1
|
Figueroa-Villar JD, Petronilho EC, Kuca K, Franca TCC. Review about Structure and Evaluation of Reactivators of Acetylcholinesterase Inhibited with Neurotoxic Organophosphorus Compounds. Curr Med Chem 2021; 28:1422-1442. [PMID: 32334495 DOI: 10.2174/0929867327666200425213215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/08/2020] [Accepted: 04/01/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Neurotoxic chemical warfare agents can be classified as some of the most dangerous chemicals for humanity. The most effective of those agents are the Organophosphates (OPs) capable of restricting the enzyme Acetylcholinesterase (AChE), which in turn, controls the nerve impulse transmission. When AChE is inhibited by OPs, its reactivation can be usually performed through cationic oximes. However, until today, it has not been developed one universal defense agent, with complete effective reactivation activity for AChE inhibited by any of the many types of existing neurotoxic OPs. For this reason, before treating people intoxicated by an OP, it is necessary to determine the neurotoxic compound that was used for contamination, in order to select the most effective oxime. Unfortunately, this task usually requires a relatively long time, raising the possibility of death. Cationic oximes also display a limited capacity of permeating the Blood-Brain Barrier (BBB). This fact compromises their capacity to reactivating AChE inside the nervous system. METHODS We performed a comprehensive search on the data about OPs available on the scientific literature today in order to cover all the main drawbacks still faced in the research for the development of effective antidotes against those compounds. RESULTS Therefore, this review about neurotoxic OPs and the reactivation of AChE, provides insights for the new agents' development. The most expected defense agent is a molecule without toxicity and effective to reactivate AChE inhibited by all neurotoxic OPs. CONCLUSION To develop these new agents, the application of diverse scientific areas of research, especially theoretical procedures as computational science (computer simulation, docking and dynamics), organic synthesis, spectroscopic methodologies, biology, biochemical and biophysical information, medicinal chemistry, pharmacology and toxicology, is necessary.
Collapse
Affiliation(s)
- José Daniel Figueroa-Villar
- Medicinal Chemistry Group, Department of Chemical Engineering, Military Institute of Engineering, 22270- 090, Rio de Janeiro, Brazil
| | - Elaine C Petronilho
- Medicinal Chemistry Group, Department of Chemical Engineering, Military Institute of Engineering, 22270- 090, Rio de Janeiro, Brazil
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové 50003, Czech Republic
| | - Tanos C C Franca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové 50003, Czech Republic
| |
Collapse
|
2
|
Prandi IG, Ramalho TC, França TCC. Esterase 2 as a fluorescent biosensor for the detection of organophosphorus compounds: docking and electronic insights from molecular dynamics. MOLECULAR SIMULATION 2019. [DOI: 10.1080/08927022.2019.1648808] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Ingrid G. Prandi
- Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| | - Teodorico C. Ramalho
- Department of Chemistry, Federal University of Lavras, Lavras, Brazil
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic
| | - Tanos C. C. França
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic
- Laboratory of Molecular Modeling Applied to the Chemical and Biological Defense, Military Institute of Engineering, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
de Paula RL, de Almeida JSFD, Cavalcante SFA, Gonçalves AS, Simas ABC, Franca TCC, Valis M, Kuca K, Nepovimova E, Granjeiro JM. Molecular Modeling and In Vitro Studies of a Neutral Oxime as a Potential Reactivator for Acetylcholinesterase Inhibited by Paraoxon. Molecules 2018; 23:E2954. [PMID: 30424582 PMCID: PMC6278417 DOI: 10.3390/molecules23112954] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 11/16/2022] Open
Abstract
The present work aimed to compare the small, neutral and monoaromatic oxime, isatin-3-oxime (isatin-O), to the commercial ones, pralidoxime (2-PAM) and obidoxime, in a search for a new potential reactivator for acetylcholinesterase (AChE) inhibited by the pesticide paraoxon (AChE/POX) as well as a novel potential scaffold for further synthetic modifications. The multicriteria decision methods (MCDM) allowed the identification of the best docking poses of those molecules inside AChE/POX for further molecular dynamic (MD) studies, while Ellman's modified method enabled in vitro inhibition and reactivation assays. In corroboration with the theoretical studies, our experimental results showed that isatin-O have a reactivation potential capable of overcoming 2-PAM at the initial moments of the assay. Despite not achieving better results than obidoxime, this molecule is promising for being an active neutral oxime with capacity of crossing the blood⁻brain barrier (BBB), to reactivate AChE/POX inside the central and peripheral nervous systems. Moreover, the fact that isatin-O can also act as anticonvulsant makes this molecule a possible multipotent reactivator. Besides, the MCDM method showed to be an accurate method for the selection of the best docking poses generated in the docking studies.
Collapse
Affiliation(s)
- Reuel L de Paula
- National Institute of Metrology, Quality and Technology (INMETRO), Avenida Nossa Senhora das Graças 50, Duque de Caxias 25250-020, Brazil.
- IDQBRN (Brazilian Army CBRN Defense Institute), Avenida das Américas 28705, Rio de Janeiro 23020-470, Brazil.
| | - Joyce S F D de Almeida
- Laboratory of Molecular Modeling Applied to Chemical and Biological Defense, Military Institute of Engineering, Praça General Tibúrcio 80, Rio de Janeiro 22290-270, Brazil.
| | - Samir F A Cavalcante
- IDQBRN (Brazilian Army CBRN Defense Institute), Avenida das Américas 28705, Rio de Janeiro 23020-470, Brazil.
- Walter Mors Institute of Research on Natural Products, Federal University of Rio de Janeiro (UFRJ), CCS Bloco H Cidade Universitária, Rio de Janeiro 21941-902, Brazil.
| | - Arlan S Gonçalves
- Federal Institute of Education, Science and Technology, Avenida Ministro Salgado Filho S/N, Vila Velha 29106-010, Brazil.
| | - Alessandro B C Simas
- Walter Mors Institute of Research on Natural Products, Federal University of Rio de Janeiro (UFRJ), CCS Bloco H Cidade Universitária, Rio de Janeiro 21941-902, Brazil.
| | - Tanos C C Franca
- Laboratory of Molecular Modeling Applied to Chemical and Biological Defense, Military Institute of Engineering, Praça General Tibúrcio 80, Rio de Janeiro 22290-270, Brazil.
- Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Králové, Rokitanskeho 62, 50003 Hradec Králové, Czech Republic.
| | - Martin Valis
- Department of Neurology, Charles University in Prague, Faculty of Medicine in Hradec Králové and University Hospital, Simkova 870, 50003 Hradec Králové, Czech Republic.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanskeho 62, 50003 Hradec Králové, Czech Republic.
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanskeho 62, 50003 Hradec Králové, Czech Republic.
| | - José M Granjeiro
- National Institute of Metrology, Quality and Technology (INMETRO), Avenida Nossa Senhora das Graças 50, Duque de Caxias 25250-020, Brazil.
| |
Collapse
|
4
|
Influence of gauche effect on uncharged oxime reactivators for the reactivation of tabun-inhibited AChE: quantum chemical and steered molecular dynamics studies. J Comput Aided Mol Des 2018; 32:793-807. [DOI: 10.1007/s10822-018-0130-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/04/2018] [Indexed: 02/06/2023]
|
5
|
Muthusamy K, Chinnasamy S, Nagarajan S, Sivaraman T. Computational and in vitro insights on snake venom phospholipase A2 inhibitor of phytocompound ikshusterol3-O-glucoside of Clematis gouriana Roxb. ex DC. J Biomol Struct Dyn 2017; 36:4197-4208. [DOI: 10.1080/07391102.2017.1409653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Karthikeyan Muthusamy
- Department of Bioinformatics, Alagappa University, Karaikudi 630 004, Tamil Nadu, India
| | | | - Subbiah Nagarajan
- Department of Chemistry, Sastra University, Thanjavur 613401, Tamil Nadu, India
| | - Thirunavukkarasu Sivaraman
- Department of Biotechnology, Karpagam Academy of Higher Education (Karpagam University), Coimbatore 641021, Tamil Nadu, India
| |
Collapse
|
6
|
Ghosh S, Chandar NB, Jana K, Ganguly B. Revealing the importance of linkers in K-series oxime reactivators for tabun-inhibited AChE using quantum chemical, docking and SMD studies. J Comput Aided Mol Des 2017. [PMID: 28646405 DOI: 10.1007/s10822-017-0036-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Inhibition of acetylcholinesterase (AChE) with organophosphorus compounds has a detrimental effect on human life. Oxime K203 seems to be one of the promising reactivators for tabun-inhibited AChE than (K027, K127, and K628). These reactivators differ only in the linker units between the two pyridinium rings. The conformational analyses performed with quantum chemical RHF/6-31G* level for K027, K127, K203 and K628 showed that the minimum energy conformers have different orientations of the active and peripheral pyridinium rings for these reactivator molecules. K203 with (-CH2-CH=CH-CH2-) linker unit possesses more open conformation compared to the other reactivators. Such orientation of K203 experiences favorable interaction with the surrounding residues of catalytic anionic site (CAS) and peripheral anionic site (PAS) of tabun-inhibited AChE. From the steered molecular dynamics simulations, it has been observed that the oxygen atom of the oxime group of K203 reactivator approaches nearest to the P-atom of the SUN203 (3.75 Å) at lower time scales (less than ~1000 ps) as compared to the other reactivators. K203 experiences less number of hydrophobic interaction with the PAS residues which is suggested to be an important factor for the efficient reactivation process. In addition, K203 crates large number of H-bonding with CAS residues SUN203, Phe295, Tyr337, Phe338 and His447. K203 barely changes its conformation during the SMD simulation process and hence the energy penalty to adopt any other conformation is minimal in this case as compared to the other reactivators. The molecular mechanics and Poisson-Boltzmann surface area binding energies obtained for the interaction of K203 inside the gorge of tabun inhibited AChE is substantially higher (-290.2 kcal/mol) than the corresponding K628 reactivator (-260.4 kcal/mol), which also possess unsaturated aromatic linker unit.
Collapse
Affiliation(s)
- Shibaji Ghosh
- Computation and Simulation Unit (Analytical Discipline and Centralized Instrument Facility), CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat, 364 002, India.,Academy of Scientific and Innovative Research, CSIR-CSMCRI, Bhavnagar, Gujarat, 364 002, India
| | - Nellore Bhanu Chandar
- Computation and Simulation Unit (Analytical Discipline and Centralized Instrument Facility), CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat, 364 002, India.,Academy of Scientific and Innovative Research, CSIR-CSMCRI, Bhavnagar, Gujarat, 364 002, India
| | - Kalyanashis Jana
- Computation and Simulation Unit (Analytical Discipline and Centralized Instrument Facility), CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat, 364 002, India.,Academy of Scientific and Innovative Research, CSIR-CSMCRI, Bhavnagar, Gujarat, 364 002, India
| | - Bishwajit Ganguly
- Computation and Simulation Unit (Analytical Discipline and Centralized Instrument Facility), CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat, 364 002, India. .,Academy of Scientific and Innovative Research, CSIR-CSMCRI, Bhavnagar, Gujarat, 364 002, India.
| |
Collapse
|
7
|
Ochoa R, Rodriguez CA, Zuluaga AF. Perspectives for the structure-based design of acetylcholinesterase reactivators. J Mol Graph Model 2016; 68:176-183. [PMID: 27450771 DOI: 10.1016/j.jmgm.2016.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/31/2016] [Accepted: 07/17/2016] [Indexed: 02/03/2023]
Abstract
Rational design of active molecules through structure-based methods has been gaining adepts during the last decades due to the wider availability of protein structures, most of them conjugated with relevant ligands. Acetylcholinesterase (AChE) is a molecular target with a considerable amount of data related to its sequence and 3-dimensional structure. In addition, there are structural insights about the mechanism of action of the natural substrate and drugs used in Alzheimer's disease, organophosphorus compounds, among others. We looked for AChE structural data useful for in silico design of potential interacting molecules. In particular, we focused on information regarding the design of ligands aimed to reactivate AChE catalytic activity. The structures of 178 AChE were annotated and categorized on different subsets according to the nature of the ligand, source organisms and experimental details. We compared sequence homology among the active site from Torpedo californica, Mus musculus and Homo sapiens with the latter two species having the closest relationship (88.9% identity). In addition, the mechanism of organophosphorus binding and the design of effective reactivators are reviewed. A curated data collection obtained with information from several sources was included for researchers working on the field. Finally, a molecular dynamics simulation with human AChE indicated that the catalytic pocket volume stabilizes around 600 Å(3), providing additional clues for drug design.
Collapse
Affiliation(s)
- Rodrigo Ochoa
- CIEMTO: Centro de Información y Estudio de Medicamentos y Tóxicos, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad de Antioquia, Carrera 51D No. 62-42 Medellín, Colombia.
| | - Carlos A Rodriguez
- CIEMTO: Centro de Información y Estudio de Medicamentos y Tóxicos, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad de Antioquia, Carrera 51D No. 62-42 Medellín, Colombia; GRIPE: Grupo Investigador de Problemas en Enfermedades Infecciosas, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.
| | - Andres F Zuluaga
- CIEMTO: Centro de Información y Estudio de Medicamentos y Tóxicos, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad de Antioquia, Carrera 51D No. 62-42 Medellín, Colombia; GRIPE: Grupo Investigador de Problemas en Enfermedades Infecciosas, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.
| |
Collapse
|
8
|
In silico studies on the role of mutant Y337A to reactivate tabun inhibited mAChE with K048. Chem Biol Interact 2015; 242:299-306. [DOI: 10.1016/j.cbi.2015.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/11/2015] [Accepted: 10/15/2015] [Indexed: 01/18/2023]
|
9
|
da Silva Gonçalves A, França TCC, Vital de Oliveira O. Computational studies of acetylcholinesterase complexed with fullerene derivatives: a new insight for Alzheimer disease treatment. J Biomol Struct Dyn 2015. [PMID: 26219766 DOI: 10.1080/07391102.2015.1077345] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Here, we propose five fullerene (C60) derivatives as new drugs against Alzheimer's disease (AD). These compounds were designed to act as new human acetylcholinesterase (HssAChE) inhibitors by blocking its fasciculin II (FASII) binding site. Docking and molecular dynamic results show that our proposals bind to the HssAChE tunnel entrance, forming stable complex, and further binding free energy calculations suggest that three of the derivatives proposed here could be potent HssAChE inhibitors. We found a region formed by a set of residues (Tyr72, Asp74, Trp286, Gln291, Tyr341, and Pro344) which can be further exploited in the drug design of new inhibitors of HssAChE based on C60 derivatives. Results presented here report for the first time by a new class of molecules that can become effective drugs against AD.
Collapse
Affiliation(s)
- Arlan da Silva Gonçalves
- a Federal Institute of Education Science and Technology of Espirito Santo , unit Vila Velha, Avenida Ministro Salgado Filho, 1000, 29106-010 Soteco, Espírito Santo - ES , Brazil
| | - Tanos Celmar Costa França
- b Laboratory of Molecular Modeling Applied to the Chemical and Biological Defense (LMCBD) , Military Institute of Engineering , Rio de Janeiro, RJ , Brazil.,c Faculty of Informatics and Management, Center for Basic and Applied Research , University of Hradec Kralove , Hradec Kralove , Czech Republic
| | - Osmair Vital de Oliveira
- a Federal Institute of Education Science and Technology of Espirito Santo , unit Vila Velha, Avenida Ministro Salgado Filho, 1000, 29106-010 Soteco, Espírito Santo - ES , Brazil
| |
Collapse
|
10
|
Chinnasamy S, Chinnasamy S, Muthusamy K. High-affinity selective inhibitor against phospholipase A2 (PLA2): a computational study. J Recept Signal Transduct Res 2015; 36:111-8. [PMID: 26422703 DOI: 10.3109/10799893.2015.1056306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Phospholipase A2 (PLA2) is the most abundant protein found in snake venom. PLA2 induces a variety of pharmacological effects such as neurotoxicity, myotoxicity and cardiotoxicity as well as anticoagulant, hemolytic, anti-platelet, hypertensive, hemorrhagic and edema inducing effects. In this study, the three dimensional structure of PLA2 of Naja sputatrix (Malayan spitting cobra) was modeled by I-TASSER, SWISS-MODEL, PRIME and MODELLER programs. The best model was selected based on overall stereo-chemical quality. Further, molecular dynamics simulation was performed to know the stability of the modeled protein using Gromacs software. Average structure was generated during the simulation period of 10 ns. High throughput virtual screening was employed through different databases (Asinex, Hit finder, Maybridge, TOSLab and ZINC databases) against PLA2. The top seven compounds were selected based on the docking score and free energy binding calculations. These compounds were analyzed by quantum polarized ligand docking, induced fit docking and density functional theory calculation. Furthermore, the stability of lead molecules in the active site of PLA2 was employed by MD simulation. The results show that selected lead molecules were highly stable in the active site of PLA2.
Collapse
Affiliation(s)
| | - Selvakkumar Chinnasamy
- b Department of Microbiology , Faculty of Medicine, Misurata University , Misurata , Libya
| | - Karthikeyan Muthusamy
- a Department of Bioinformatics , Alagappa University , Karaikudi , Tamil Nadu , India and
| |
Collapse
|
11
|
Chinnasamy S, Chinnasamy S, Nagamani S, Muthusamy K. Identification of potent inhibitors against snake venom metalloproteinase (SVMP) using molecular docking and molecular dynamics studies. J Biomol Struct Dyn 2014; 33:1516-27. [PMID: 25192471 DOI: 10.1080/07391102.2014.963146] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Snake venom metalloproteinase (SVMP) (Echis coloratus (Carpet viper) is a multifunctional enzyme that is involved in producing several symptoms that follow a snakebite, such as severe local hemorrhage, nervous system effects and tissue necrosis. Because the three-dimensional (3D) structure of SVMP is not known, models were constructed, and the best model was selected based on its stereo-chemical quality. The stability of the modeled protein was analyzed through molecular dynamics (MD) simulation studies. Structure-based virtual screening was performed, and 15 potential molecules with the highest binding energies were selected. Further analysis was carried out with induced fit docking, Prime/MM-GBSA (ΔGBind calculations), quantum-polarized ligand docking, and density functional theory calculations. Further, the stability of the lead molecules in the SVMP-active site was examined using MD simulation. The results showed that the selected lead molecules were highly stable in the active site of SVMP. Hence, these molecules could potentially be selective inhibitors of SVMP. These lead molecules can be experimentally validated, and their backbone structural scaffold could serve as building blocks in designing drug-like molecules for snake antivenom.
Collapse
Affiliation(s)
- Sathishkumar Chinnasamy
- a Department of Bioinformatics , Alagappa University , Karaikudi , Tamil Nadu 630004 , India
| | | | | | | |
Collapse
|
12
|
Acetylcholinesterase reactivators (HI-6, obidoxime, trimedoxime, K027, K075, K127, K203, K282): structural evaluation of human serum albumin binding and absorption kinetics. Int J Mol Sci 2013; 14:16076-86. [PMID: 23917882 PMCID: PMC3759900 DOI: 10.3390/ijms140816076] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 07/23/2013] [Accepted: 07/25/2013] [Indexed: 02/06/2023] Open
Abstract
Acetylcholinesterase (AChE) reactivators (oximes) are compounds predominantly targeting the active site of the enzyme. Toxic effects of organophosphates nerve agents (OPNAs) are primarily related to their covalent binding to AChE and butyrylcholinesterase (BChE), critical detoxification enzymes in the blood and in the central nervous system (CNS). After exposure to OPNAs, accumulation of acetylcholine (ACh) overstimulates receptors and blocks neuromuscular junction transmission resulting in CNS toxicity. Current efforts at treatments for OPNA exposure are focused on non-quaternary reactivators, monoisonitrosoacetone oximes (MINA), and diacylmonoxime reactivators (DAM). However, so far only quaternary oximes have been approved for use in cases of OPNA intoxication. Five acetylcholinesterase reactivator candidates (K027, K075, K127, K203, K282) are presented here, together with pharmacokinetic data (plasma concentration, human serum albumin binding potency). Pharmacokinetic curves based on intramuscular application of the tested compounds are given, with binding information and an evaluation of structural relationships. Human Serum Albumin (HSA) binding studies have not yet been performed on any acetylcholinesterase reactivators, and correlations between structure, concentration curves and binding are vital for further development. HSA bindings of the tested compounds were 1% (HI-6), 7% (obidoxime), 6% (trimedoxime), and 5%, 10%, 4%, 15%, and 12% for K027, K075, K127, K203, and K282, respectively.
Collapse
|
13
|
Pinsetta FR, Taft CA, de Paula da Silva CHT. Structure- and ligand-based drug design of novel p38-alpha MAPK inhibitors in the fight against the Alzheimer's disease. J Biomol Struct Dyn 2013; 32:1047-63. [PMID: 23805842 DOI: 10.1080/07391102.2013.803441] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Alzheimer's disease (AD) is characterized microscopically by the presence of amyloid plaques, which are accumulations of beta-amyloid protein inter-neurons, and neurofibrillary tangles formed predominantly by highly phosphorylated forms of the microtubule-associated protein, tau, which form tangled masses that consume neuronal cell body, possibly leading to neuronal dysfunction and ultimately death. p38α mitogen-activated protein kinase (MAPK) has been implicated in both events associated with AD, tau phosphorylation and inflammation. p38α MAPK pathway is activated by a dual phosphorylation at Thr180 and Tyr182 residues. Drug design of p38α MAPK inhibitors is mainly focused on small molecules that compete for Adenosine triphosphate in the catalytic site. Here, we used different approaches of structure- and ligand-based drug design and medicinal chemistry strategies based on a selected p38α MAPK structure deposited in the Protein Data Bank in complex with inhibitor, as well as others reported in literature. As a result of the virtual screening experiments performed here, as well as molecular dynamics, molecular interaction fields studies, shape and electrostatic similarities, activity and toxicity predictions, and pharmacokinetic and physicochemical properties, we have selected 13 compounds that meet the criteria of low or no toxicity potential, good pharmacotherapeutic profile, predicted activities, and calculated values comparable with those obtained for the reference compounds, while maintaining the main interactions observed for the most potent inhibitors.
Collapse
Affiliation(s)
- Flávio Roberto Pinsetta
- a Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo , Av. do Café, s/n - Monte Alegre, Ribeirão Preto , SP 14040-903 , Brazil
| | | | | |
Collapse
|
14
|
Molecular Modeling Studies of Piperidine Derivatives as New Acetylcholinesterase Inhibitors against Neurodegenerative Diseases. J CHEM-NY 2013. [DOI: 10.1155/2013/278742] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neurodegenerative disorders are related to the progressive loss of structure or function and, eventually, death of neurons. These processes are responsible for diseases like Parkinson’s, Alzheimer’s, and Huntington’s, and the main molecular target for the drug design against these illnesses today is the enzyme acetylcholinesterase (AChE). Following this line, in the present work, we applied docking techniques to study some piperidine derivative inhibitors of AChE and further propose structures of six new AChE inhibitors as potential new drugs against neurodegenerative disorders. The best inhibitor proposed was submitted to additional molecular dynamics simulations steps.
Collapse
|
15
|
Sirin GS, Zhou Y, Lior-Hoffmann L, Wang S, Zhang Y. Aging mechanism of soman inhibited acetylcholinesterase. J Phys Chem B 2012; 116:12199-207. [PMID: 22984913 PMCID: PMC3475498 DOI: 10.1021/jp307790v] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acetylcholinesterase (AChE) is a crucial enzyme in the cholinergic nervous system that hydrolyzes neurotransmitter acetylcholine (ACh) and terminates synaptic signals. The catalytic serine of AChE can be phosphonylated by soman, one of the most potent nerve agents, and subsequently undergo an aging reaction. This phosphonylation and aging process leads to irreversible AChE inhibition, results in accumulation of excess ACh at the synaptic clefts, and causes neuromuscular paralysis. By employing Born-Oppenheimer ab initio QM/MM molecular dynamics simulations with umbrella sampling, a state-of-the-art approach to simulate enzyme reactions, we have characterized the aging mechanism of soman phosphonylated AChE and determined its free energy profile. This aging reaction starts with the scission of the O2-Cα bond, which is followed by methyl migration, and results in a tertiary carbenium intermediate. At the transition state, the scissile O2-Cα bond is already cleaved with an average O-C distance of 3.2 ± 0.3 Å and the migrating methyl group is shared between Cα and Cβ carbons with C-C distances of 1.9 ± 0.1 and 1.8 ± 0.1 Å, respectively. The negatively charged phosphonate group is stabilized by a salt bridge with the imidazole ring of the catalytic histidine. A major product of aging, 2,3-dimethyl-2-butanol can be formed swiftly by the reaction of a water molecule. Our characterized mechanism and simulation results provide new detailed insights into this important biochemical process.
Collapse
Affiliation(s)
- Gulseher Sarah Sirin
- Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, 10016
- Department of Chemistry, New York University, New York, New York, 10003
| | - Yanzi Zhou
- Department of Chemistry, New York University, New York, New York, 10003
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Lee Lior-Hoffmann
- Department of Chemistry, New York University, New York, New York, 10003
| | - Shenglong Wang
- Department of Chemistry, New York University, New York, New York, 10003
| | - Yingkai Zhang
- Department of Chemistry, New York University, New York, New York, 10003
| |
Collapse
|