effects of the long-term usage of such cosmetic procedures demand the development of new methods for colour change. In this context, case reports of hair lightening, darkening and repigmentation as a side-effect of the therapeutic usage of many drugs substantiate the possibility to tune hair colour by interfering with the biology of follicular pigmentary units. By scrutinizing mammalian pigmentation, this review pinpoints key targetable processes for the development of innovative cosmetics that can safely change the hair colour from the inside out.
Collapse
Affiliation(s)
- Bruno Fernandes
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Artur Cavaco-Paulo
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (A.C.-P.); (T.M.); Tel.: +351-253-604-409 (A.C.-P.); +351-253-601-599 (T.M.)
| | - Teresa Matamá
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (A.C.-P.); (T.M.); Tel.: +351-253-604-409 (A.C.-P.); +351-253-601-599 (T.M.)
| |
Collapse
|
2
|
Kleppe R, Waheed Q, Ruoff P. DOPA Homeostasis by Dopamine: A Control-Theoretic View. Int J Mol Sci 2021; 22:12862. [PMID: 34884667 PMCID: PMC8657751 DOI: 10.3390/ijms222312862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 12/24/2022] Open
Abstract
Dopamine (DA) is an important signal mediator in the brain as well as in the periphery. The term "dopamine homeostasis" occasionally found in the literature refers to the fact that abnormal DA levels can be associated with a variety of neuropsychiatric disorders. An analysis of the negative feedback inhibition of tyrosine hydroxylase (TH) by DA indicates, with support from the experimental data, that the TH-DA negative feedback loop has developed to exhibit 3,4-dihydroxyphenylalanine (DOPA) homeostasis by using DA as a derepression regulator. DA levels generally decline when DOPA is removed, for example, by increased oxidative stress. Robust DOPA regulation by DA further implies that maximum vesicular DA levels are established, which appear necessary for a reliable translation of neural activity into a corresponding chemical transmitter signal. An uncontrolled continuous rise (windup) in DA occurs when Levodopa treatment exceeds a critical dose. Increased oxidative stress leads to the successive breakdown of DOPA homeostasis and to a corresponding reduction in DA levels. To keep DOPA regulation robust, the vesicular DA loading requires close to zero-order kinetics combined with a sufficiently high compensatory flux provided by TH. The protection of DOPA and DA due to a channeling complex is discussed.
Collapse
Affiliation(s)
- Rune Kleppe
- Norwegian Center for Maritime and Diving Medicine, Haukeland University Hospital, 5021 Bergen, Norway;
| | - Qaiser Waheed
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4021 Stavanger, Norway;
| | - Peter Ruoff
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4021 Stavanger, Norway;
| |
Collapse
|
3
|
Yin SJ, Lee JR, Hahn MJ, Yang JM, Qian GY, Park YD. Tyrosinase-mediated melanogenesis in melanoma cells: Array comparative genome hybridization integrating proteomics and bioinformatics studies. Int J Biol Macromol 2020; 170:150-163. [PMID: 33359255 DOI: 10.1016/j.ijbiomac.2020.12.146] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 12/17/2022]
Abstract
We investigated the tyrosinase-associated melanogenesis in melanoma cells by using OMICS techniques. We characterized the chromosome copy numbers, including Chr 11q21 where the tyrosinase gene is located, from several melanoma cell lines (TXM13, G361, and SK-MEL-28) by using array CGH. We revealed that 11q21 is stable in TXM13 cells, which is directly related to a spontaneous high melanin pigment production. Meanwhile, significant loss of copy number of 11q21 was found in G361 and SK-MEL-28. We further profiled the proteome of TXM13 cells by LC-ESI-MSMS and detected more than 900 proteins, then predicted 11 hub proteins (YWHAZ; HSP90AA1; HSPA5; HSPA1L; HSPA9; HSP90B1; HSPA1A; HSPA8; FKSG30; ACTB; DKFZp686DQ972) by using an interactomic algorithm. YWHAZ (25% interaction in the network) is thought to be a most important protein as a linking factor between tyrosinase-triggered melanogenesis and melanoma growth. Bioinformatic tools were further applied for revealing various physiologic mechanisms and functional classification. The results revealed clues for the spontaneous pigmentation capability of TXM13 cells, contrary to G361 and SK-MEL-28 cells, which commonly have depigmentation properties during subculture. Our study comparatively conducted the genome-wide screening and proteomic profiling integrated interactomics prediction for TXM13 cells and suggests new insights for studying both melanogenesis and melanoma.
Collapse
Affiliation(s)
- Shang-Jun Yin
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Jae-Rin Lee
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Myong-Joon Hahn
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Jun-Mo Yang
- Department of Dermatology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul 135-710, South Korea
| | - Guo-Ying Qian
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China.
| | - Yong-Doo Park
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China; Skin Diseases Research Center, Yangtze Delta Region Institute of Tsinghua University, 705 Yatai Road, Jiaxing 314006, PR China; Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, 705 Yatai Road, Jiaxing 314006, PR China.
| |
Collapse
|
4
|
Shahrisa A, Nikkhah M, Shirzad H, Behzadi R, Sadeghizadeh M. Enhancing Catecholase Activity of a Recombinant Human Tyrosinase Through Multiple Strategies. IRANIAN JOURNAL OF BIOTECHNOLOGY 2020; 18:e2310. [PMID: 33542935 PMCID: PMC7856396 DOI: 10.30498/ijb.2020.137293.2310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Tyrosinases are copper-containing enzymes that initiate the melanin synthesis. They catalyze the direct oxidation of L-tyrosine or L-DOPA into L-DOPAquinone. OBJECTIVES In present study, we aimed to obtain a recombinant tyrosinase with enhanced catecholase activity through site-directed mutagenesis. MATERIALS AND METHODS The coding sequence of human tyrosinase along with native signal sequence was cloned into pET-28a (+). BL-21 was used as expression host and recombinant protein was purified by Ni-NTA resins. Site-directed mutagenesis was performed on M374 residue to achieve four mutants: M374D, M374T, M374K and M374R. Chloride ions (Cl-) were removed from all solutions, and an extra amount of Cu2+ ions was added to recombinant tyrosinases by a novel technique during the purification process. Removal of Cl- ions and addition of extra Cu2+ ions tripled catecholase activity of the recombinant protein. Therefore, all mutants were obtained under similar conditions. RESULTS Although all the mutants presented higher catecholase activity in comparison to the wild-type enzyme, a significant increase in catecholase activity of the M374D mutant was observed ‒ 13.2-fold. In silico modeling suggested that a de novo hydrogen bond occurs between side chain carboxyl oxygens of D374 and H367 in M374D. In the wild-type tyrosinase, the peptide oxygen atom of M374 is responsible for hydrogen bonding with H367. CONCLUSIONS Our data suggests that M374D mutational variant has applications in different areas such as agriculture, industry, and medicine.
Collapse
Affiliation(s)
- Arman Shahrisa
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Nikkhah
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hadi Shirzad
- Department of Human Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Roudabeh Behzadi
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
5
|
Membrane-associated human tyrosinase is an enzymatically active monomeric glycoprotein. PLoS One 2018; 13:e0198247. [PMID: 29870551 PMCID: PMC5988326 DOI: 10.1371/journal.pone.0198247] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 05/16/2018] [Indexed: 11/19/2022] Open
Abstract
Human tyrosinase (hTyr) is a Type 1 membrane bound glycoenzyme that catalyzes the initial and rate-limiting steps of melanin production in the melanosome. Mutations in the Tyr gene are linked to oculocutaneous albinism type 1 (OCA1), an autosomal recessive disorder. Currently, the application of enzyme replacement therapy for a treatment of OCA1 is hampered by the absence of pure hTyr. Here, full-length hTyr (residues 1-529) was overexpressed in Trichoplusia ni larvae infected with a baculovirus, solubilized with detergent and purified using chromatography. Michaelis-Menten kinetics, enzymatic specific activity, and analytical ultracentrifugation were used to compare the hTyr in detergent with the soluble recombinant intra-melanosomal domain, hTyrCtr (residues 19-469). Active hTyr is monomeric in detergent micelles suggesting no stable interactions between protein molecules. Both, hTyr and hTyrCtr, exhibited similar enzymatic activity and ligand affinity in L-DOPA and L-Tyrosine reactions. In addition, expression in larvae is a scalable process that will allow high yield protein production. Thus, larval production of enzymatically active human tyrosinase potentially could be a useful tool in developing a cure for OCA1.
Collapse
|
6
|
Gong Y, Qin XY, Zhai YY, Hao H, Lee J, Park YD. Inhibitory effect of hesperetin on α-glucosidase: Molecular dynamics simulation integrating inhibition kinetics. Int J Biol Macromol 2017; 101:32-39. [DOI: 10.1016/j.ijbiomac.2017.03.072] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/02/2017] [Accepted: 03/14/2017] [Indexed: 12/21/2022]
|
7
|
De Deurwaerdère P, Di Giovanni G, Millan MJ. Expanding the repertoire of L-DOPA's actions: A comprehensive review of its functional neurochemistry. Prog Neurobiol 2016; 151:57-100. [PMID: 27389773 DOI: 10.1016/j.pneurobio.2016.07.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/18/2016] [Accepted: 07/03/2016] [Indexed: 01/11/2023]
Abstract
Though a multi-facetted disorder, Parkinson's disease is prototypically characterized by neurodegeneration of nigrostriatal dopaminergic neurons of the substantia nigra pars compacta, leading to a severe disruption of motor function. Accordingly, L-DOPA, the metabolic precursor of dopamine (DA), is well-established as a treatment for the motor deficits of Parkinson's disease despite long-term complications such as dyskinesia and psychiatric side-effects. Paradoxically, however, despite the traditional assumption that L-DOPA is transformed in residual striatal dopaminergic neurons into DA, the mechanism of action of L-DOPA is neither simple nor entirely clear. Herein, focussing on its influence upon extracellular DA and other neuromodulators in intact animals and experimental models of Parkinson's disease, we highlight effects other than striatal generation of DA in the functional profile of L-DOPA. While not excluding a minor role for glial cells, L-DOPA is principally transformed into DA in neurons yet, interestingly, with a more important role for serotonergic than dopaminergic projections. Moreover, in addition to the striatum, L-DOPA evokes marked increases in extracellular DA in frontal cortex, nucleus accumbens, the subthalamic nucleus and additional extra-striatal regions. In considering its functional profile, it is also important to bear in mind the marked (probably indirect) influence of L-DOPA upon cholinergic, GABAergic and glutamatergic neurons in the basal ganglia and/or cortex, while anomalous serotonergic transmission is incriminated in the emergence of L-DOPA elicited dyskinesia and psychosis. Finally, L-DOPA may exert intrinsic receptor-mediated actions independently of DA neurotransmission and can be processed into bioactive metabolites. In conclusion, L-DOPA exerts a surprisingly complex pattern of neurochemical effects of much greater scope that mere striatal transformation into DA in spared dopaminergic neurons. Their further experimental and clinical clarification should help improve both L-DOPA-based and novel strategies for controlling the motor and other symptoms of Parkinson's disease.
Collapse
Affiliation(s)
- Philippe De Deurwaerdère
- CNRS (Centre National de la Recherche Scientifique), Institut des Maladies Neurodégénératives, UMR CNRS 5293, F-33000 Bordeaux, France.
| | - Giuseppe Di Giovanni
- Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, UK; Department of Physiology & Biochemistry, Faculty of Medicine and Surgery, University of Malta, Malta
| | - Mark J Millan
- Institut de Recherche Servier, Pole for Therapeutic Innovation in Neuropsychiatry, 78290 Croissy/Seine,Paris, France
| |
Collapse
|
8
|
Yin SJ, Liu KY, Lee J, Yang JM, Qian GY, Si YX, Park YD. Effect of hydroxysafflor yellow A on tyrosinase: Integration of inhibition kinetics with computational simulation. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.09.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Hu YH, Liu X, Jia YL, Guo YJ, Wang Q, Chen QX. Inhibitory kinetics of chlorocinnamic acids on mushroom tyrosinase. J Biosci Bioeng 2014; 117:142-146. [DOI: 10.1016/j.jbiosc.2013.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/14/2013] [Accepted: 07/02/2013] [Indexed: 11/17/2022]
|
10
|
Si YX, Ji S, Fang NY, Wang W, Yang JM, Qian GY, Park YD, Lee J, Yin SJ. Effects of piperonylic acid on tyrosinase: Mixed-type inhibition kinetics and computational simulations. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
El-Gebali S, Bentz S, Hediger MA, Anderle P. Solute carriers (SLCs) in cancer. Mol Aspects Med 2013; 34:719-34. [PMID: 23506905 DOI: 10.1016/j.mam.2012.12.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/13/2012] [Indexed: 12/26/2022]
Abstract
During tumor progression cells acquire an altered metabolism, either as a cause or as a consequence of an increased need of energy and nutrients. All four major classes of macromolecules are affected: carbohydrates, proteins, lipids and nucleic acids. As a result of the changed needs, solute carriers (SLCs) which are the major transporters of these molecules are differently expressed. This renders them important targets in the treatment of cancer. Blocking or activating SLCs is one possible therapeutic strategy. For example, some SLCs are upregulated in tumor cells due to the increased demand for energy and nutritional needs. Thus, blocking them and turning off the delivery of fuel or nutrients could be one way to interfere with tumor progression. Specific drug delivery to cancer cells via transporters is another approach. Some SLCs are also interesting as chemosensitizing targets because blocking or activating them may result in an altered response to chemotherapy. In this review we summarize the roles of SLCs in cancer therapy and specifically their potential as direct or indirect targets, as drug carriers or as chemosensitizing targets.
Collapse
Affiliation(s)
- Sara El-Gebali
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | | | | | | |
Collapse
|
12
|
Wang ZJ, Ji S, Si YX, Yang JM, Qian GY, Lee J, Yin SJ. The effect of validamycin A on tyrosinase: Inhibition kinetics and computational simulation. Int J Biol Macromol 2013; 55:15-23. [DOI: 10.1016/j.ijbiomac.2012.12.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 12/23/2012] [Accepted: 12/25/2012] [Indexed: 10/27/2022]
|
13
|
Toward the inhibitory effect of acetylsalicylic acid on tyrosinase: Integrating kinetics studies and computational simulations. Process Biochem 2013. [DOI: 10.1016/j.procbio.2012.12.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
14
|
Si YX, Ji S, Wang W, Fang NY, Jin QX, Park YD, Qian GY, Lee J, Han HY, Yin SJ. Effects of boldine on tyrosinase: Inhibition kinetics and computational simulation. Process Biochem 2013. [DOI: 10.1016/j.procbio.2012.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Zeng YF, Lü ZR, Yan L, Oh S, Yang JM, Lee J, Ye ZM. Towards alpha-glucosidase folding induced by trifluoroethanol: Kinetics and computational prediction. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Zeng YF, Lee J, Si YX, Yan L, Kim TR, Qian GY, Lü ZR, Ye ZM, Yin SJ. Inhibitory effect of Zn2+ on α-glucosidase: Inhibition kinetics and molecular dynamics simulation. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.10.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Wang ZJ, Si YX, Oh S, Yang JM, Yin SJ, Park YD, Lee J, Qian GY. The effect of fucoidan on tyrosinase: computational molecular dynamics integrating inhibition kinetics. J Biomol Struct Dyn 2012; 30:460-73. [PMID: 22694253 DOI: 10.1080/07391102.2012.682211] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fucoidan is a complex sulfated polysaccharide extracted from brown seaweed and has a wide variety of biological activities. In this study, we investigated the inhibitory effect of fucoidan on tyrosinase via a combination of inhibition kinetics and computational simulations. Fucoidan reversibly inhibited tyrosinase in a mixed-type manner. Time-interval kinetics showed that the inhibition was processed as first order with biphasic processes. For further insight, we simulated dockings with various sizes of molecular models (monomer to decamer) of fucoidan and showed that the best binding energy change results were obtained from the pentamer (-1.89 kcal/mol) and the hexamer (-1.97 kcal/mol) models of AutoDock Vina. The molecular dynamics simulation confirmed the binding mechanisms between tyrosinase and fucoidan and suggested that fucoidan mostly interacts with several residues including copper ions located in the active site. Our study suggests that fucoidan might be a potential natural antipigment agent.
Collapse
Affiliation(s)
- Zhi-Jiang Wang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Alijanianzadeh M, Saboury AA, Ganjali MR, Hadi-Alijanvand H, Moosavi-Movahedi AA. Inhibition of mushroom tyrosinase by a newly synthesized ligand: inhibition kinetics and computational simulations. J Biomol Struct Dyn 2012; 30:448-59. [PMID: 22686596 DOI: 10.1080/07391102.2012.682210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Alterations in the synthesis of melanin contribute to a number of diseases; therefore, the design of new tyrosinase inhibitors is very important. Mushroom tyrosinase (MT) is a metalloenzyme, which plays an important role in melanin biosynthesis. In this study, the inhibitory effect of a novel designed compound, i.e. 2-((1Z)-(2-(2,4-dinitrophenyl)hydrazin-1-ylidene)methyl)phenol, as a specific ligand which can bind to the copper ion of MT, has been assessed. The ligand was found to competitively inhibit both the cresolase and catecholase activities of MT, with small inhibition constants of 2.8 and 2.6 μM, respectively. Intrinsic fluorescence studies were performed to gain more information on the binding constants. Docking results indicated that the ligand binds to copper ions in the active site of MT via the OH group of the ligand. The ligand makes four hydrogen bonds with aspartic acid and one hydrogen bond with the histidine residue in the active site. Molecular dynamics results show that ligand binds to the MT via both electrostatic and hydrophobic interactions with its different parts.
Collapse
|
19
|
Hu WJ, Yan L, Park D, Jeong HO, Chung HY, Yang JM, Ye ZM, Qian GY. Kinetic, structural and molecular docking studies on the inhibition of tyrosinase induced by arabinose. Int J Biol Macromol 2012; 50:694-700. [DOI: 10.1016/j.ijbiomac.2011.12.035] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 11/26/2011] [Accepted: 12/29/2011] [Indexed: 01/11/2023]
|
20
|
Si YX, Yin SJ, Oh S, Wang ZJ, Ye S, Yan L, Yang JM, Park YD, Lee J, Qian GY. An Integrated Study of Tyrosinase Inhibition by Rutin: Progress using a Computational Simulation. J Biomol Struct Dyn 2012; 29:999-1012. [DOI: 10.1080/073911012010525028] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
21
|
Effects of Isorhamnetin on Tyrosinase: Inhibition Kinetics and Computational Simulation. Biosci Biotechnol Biochem 2012; 76:1091-7. [DOI: 10.1271/bbb.110910] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Yin SJ, Si YX, Wang ZJ, Wang SF, Oh S, Lee S, Sim SM, Yang JM, Qian GY, Lee J, Park YD. The Effect of Thiobarbituric Acid on Tyrosinase: Inhibition Kinetics and Computational Simulation. J Biomol Struct Dyn 2011; 29:463-70. [DOI: 10.1080/07391102.2011.10507398] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
23
|
Onojafe IF, Adams DR, Simeonov DR, Zhang J, Chan CC, Bernardini IM, Sergeev YV, Dolinska MB, Alur RP, Brilliant MH, Gahl WA, Brooks BP. Nitisinone improves eye and skin pigmentation defects in a mouse model of oculocutaneous albinism. J Clin Invest 2011; 121:3914-23. [PMID: 21968110 DOI: 10.1172/jci59372] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 08/03/2011] [Indexed: 11/17/2022] Open
Abstract
Mutation of the tyrosinase gene (TYR) causes oculocutaneous albinism, type 1 (OCA1), a condition characterized by reduced skin and eye melanin pigmentation and by vision loss. The retinal pigment epithelium influences postnatal visual development. Therefore, increasing ocular pigmentation in patients with OCA1 might enhance visual function. There are 2 forms of OCA1, OCA-1A and OCA-1B. Individuals with the former lack functional tyrosinase and therefore lack melanin, while individuals with the latter produce some melanin. We hypothesized that increasing plasma tyrosine concentrations using nitisinone, an FDA-approved inhibitor of tyrosine degradation, could stabilize tyrosinase and improve pigmentation in individuals with OCA1. Here, we tested this hypothesis in mice homozygous for either the Tyrc-2J null allele or the Tyrc-h allele, which model OCA-1A and OCA-1B, respectively. Only nitisinone-treated Tyrc-h/c-h mice manifested increased pigmentation in their fur and irides and had more pigmented melanosomes. High levels of tyrosine improved the stability and enzymatic function of the Tyrc-h protein and also increased overall melanin levels in melanocytes from a human with OCA-1B. These results suggest that the use of nitisinone in OCA-1B patients could improve their pigmentation and potentially ameliorate vision loss.
Collapse
Affiliation(s)
- Ighovie F Onojafe
- Unit on Pediatric, Developmental, and Genetic Eye Disease, National Eye Institute, NIH, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Yin SJ, Si YX, Qian GY. Inhibitory effect of phthalic Acid on tyrosinase: the mixed-type inhibition and docking simulations. Enzyme Res 2011; 2011:294724. [PMID: 21637327 PMCID: PMC3102342 DOI: 10.4061/2011/294724] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 03/23/2011] [Indexed: 11/25/2022] Open
Abstract
Tyrosinase inhibition studies are needed due to the medicinal applications such as hyperpigmentation. For probing effective inhibitors of tyrosinase, a combination of computational prediction and enzymatic assay via kinetics was important. We predicted the 3D structure of tyrosinase, used a docking algorithm to simulate binding between tyrosinase and phthalic acid (PA), and studied the reversible inhibition of tyrosinase by PA. PA inhibited tyrosinase in a mixed-type manner with a Ki = 65.84 ± 1.10 mM. Measurements of intrinsic and ANS-binding fluorescences showed that PA induced changes in the active site structure via indirect binding. Simulation was successful (binding energies for Dock6.3 = −27.22 and AutoDock4.2 = −0.97 kcal/mol), suggesting that PA interacts with LEU73 residue that is predicted commonly by both programs. The present study suggested that the strategy of predicting tyrosinase inhibition based on hydroxyl groups and orientation may prove useful for screening of potential tyrosinase inhibitors.
Collapse
Affiliation(s)
- Shang-Jun Yin
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | | | | |
Collapse
|
25
|
Mixed-Type Inhibition of Tyrosinase from Agaricus bisporus by Terephthalic Acid: Computational Simulations and Kinetics. Protein J 2011; 30:273-80. [DOI: 10.1007/s10930-011-9329-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
26
|
Si YX, Yin SJ, Park D, Chung HY, Yan L, Lü ZR, Zhou HM, Yang JM, Qian GY, Park YD. Tyrosinase inhibition by isophthalic acid: Kinetics and computational simulation. Int J Biol Macromol 2011; 48:700-4. [DOI: 10.1016/j.ijbiomac.2011.02.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 02/22/2011] [Accepted: 02/22/2011] [Indexed: 01/31/2023]
|
27
|
Lü ZR, Seo E, Yan L, Yin SJ, Si YX, Qian GY, Park YD, Yang JM. High-Throughput Integrated Analyses for the Tyrosinase-Induced Melanogenesis: Microarray, Proteomics and Interactomics Studies. J Biomol Struct Dyn 2010; 28:259-76. [DOI: 10.1080/07391102.2010.10507358] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
28
|
Cho IH, Lü ZR, Yu JR, Park YD, Yang JM, Hahn MJ, Zou F. Towards Profiling the Gene Expression of Tyrosinase-induced Melanogenesis in HEK293 Cells: a Functional DNA Chip Microarray and Interactomics Studies. J Biomol Struct Dyn 2009; 27:331-46. [DOI: 10.1080/07391102.2009.10507320] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
29
|
The Effect of Trifluoroethanol on Tyrosinase Activity and Conformation: Inhibition Kinetics and Computational Simulations. Appl Biochem Biotechnol 2009; 160:1896-908. [DOI: 10.1007/s12010-009-8730-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 07/26/2009] [Indexed: 10/20/2022]
|