1
|
Kuldeep J, Chaturvedi N, Gupta D. Novel molecular inhibitor design for Plasmodium falciparum Lactate dehydrogenase enzyme using machine learning generated library of diverse compounds. Mol Divers 2024; 28:2331-2344. [PMID: 39162960 DOI: 10.1007/s11030-024-10960-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024]
Abstract
Generative machine learning models offer a novel strategy for chemogenomics and de novo drug design, allowing researchers to streamline their exploration of the chemical space and concentrate on specific regions of interest. In cases with limited inhibitor data available for the target of interest, de novo drug design plays a crucial role. In this study, we utilized a package called 'mollib,' trained on ChEMBL data containing approximately 365,000 bioactive molecules. By leveraging transfer learning techniques with this package, we generated a series of compounds, starting from five initial compounds, which are potential Plasmodium falciparum (Pf) Lactate dehydrogenase inhibitors. The resulting compounds exhibit structural diversity and hold promise as potential novel Pf Lactate dehydrogenase inhibitors.
Collapse
Affiliation(s)
- Jitendra Kuldeep
- Translational Bioinformatics Group, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067, India
| | - Neeraj Chaturvedi
- Translational Bioinformatics Group, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067, India
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067, India.
| |
Collapse
|
2
|
Lactate dehydrogenase and malate dehydrogenase: Potential antiparasitic targets for drug development studies. Bioorg Med Chem 2021; 50:116458. [PMID: 34687983 DOI: 10.1016/j.bmc.2021.116458] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/27/2021] [Accepted: 10/05/2021] [Indexed: 12/24/2022]
Abstract
Parasitic diseases remain a major public health concern for humans, claiming millions of lives annually. Although different treatments are required for these diseases, drug usage is limited due to the development of resistance and toxicity, which necessitate alternative therapies. It has been shown in the literature that parasitic lactate dehydrogenases (LDH) and malate dehydrogenases (MDH) have unique pharmacological selective and specificity properties compared to other isoforms, thus highlighting them as viable therapeutic targets involved in aerobic and anaerobic glycolytic pathways. LDH and MDH are important therapeutic targets for invasive parasites because they play a critical role in the progression and development of parasitic diseases. Any strategy to impede these enzymes would be fatal to the parasites, paving the way to develop and discover novel antiparasitic agents. This review aims to highlight the importance of parasitic LDH and MDH as therapeutic drug targets in selected obligate apicoplast parasites. To the best of our knowledge, this review presents the first comprehensive review of LDH and MDH as potential antiparasitic targets for drug development studies.
Collapse
|
3
|
Fernandes VDS, da Rosa R, Zimmermann LA, Rogério KR, Kümmerle AE, Bernardes LSC, Graebin CS. Antiprotozoal agents: How have they changed over a decade? Arch Pharm (Weinheim) 2021; 355:e2100338. [PMID: 34661935 DOI: 10.1002/ardp.202100338] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/21/2022]
Abstract
Neglected tropical diseases are a diverse group of communicable diseases that are endemic in low- or low-to-middle-income countries located in tropical and subtropical zones. The number and availability of drugs for treating these diseases are low, the administration route is inconvenient in some cases, and most of them have safety, efficacy, or adverse/toxic reaction issues. The need for developing new drugs to deal with these issues is clear, but one of the most drastic consequences of this negligence is the lack of interest in the research and development of new therapeutic options among major pharmaceutical companies. Positive changes have been achieved over the last few years, although the overall situation remains alarming. After more than one decade since the original work reviewing antiprotozoal agents came to light, now it is time to question ourselves: How has the scenario for the treatment of protozoal diseases such as malaria, leishmaniasis, human African trypanosomiasis, and American trypanosomiasis changed? This review covers the last decade in terms of the drugs currently available for the treatment of these diseases as well as the clinical candidates being currently investigated.
Collapse
Affiliation(s)
- Vitória de Souza Fernandes
- Department of Pharmaceutical Sciences, Pharmaceutical and Medicinal Chemistry Laboratory, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Rafael da Rosa
- Department of Organic Chemistry, Medicinal Chemistry and Molecular Diversity Laboratory, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | - Lara A Zimmermann
- Department of Organic Chemistry, Medicinal Chemistry and Molecular Diversity Laboratory, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | - Kamilla R Rogério
- Department of Pharmaceutical Sciences, Pharmaceutical and Medicinal Chemistry Laboratory, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Arthur E Kümmerle
- Department of Pharmaceutical Sciences, Pharmaceutical and Medicinal Chemistry Laboratory, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Lilian S C Bernardes
- Department of Organic Chemistry, Medicinal Chemistry and Molecular Diversity Laboratory, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | - Cedric S Graebin
- Department of Pharmaceutical Sciences, Pharmaceutical and Medicinal Chemistry Laboratory, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
4
|
Assis LC, de Castro AA, de Jesus JPA, Nepovimova E, Kuca K, Ramalho TC, La Porta FA. Computational evidence for nitro derivatives of quinoline and quinoline N-oxide as low-cost alternative for the treatment of SARS-CoV-2 infection. Sci Rep 2021; 11:6397. [PMID: 33737545 PMCID: PMC7973710 DOI: 10.1038/s41598-021-85280-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 02/18/2021] [Indexed: 12/20/2022] Open
Abstract
A new and more aggressive strain of coronavirus, known as SARS-CoV-2, which is highly contagious, has rapidly spread across the planet within a short period of time. Due to its high transmission rate and the significant time–space between infection and manifestation of symptoms, the WHO recently declared this a pandemic. Because of the exponentially growing number of new cases of both infections and deaths, development of new therapeutic options to help fight this pandemic is urgently needed. The target molecules of this study were the nitro derivatives of quinoline and quinoline N-oxide. Computational design at the DFT level, docking studies, and molecular dynamics methods as a well-reasoned strategy will aid in elucidating the fundamental physicochemical properties and molecular functions of a diversity of compounds, directly accelerating the process of discovering new drugs. In this study, we discovered isomers based on the nitro derivatives of quinoline and quinoline N-oxide, which are biologically active compounds and may be low-cost alternatives for the treatment of infections induced by SARS-CoV-2.
Collapse
Affiliation(s)
- Letícia C Assis
- Department of Chemistry, Federal University of Lavras, Lavras, Minas Gerais, CEP 37200-000, Brazil
| | - Alexandre A de Castro
- Department of Chemistry, Federal University of Lavras, Lavras, Minas Gerais, CEP 37200-000, Brazil
| | - João P A de Jesus
- Laboratório de Nanotecnologia E Química Computacional, Universidade Tecnológica Federal Do Paraná, Londrina, PR, 86036-370, Brazil
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Králové, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Králové, Czech Republic.
| | - Teodorico C Ramalho
- Department of Chemistry, Federal University of Lavras, Lavras, Minas Gerais, CEP 37200-000, Brazil.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Králové, Czech Republic
| | - Felipe A La Porta
- Laboratório de Nanotecnologia E Química Computacional, Universidade Tecnológica Federal Do Paraná, Londrina, PR, 86036-370, Brazil.
| |
Collapse
|
5
|
Laganá G, Barreca D, Calderaro A, Bellocco E. Lactate Dehydrogenase Inhibition: Biochemical Relevance and Therapeutical Potential. Curr Med Chem 2019; 26:3242-3252. [PMID: 28183261 DOI: 10.2174/0929867324666170209103444] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 01/21/2017] [Accepted: 01/30/2017] [Indexed: 12/25/2022]
Abstract
Lactate dehydrogenase (LHD) is a key enzyme of anaerobic metabolism in almost all living organisms and it is also a functional checkpoint for glucose restoration during gluconeogenesis and single-stranded DNA metabolism. This enzyme has a well preserved structure during evolution and among the species, with little, but sometimes very useful, changes in the amino acid sequence, which makes it an attractive target for the design and construction of functional molecules able to modulate its catalytic potential and expression. Research has focused mainly on the selection of modulator especially as far as LDH isozymes (especially LDH-5) and lactate dehydrogenases of Plasmodium falciparum (pfLDH) are concerned. This review summarizes the recent advances in the design and development of inhibitors, pointing out their specificity and therapeutic potentials.
Collapse
Affiliation(s)
- Giuseppina Laganá
- University of Messina, Dept. of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale F. Stagno d'Alcontres 31, Messina, Italy
| | - Davide Barreca
- University of Messina, Dept. of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale F. Stagno d'Alcontres 31, Messina, Italy
| | - Antonella Calderaro
- University of Messina, Dept. of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale F. Stagno d'Alcontres 31, Messina, Italy
| | - Ersilia Bellocco
- University of Messina, Dept. of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale F. Stagno d'Alcontres 31, Messina, Italy
| |
Collapse
|
6
|
Aguiar ACC, Murce E, Cortopassi WA, Pimentel AS, Almeida MMFS, Barros DCS, Guedes JS, Meneghetti MR, Krettli AU. Chloroquine analogs as antimalarial candidates with potent in vitro and in vivo activity. Int J Parasitol Drugs Drug Resist 2018; 8:459-464. [PMID: 30396013 PMCID: PMC6215995 DOI: 10.1016/j.ijpddr.2018.10.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/11/2018] [Accepted: 10/13/2018] [Indexed: 11/18/2022]
Abstract
In spite of recent efforts to eradicate malaria in the world, this parasitic disease is still considered a major public health problem, with a total of 216 million cases of malaria and 445,000 deaths in 2016. Artemisinin-based combination therapies remain effective in most parts of the world, but recent cases of resistance in Southeast Asia have urged for novel approaches to treat malaria caused by Plasmodium falciparum. In this work, we present chloroquine analogs that exhibited high activity against sensitive and chloroquine-resistant P. falciparum blood parasites and were also active against P. berghei infected mice. Among the compounds tested, DAQ, a chloroquine analog with a more linear side chain, was shown to be the most active in vitro and in vivo, with low cytotoxicity, and therefore may serve as the basis for the development of more effective chloroquine analogs to aid malaria eradication.
Collapse
Affiliation(s)
- Anna C C Aguiar
- Centro de Pesquisas Rene Rachou, Laboratório de Malária, Belo Horizonte, Brazil
| | - Erika Murce
- Pontifical Catholic University of Rio de Janeiro, Department of Chemistry, Rio de Janeiro, Brazil
| | - Wilian A Cortopassi
- University of California, San Francisco, Department of Pharmaceutical Chemistry, USA.
| | - Andre S Pimentel
- Pontifical Catholic University of Rio de Janeiro, Department of Chemistry, Rio de Janeiro, Brazil
| | - Maria M F S Almeida
- Universidade Federal de Alagoas, Instituto de Química e Biotecnologia, Maceió, Brazil
| | - Daniele C S Barros
- Universidade Federal de Alagoas, Instituto de Química e Biotecnologia, Maceió, Brazil
| | - Jéssica S Guedes
- Universidade Federal de Alagoas, Instituto de Química e Biotecnologia, Maceió, Brazil
| | - Mario R Meneghetti
- Universidade Federal de Alagoas, Instituto de Química e Biotecnologia, Maceió, Brazil
| | - Antoniana U Krettli
- Centro de Pesquisas Rene Rachou, Laboratório de Malária, Belo Horizonte, Brazil
| |
Collapse
|
7
|
Cortopassi WA, Celmar Costa Franca T, Krettli AU. A systems biology approach to antimalarial drug discovery. Expert Opin Drug Discov 2018; 13:617-626. [DOI: 10.1080/17460441.2018.1471056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Wilian Augusto Cortopassi
- Department of Pharmaceutical Chemistry, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | | | | |
Collapse
|
8
|
Parthiban A, Muthukumaran J, Manhas A, Srivastava K, Krishna R, Rao HSP. Synthesis, in vitro and in silico antimalarial activity of 7-chloroquinoline and 4H-chromene conjugates. Bioorg Med Chem Lett 2015; 25:4657-63. [PMID: 26338359 DOI: 10.1016/j.bmcl.2015.08.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/23/2015] [Accepted: 08/11/2015] [Indexed: 10/23/2022]
Abstract
A new series of chloroquinoline-4H-chromene conjugates incorporating piperizine or azipane tethers were synthesized and their anti-malarial activity were evaluated against two Plasmodium falciparum strains namely 3D7 chloroquine sensitive (CQS) and K1 chloroquine resistant (CQR). Chloroquine was used as the standard and also reference for comparison. The conjugates exhibit intense UV absorption with λmax located at 342 nm (log ε=4.0), 254 nm (log ε=4.2), 223 nm (log ε=4.4) which can be used to spectrometrically track the molecules even in trace amounts. Among all the synthetic compounds, two molecules namely 6-nitro and N-piperazine groups incorporated 7d and 6-chloro and N-azapane incorporated 15b chloroquinoline-4H-chromene conjugates showed significant anti-malarial activity against two strains (3D7 and K1) of P. falciparum. These values are lesser than the values of standard antimalarial compound. Molecular docking results suggested that these two compounds showing strong binding affinity with P. falciparum lactate dehydrogenase (PfLDH) and also they occupy the co-factor position which indicated that they could be the potent inhibitors for dreadful disease malaria and specifically attack the glycolytic pathway in parasite for energy production.
Collapse
Affiliation(s)
- A Parthiban
- Department of Chemistry, School of Physical, Chemical and Applied Sciences, Pondicherry University, Puducherry 605 014, India
| | - J Muthukumaran
- UCIBIO@REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Ashan Manhas
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Kumkum Srivastava
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| | - R Krishna
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry 605 014, India.
| | - H Surya Prakash Rao
- Department of Chemistry, School of Physical, Chemical and Applied Sciences, Pondicherry University, Puducherry 605 014, India.
| |
Collapse
|
9
|
de Souza NB, Carmo AML, da Silva AD, França TCC, Krettli AU. Antiplasmodial activity of chloroquine analogs against chloroquine-resistant parasites, docking studies and mechanisms of drug action. Malar J 2014; 13:469. [PMID: 25440372 PMCID: PMC4265395 DOI: 10.1186/1475-2875-13-469] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 11/04/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Given the threat of resistance of human malaria parasites, including to artemisinin derivatives, new agents are needed. Chloroquine (CQ) has been the most widely used anti-malarial, and new analogs (CQAns) presenting alkynes and side chain variations with high antiplasmodial activity were evaluated. METHODS Six diaminealkyne and diaminedialkyne CQAns were evaluated against CQ-resistant (CQ-R) (W2) and CQ-sensitive (CQ-S) (3D7) Plasmodium falciparum parasites in culture. Drug cytotoxicity to a human hepatoma cell line (HepG2) evaluated, allowed to calculate the drug selectivity index (SI), a ratio of drug toxicity to activity in vitro. The CQAns were re-evaluated against CQ-resistant and -sensitive P. berghei parasites in mice using the suppressive test. Docking studies with the CQAns and the human (HssLDH) or plasmodial lactate dehydrogenase (PfLDH) enzymes, and, a β-haematin formation assay were performed using a lipid as a catalyst to promote crystallization in vitro. RESULTS All tested CQAns were highly active against CQ-R P. falciparum parasites, exhibiting half-maximal inhibitory concentration (IC(50)) values below 1 μΜ. CQAn33 and CQAn37 had the highest SIs. Docking studies revealed the best conformation of CQAn33 inside the binding pocket of PfLDH; specificity between the residues involved in H-bonds of the PfLDH with CQAn37. CQAn33 and CQAn37 were also shown to be weak inhibitors of PfLDH. CQAn33 and CQAn37 inhibited β-haematin formation with either a similar or a 2-fold higher IC(50) value, respectively, compared with CQ. CQAn37 was active in mice with P. berghei, reducing parasitaemia by 100%. CQAn33, -39 and -45 also inhibited CQ-resistant P. berghei parasites in mice, whereas high doses of CQ were inactive. CONCLUSIONS The presence of an alkyne group and the size of the side chain affected anti-P. falciparum activity in vitro. Docking studies suggested a mechanism of action other than PfLDH inhibition. The β-haematin assay suggested the presence of an additional mechanism of action of CQAn33 and CQAn37. Tests with CQAn34, CQAn37, CQAn39 and CQAn45 confirmed previous results against P. berghei malaria in mice, and CQAn33, 39 and 45 were active against CQ-resistant parasites, but CQAn28 and CQAn34 were not. The result likely reflects structure-activity relationships related to the resistant phenotype.
Collapse
Affiliation(s)
- Nicolli B de Souza
- />Centro de Pesquisas René Rachou, FIOCRUZ Minas, Av. Augusto de Lima 1715, Belo Horizonte, 30190-002 MG Brazil
| | - Arturene ML Carmo
- />Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer s/n, Juiz de Fora, 36036-900 MG Brazil
| | - Adilson D da Silva
- />Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer s/n, Juiz de Fora, 36036-900 MG Brazil
| | - Tanos CC França
- />Laboratório de Modelagem Molecular Aplicada à Defesa Química e Biológica, Instituto Militar de Engenharia, Praça General Tibúrcio 80, Rio de Janeiro, 22290-270 RJ Brazil
| | - Antoniana U Krettli
- />Centro de Pesquisas René Rachou, FIOCRUZ Minas, Av. Augusto de Lima 1715, Belo Horizonte, 30190-002 MG Brazil
| |
Collapse
|
10
|
Reemergence of chloroquine (CQ) analogs as multi-targeting antimalarial agents: a review. Eur J Med Chem 2014; 90:280-95. [PMID: 25461328 DOI: 10.1016/j.ejmech.2014.11.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 11/04/2014] [Accepted: 11/11/2014] [Indexed: 11/22/2022]
Abstract
Amongst several communicable diseases (CDs), malaria is one of the deadliest parasitic disease all over the world, particularly in African and Asian countries. To curb this menace, numbers of antimalarial agents are being sold as over the counter (OTC) drugs. Chloroquine (CQ) is one of them and is one of the oldest, cheapest, and easily available synthetic agents used to curb malaria. Unfortunately, after the reports of CQ-resistance against different strains of malarial parasite strains worldwide, scientist are continuously modifying the core structure of CQ to get an efficient drug. Interestingly, several new drugs have been emerged in due course having unique and enhanced properties (like dual stage inhibitors, resistance reversing ability etc.) and are ready to enter into the clinical trial. In this course, some new agents have also been discovered which are; though inactive against CQS strain, highly active against CQR strains. The present article describes the role of modification of the core structure of CQ and its effects on the biological activities. Moreover, the attempt has also been made to predict the future prospects of such drugs to reemerge as antimalarial agents.
Collapse
|
11
|
Thillainayagam M, Pandian L, Murugan KK, Vijayaparthasarathi V, Sundaramoorthy S, Anbarasu A, Ramaiah S. In silicoanalysis reveals the anti-malarial potential of quinolinyl chalcone derivatives. J Biomol Struct Dyn 2014; 33:961-77. [DOI: 10.1080/07391102.2014.920277] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
ITP Adjuster 1.0: A New Utility Program to Adjust Charges in the Topology Files Generated by the PRODRG Server. J CHEM-NY 2013. [DOI: 10.1155/2013/803151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The suitable computation of accurate atomic charges for the GROMACS topology *.itp files of small molecules, generated in the PRODRG server, has been a tricky task nowadays because it does not calculate atomic charges using an ab initio method. Usually additional steps of structure optimization and charges calculation, followed by a tedious manual replacement of atomic charges in the *.itp file, are needed. In order to assist this task, we report here the ITP Adjuster 1.0, a utility program developed to perform the replacement of the PRODRG charges in the *.itp files of small molecules by ab initio charges.
Collapse
|
13
|
Chen KC, Chang SS, Huang HJ, Lin TL, Wu YJ, Chen CYC. Three-in-one agonists for PPAR-α, PPAR-γ, and PPAR-δ from traditional Chinese medicine. J Biomol Struct Dyn 2012; 30:662-83. [DOI: 10.1080/07391102.2012.689699] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Misra N, Patra MC, Panda PK, Sukla LB, Mishra BK. Homology modeling and docking studies of FabH (β-ketoacyl-ACP synthase III) enzyme involved in type II fatty acid biosynthesis of Chlorella variabilis: a potential algal feedstock for biofuel production. J Biomol Struct Dyn 2012; 31:241-57. [PMID: 22830394 DOI: 10.1080/07391102.2012.698247] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The concept of using microalgae as an alternative renewable source of biofuel has gained much importance in recent years. However, its commercial feasibility is still an area of concern for researchers. Unraveling the fatty acid metabolic pathway and understanding structural features of various key enzymes regulating the process will provide valuable insights to target microalgae for augmented oil content. FabH (β-ketoacyl-acyl carrier protein synthase; KAS III) is a condensing enzyme catalyzing the initial elongation step of type II fatty acid biosynthetic process and acyl carrier protein (ACP) facilitates the shuttling of the fatty acyl intermediates to the active site of the respective enzymes in the pathway. In the present study, a reliable three-dimensional structure of FabH from Chlorella variabilis, an oleaginous green microalga was modeled and subsequently the key residues involved in substrate binding were determined by employing protein-protein docking and molecular dynamics (MD) simulation protocols. The FabH-ACP complex having the lowest docking energy score showed the binding of ACP to the electropositive FabH surface with strong hydrogen bond interactions. The MD simulation results indicated that the substrate-complexed FabH adopted a more stable conformation than the free enzyme. Further, the FabH structure retained its stability throughout the simulation although noticeable displacements were observed in the loop regions. Molecular simulation studies suggested the importance of crucial hydrogen bonding of the conserved Arg(91) of FabH with Glu(53) and Asp(56) of ACP for exhibiting high affinity between the enzyme and substrate. The molecular modeling results are consistent with available experimental results on the flexibility of FabH and the present study provides first in silico insights into the structural and dynamical aspect of catalytic mechanism of FabH, which could be used for further site-specific mutagenic experiments to develop engineered high oil-yielding microalgal strains for biofuel production.
Collapse
Affiliation(s)
- Namrata Misra
- Bioresources Engineering Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751 013 Odisha, India
| | | | | | | | | |
Collapse
|
15
|
Aguiar ACC, Santos RDM, Figueiredo FJB, Cortopassi WA, Pimentel AS, França TCC, Meneghetti MR, Krettli AU. Antimalarial activity and mechanisms of action of two novel 4-aminoquinolines against chloroquine-resistant parasites. PLoS One 2012; 7:e37259. [PMID: 22649514 PMCID: PMC3359361 DOI: 10.1371/journal.pone.0037259] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 04/19/2012] [Indexed: 12/05/2022] Open
Abstract
Chloroquine (CQ) is a cost effective antimalarial drug with a relatively good safety profile (or therapeutic index). However, CQ is no longer used alone to treat patients with Plasmodium falciparum due to the emergence and spread of CQ-resistant strains, also reported for P. vivax. Despite CQ resistance, novel drug candidates based on the structure of CQ continue to be considered, as in the present work. One CQ analog was synthesized as monoquinoline (MAQ) and compared with a previously synthesized bisquinoline (BAQ), both tested against P. falciparum in vitro and against P. berghei in mice, then evaluated in vitro for their cytotoxicity and ability to inhibit hemozoin formation. Their interactions with residues present in the NADH binding site of P falciparum lactate dehydrogenase were evaluated using docking analysis software. Both compounds were active in the nanomolar range evaluated through the HRPII and hypoxanthine tests. MAQ and BAQ derivatives were not toxic, and both compounds significantly inhibited hemozoin formation, in a dose-dependent manner. MAQ had a higher selectivity index than BAQ and both compounds were weak PfLDH inhibitors, a result previously reported also for CQ. Taken together, the two CQ analogues represent promising molecules which seem to act in a crucial point for the parasite, inhibiting hemozoin formation.
Collapse
Affiliation(s)
- Anna Caroline Campos Aguiar
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
- Programa de Pós Graduação em Medicina Molecular, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Wilian Augusto Cortopassi
- Laboratório de Modelagem Molecular Aplicada a Defesa Química e Biológica (LMDQB), Instituto Militar de Engenharia, Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - André Silva Pimentel
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tanos Celmar Costa França
- Laboratório de Modelagem Molecular Aplicada a Defesa Química e Biológica (LMDQB), Instituto Militar de Engenharia, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail: (AUK); (MRM); (TCCF)
| | - Mario Roberto Meneghetti
- Instituto de Química e Biotecnologia, Universidade Federal do Alagoas, Maceió, Alagoas, Brazil
- * E-mail: (AUK); (MRM); (TCCF)
| | - Antoniana Ursine Krettli
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
- Programa de Pós Graduação em Medicina Molecular, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail: (AUK); (MRM); (TCCF)
| |
Collapse
|