1
|
Abubakar M, Ahmad Hidayat AF, Abd Halim AA, Khanna K, Zaroog MS, Rajagopal MS, Tayyab S. Assessing the molecular interaction between a COVID-19 drug, nirmatrelvir, and human serum albumin: calorimetric, spectroscopic, and microscopic investigations. Z NATURFORSCH C 2025:znc-2024-0223. [PMID: 39921569 DOI: 10.1515/znc-2024-0223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/18/2025] [Indexed: 02/10/2025]
Abstract
The research examined the molecular interaction between nirmatrelvir (NIR), a drug used to treat COVID-19, and human serum albumin (HSA) using various techniques, viz., isothermal titration calorimetry (ITC), absorption, fluorescence, CD spectroscopy, and atomic force microscopy (AFM). ITC analysis showed that the NIR-HSA system possessed a moderate binding affinity, with a K a value of 6.53 ± 0.23 × 104 M-1 at a temperature of 300 K. The thermodynamic values demonstrated that the NIR-HSA complex was stabilized by hydrophobic contacts, hydrogen bonds, and van der Waals forces. The research also discovered modifications in the UV-Vis absorption spectrum of the protein as well as swelling of the HSA molecule when exposed to NIR, based on AFM results. The three-dimensional fluorescence spectral data indicated changes in the microenvironment around HSA's Trp and Tyr residues. Alterations in the protein structure (both secondary and tertiary structures) of HSA after NIR binding were verified using CD spectral studies in the far-UV and near-UV regions. The identification of the NIR binding site in subdomain IB (Site III) of HSA was predicted through competitive displacement experiments.
Collapse
Affiliation(s)
- Mujaheed Abubakar
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Biological Sciences, Faculty of Natural and Applied Sciences, Sule Lamido University, Kafin Hausa, Nigeria
| | | | - Adyani Azizah Abd Halim
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kushagra Khanna
- Faculty of Pharmaceutical Sciences, UCSI University, 56000 Kuala Lumpur, Malaysia
| | | | | | - Saad Tayyab
- Faculty of Pharmaceutical Sciences, UCSI University, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Sood A, Singhmar R, Sahoo S, Lee D, Kim CM, Kumar A, Han SS. Physicochemical, electrochemical, and biological characterization of field assisted gold nanocluster-coated barium titanate nanoparticles for biomedical applications. J Mater Chem B 2024; 12:525-539. [PMID: 38113029 DOI: 10.1039/d3tb01928d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Fluorescence-based bioimaging is an imperative approach with high clinical relevance in healthcare applications and biomedical research. The field of bioimaging plays an indispensable role in gaining insight into the internal architecture of cells/tissues and comprehending the physiological functions associated with biological systems. With the utility of piezoelectric nanomaterials, the bioelectric interface has been significantly investigated, leading to remarkable clinical relevance. Herein, we have developed barium titanate nanoparticle (BT) coated gold nanoclusters (AuNCs) in the presence and absence of an electromagnetic field (EMF). In this work, the effect of low (0.6 G) and high (2.0 G) EMFs on the structural arrangement of these piezoelectric nanocomposites (ABT) has been extensively studied with the help of X-ray diffraction (XRD), high diffraction resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). Furthermore, the two derivatives of ABT i.e. 0.6 ABT and 2.0 ABT have been evaluated for electrochemical behavior for their applicability as a candidate for exploring the bioelectric interface. Additionally, ABT, 0.6 ABT, and 2.0 ABT have been explored for cytocompatibility and bioimaging applications. The proposed piezoelectric nanocomposite, as a multifunctional platform, has enormous proficiency in the field of bioimaging and the capability to be utilized across the bioelectric interface.
Collapse
Affiliation(s)
- Ankur Sood
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea.
| | - Ritu Singhmar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea.
| | - Sumanta Sahoo
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea.
| | - Dahae Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea.
| | - Chul Min Kim
- Department of Mechatronics Engineering, Gyeongsang National University, 33 Dongjin-ro, Jinju, Gyeongsangnam-do, South Korea.
| | - Anuj Kumar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea.
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India.
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea.
- Research Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea
| |
Collapse
|
3
|
Jaiswal J, Srivastav AK, Rajput PK, Yadav UCS, Kumar U. Integrating Synthesis, Physicochemical Characterization, and In Silico Studies of Cordycepin-Loaded Bovine Serum Albumin Nanoparticles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12225-12236. [PMID: 37526599 DOI: 10.1021/acs.jafc.3c03608] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Cordycepin gets rapidly metabolized in the body into inactive form due to its structural similarity to adenosine, thus inhibiting its development as a medicinal agent. This study was aimed to improve the solubility and stability of cordycepin, a potential drug with known antiproliferative activity, by encapsulating it in bovine serum albumin: β-cyclodextrin nanoparticles. Cordycepin-loaded nanoparticles (CLNPs) were synthesized using the antisolvent method and characterized thoroughly using various techniques. Our dynamic light scattering measurement showed a particle size and zeta potential of 160 ± 2.75 nm and -20.21 ± 2.1 mV, respectively, for CLNPs. Transmission electron microscopy studies revealed that particles were spherical in morphology. These CLNPs showed sustained release of cordycepin with encapsulation and loading efficiency of 81.62 ± 1.5 and 27.02 ± 2.0%, respectively, based on high-performance liquid chromatography and UV-vis studies. Based on differential scanning calorimetry and zeta potential studies, CLNPs improve cordycepin stability and solubility. Our molecular simulations and binding energy calculation also showed favorable protein interaction between cordycepin, bovine serum albumin, and β-cyclodextrin, further supporting the notion of improved stability. In vitro cytotoxicity, apoptosis, and cellular uptake studies on breast cancer cells showed that the synthesized nanoparticles had greater cytotoxicity as compared to free cordycepin.
Collapse
Affiliation(s)
- Jyoti Jaiswal
- School of Nano Sciences, Central University of Gujarat, Gandhinagar 382030, India
| | - Amit Kumar Srivastav
- School of Nano Sciences, Central University of Gujarat, Gandhinagar 382030, India
| | - Pradeep Kumar Rajput
- School of Life Sciences, Central University of Gujarat, Gandhinagar 382030, India
| | - Umesh C S Yadav
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Umesh Kumar
- School of Nano Sciences, Central University of Gujarat, Gandhinagar 382030, India
- Nutrition Biology Department, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh 123031, India
| |
Collapse
|
4
|
Zegers J, Peters M, Albada B. DNA G-quadruplex-stabilizing metal complexes as anticancer drugs. J Biol Inorg Chem 2023; 28:117-138. [PMID: 36456886 PMCID: PMC9981530 DOI: 10.1007/s00775-022-01973-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 11/17/2022] [Indexed: 12/04/2022]
Abstract
Guanine quadruplexes (G4s) are important targets for cancer treatments as their stabilization has been associated with a reduction of telomere ends or a lower oncogene expression. Although less abundant than purely organic ligands, metal complexes have shown remarkable abilities to stabilize G4s, and a wide variety of techniques have been used to characterize the interaction between ligands and G4s. However, improper alignment between the large variety of experimental techniques and biological activities can lead to improper identification of top candidates, which hampers progress of this important class of G4 stabilizers. To address this, we first review the different techniques for their strengths and weaknesses to determine the interaction of the complexes with G4s, and provide a checklist to guide future developments towards comparable data. Then, we surveyed 74 metal-based ligands for G4s that have been characterized to the in vitro level. Of these complexes, we assessed which methods were used to characterize their G4-stabilizing capacity, their selectivity for G4s over double-stranded DNA (dsDNA), and how this correlated to bioactivity data. For the biological activity data, we compared activities of the G4-stabilizing metal complexes with that of cisplatin. Lastly, we formulated guidelines for future studies on G4-stabilizing metal complexes to further enable maturation of this field.
Collapse
Affiliation(s)
- Jaccoline Zegers
- grid.4818.50000 0001 0791 5666Laboratory of Organic Chemistry, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Maartje Peters
- grid.4818.50000 0001 0791 5666Laboratory of Organic Chemistry, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Bauke Albada
- Laboratory of Organic Chemistry, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| |
Collapse
|
5
|
Abubakar M, Kandandapani S, Mohamed SB, Azizah Abd Halim A, Tayyab S. Shedding light on the Molecular Interaction Between the Hepatitis B Virus Inhibitor, Clevudine, and Human Serum Albumin: Thermodynamic, Spectroscopic, Microscopic, and In Silico Analyses. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Zhang L, Lu Y, Ma X, Xing Y, Sun J, Jia Y. The potential interplay between G-quadruplex and p53: their roles in regulation of ferroptosis in cancer. Front Mol Biosci 2022; 9:965924. [PMID: 35959461 PMCID: PMC9358135 DOI: 10.3389/fmolb.2022.965924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
Ferroptosis is a novel form of regulated cell death trigged by various biological processes, and p53 is involved in different ferroptosis regulations and functions as a crucial regulator. Both DNA and RNA can fold into G-quadruplex in GC-rich regions and increasing shreds of evidence demonstrate that G-quadruplexes have been associated with some important cellular events. Investigation of G-quadruplexes is thus vital to revealing their biological functions. Specific G-quadruplexes are investigated to discover new effective anticancer drugs. Multiple modulations have been discovered between the secondary structure G-quadruplex and p53, probably further influencing the ferroptosis in cancer. G-quadruplex binds to ferric iron-related structures directly and may affect the p53 pathways as well as ferroptosis in cancer. In addition, G-quadruplex also interacts with p53 indirectly, including iron-sulfur cluster metabolism, telomere homeostasis, lipid peroxidation, and glycolysis. In this review, we summarized the latent interplay between G-quadruplex and p53 which focused mainly on ferroptosis in cancer to provide the potential understanding and encourage future studies.
Collapse
Affiliation(s)
- Lulu Zhang
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, China
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, China
| | - Yi Lu
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, China
| | - Xiaoli Ma
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, China
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, China
| | - Yuanxin Xing
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, China
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, China
| | - Jinbo Sun
- Department of Neurology, Jinan Central Hospital, Shandong University, Jinan, China
- *Correspondence: Jinbo Sun, ; Yanfei Jia,
| | - Yanfei Jia
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, China
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, China
- *Correspondence: Jinbo Sun, ; Yanfei Jia,
| |
Collapse
|
7
|
Jiang J, Teunens T, Tisaun J, Denuit L, Moucheron C. Ruthenium(II) Polypyridyl Complexes and Their Use as Probes and Photoreactive Agents for G-quadruplexes Labelling. Molecules 2022; 27:1541. [PMID: 35268640 PMCID: PMC8912042 DOI: 10.3390/molecules27051541] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
Due to their optical and electrochemical properties, ruthenium(II) polypyridyl complexes have been used in a wide array of applications. Since the discovery of the light-switch ON effect of [Ru(bpy)2dppz]2+ when interacting with DNA, the design of new Ru(II) complexes as light-up probes for specific regions of DNA has been intensively explored. Amongst them, G-quadruplexes (G4s) are of particular interest. These structures formed by guanine-rich parts of DNA and RNA may be associated with a wide range of biological events. However, locating them and understanding their implications in biological pathways has proven challenging. Elegant approaches to tackle this challenge relies on the use of photoprobes capable of marking, reversibly or irreversibly, these G4s. Indeed, Ru(II) complexes containing ancillary π-deficient TAP ligands can create a covalently linked adduct with G4s after a photoinduced electron transfer from a guanine residue to the excited complex. Through careful design of the ligands, high selectivity of interaction with G4 structures can be achieved. This allows the creation of specific Ru(II) light-up probes and photoreactive agents for G4 labelling, which is at the core of this review composed of an introduction dedicated to a brief description of G-quadruplex structures and two main sections. The first one will provide a general picture of ligands and metal complexes interacting with G4s. The second one will focus on an exhaustive and comprehensive overview of the interactions and (photo)reactions of Ru(II) complexes with G4s.
Collapse
Affiliation(s)
- Julie Jiang
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
| | - Titouan Teunens
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
- Laboratoire de Chimie des Matériaux Nouveaux, Université de Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Jérôme Tisaun
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
| | - Laura Denuit
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
| | - Cécile Moucheron
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
| |
Collapse
|
8
|
Characterization of gliadin, secalin and hordein fractions using analytical techniques. Sci Rep 2021; 11:23135. [PMID: 34848764 PMCID: PMC8633357 DOI: 10.1038/s41598-021-02099-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 10/01/2021] [Indexed: 11/12/2022] Open
Abstract
Prolamins, alcohol soluble storage proteins of the Triticeae tribe of Gramineae family, are known as gliadin, secalin and hordein in wheat, rye and barley respectively. Prolamins were extracted from fifteen cultivars using DuPont protocol to study their physiochemical, morphological and structural characteristics. SDS-PAGE of prolamins showed well resolved low molecular weight proteins with significant amount of albumin and globulin as cross-contaminant. The β-sheet (32.72–37.41%) and β-turn (30.36–37.91%) were found higher in gliadins, while α-helix (20.32–28.95%) and random coil (9.05–10.28%) in hordeins. The high colloidal stability as depicted by zeta-potential was observed in gliadins (23.5–27.0 mV) followed secalins (11.2–16.6 mV) and hordeins (4.1–7.8 mV). Surface morphology by SEM illustrated the globular particle arrangement in gliadins, sheet like arrangement in secalins and stacked flaky particle arrangement in hordeins fraction. TEM studies showed that secalin and hordein fractions were globular in shape while gliadins in addition to globular structure also possessed rod-shaped particle arrangement. XRD pattern of prolamin fractions showed the ordered crystalline domain at 2θ values of 44.1°, 37.8° and 10.4°. The extracted prolamins fractions showed amorphous as well as crystalline structures as revealed by XRD and TEM analysis. Space saving hexagonal molecular symmetry was also observed in TEM molecular arrangement of prolamins which has profound application in development of plant-based polymers and fibres.
Collapse
|
9
|
Gou Y, Huang G, Li J, Yang F, Liang H. Versatile delivery systems for non-platinum metal-based anticancer therapeutic agents. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213975] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Ortiz de Luzuriaga I, Lopez X, Gil A. Learning to Model G-Quadruplexes: Current Methods and Perspectives. Annu Rev Biophys 2021; 50:209-243. [PMID: 33561349 DOI: 10.1146/annurev-biophys-060320-091827] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
G-quadruplexes have raised considerable interest during the past years for the development of therapies against cancer. These noncanonical structures of DNA may be found in telomeres and/or oncogene promoters, and it has been observed that the stabilization of such G-quadruplexes may disturb tumor cell growth. Nevertheless, the mechanisms leading to folding and stabilization of these G-quadruplexes are still not well established, and they are the focus of much current work in this field. In seminal works, stabilization was observed to be produced by cations. However, subsequent studies showed that different kinds of small molecules, from planar and nonplanar organic molecules to square-planar and octahedral metal complexes, may also lead to the stabilization of G-quadruplexes. Thus, the comprehension and rationalization of the interaction of these small molecules with G-quadruplexes are also important topics of current interest in medical applications. To shed light on the questions arising from the literature on the formation of G-quadruplexes, their stabilization, and their interaction with small molecules, synergies between experimental studies and computational works are needed. In this review, we mainly focus on in silico approaches and provide a broad compilation of different leading studies carried out to date by different computational methods. We divide these methods into twomain categories: (a) classical methods, which allow for long-timescale molecular dynamics simulations and the corresponding analysis of dynamical information, and (b) quantum methods (semiempirical, quantum mechanics/molecular mechanics, and density functional theory methods), which allow for the explicit simulation of the electronic structure of the system but, in general, are not capable of being used in long-timescale molecular dynamics simulations and, therefore, give a more static picture of the relevant processes.
Collapse
Affiliation(s)
- Iker Ortiz de Luzuriaga
- CIC nanoGUNE BRTA, 20018 Donostia, Euskadi, Spain; .,Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Uniberstitatea, UPV/EHU, 20080 Donostia, Euskadi, Spain
| | - Xabier Lopez
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Uniberstitatea, UPV/EHU, 20080 Donostia, Euskadi, Spain.,Donostia International Physics Center, 20018 Donostia, Spain
| | - Adrià Gil
- CIC nanoGUNE BRTA, 20018 Donostia, Euskadi, Spain; .,BioISI-Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal;
| |
Collapse
|
11
|
Lighvan ZM, Khonakdar HA, Heydari A, Rafiee M, Jahromi MD, Derakhshani A, Momtazi‐Borojeni AA. Spectral and molecular docking studies of nucleic acids/protein binding interactions of a novel organometallic palladium (II) complex containing bioactive PTA ligands: Its synthesis, anticancer effects and encapsulation in albumin nanoparticles. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Zohreh Mehri Lighvan
- Department of Polymer Processing Iran Polymer and Petrochemical Institute P.O. Box 14965‐115 Tehran Iran
| | - Hossein Ali Khonakdar
- Department of Polymer Processing Iran Polymer and Petrochemical Institute P.O. Box 14965‐115 Tehran Iran
- Leibniz‐Institut für Polymerforschung Dresdene. V Hohe Straße 6, D‐01069 Dresden Germany
| | - Abolfazl Heydari
- Polymer Institute of the Slovak Academy of Sciences Dúbravská cesta 9 Bratislava 845 41 Slovakia
| | - Mina Rafiee
- Department of Chemistry Isfahan University of Technology Isfahan 84156/83111 Iran
| | | | | | | |
Collapse
|
12
|
DNA G-quadruplexes binding and antitumor activity of palladium aryl oxime ligand complexes encapsulated in either albumin or algal cellulose nanoparticles. Colloids Surf B Biointerfaces 2018; 176:70-79. [PMID: 30594705 DOI: 10.1016/j.colsurfb.2018.12.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/14/2018] [Accepted: 12/18/2018] [Indexed: 01/12/2023]
Abstract
The interactions between two Pd complexes, designated as [Pd3(C,N-(C6H4C(Cl) = NO)-4)6] (complex 1) and [Pd3(C12H8C = NO)6] (complex 2), with the human telomeric G-quadruplex DNA, 5'-G3(T2AG3)3-3' (HTG21), were monitored using spectroscopic, biological, and molecular modeling studies. According to the UV-vis results, these complexes can strongly induce and stabilize G-quadruplex DNA structure with Kb1 = 4.5(±0.3) × 106 M-1 and Kb2 = 1.0(±0.2) × 107 M-1via groove mode in comparison with duplex DNA. The release mechanism of the Pd complexes from BSA nanoparticles followed a biphasic pattern unlike that of algal cellulose nanoparticles in vitro. In addition, the cytotoxicity of these complexes on MCF-7 cancer cells and PBMC normal cells was evaluated and compared with cisplatin under similar experimental conditions. Furthermore, to determine and verify the interaction mode of these compounds with G-quadruplex, the molecular docking technique was also performed. Our data clearly demonstrated that complex 2 had higher activity and cytotoxicity than that of complex 1 and could be further investigated in the future as a drug discovery platform.
Collapse
|
13
|
Galkina PА, Proskurnin МА. Supramolecular interaction of transition metal complexes with albumins and DNA: Spectroscopic methods of estimation of binding parameters. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Polina А. Galkina
- Moscow State M.V. Lomonosov University; Department of Chemistry; Leninskiye Gory 1, bld. 3 119991 Moscow Russia
| | - Мikhail А. Proskurnin
- Moscow State M.V. Lomonosov University; Department of Chemistry; Leninskiye Gory 1, bld. 3 119991 Moscow Russia
| |
Collapse
|
14
|
Poshteh Shirani M, Rezaei B, Khayamian T, Dinari M, Karami K, Mehri-Lighvan Z, Hosseini Shamili F, Ramazani M, Alibolandi M. Folate receptor-targeted multimodal fluorescence mesosilica nanoparticles for imaging, delivery palladium complex and in vitro G-quadruplex DNA interaction. J Biomol Struct Dyn 2017; 36:4156-4169. [DOI: 10.1080/07391102.2017.1411294] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Behzad Rezaei
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Taghi Khayamian
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mohammad Dinari
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Kazem Karami
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Zohreh Mehri-Lighvan
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Fazileh Hosseini Shamili
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammd Ramazani
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Kerkour A, Marquevielle J, Ivashchenko S, Yatsunyk LA, Mergny JL, Salgado GF. High-resolution three-dimensional NMR structure of the KRAS proto-oncogene promoter reveals key features of a G-quadruplex involved in transcriptional regulation. J Biol Chem 2017; 292:8082-8091. [PMID: 28330874 DOI: 10.1074/jbc.m117.781906] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/15/2017] [Indexed: 12/13/2022] Open
Abstract
Non-canonical base pairing within guanine-rich DNA and RNA sequences can produce G-quartets, whose stacking leads to the formation of a G-quadruplex (G4). G4s can coexist with canonical duplex DNA in the human genome and have been suggested to suppress gene transcription, and much attention has therefore focused on studying G4s in promotor regions of disease-related genes. For example, the human KRAS proto-oncogene contains a nuclease-hypersensitive element located upstream of the major transcription start site. The KRAS nuclease-hypersensitive element (NHE) region contains a G-rich element (22RT; 5'-AGGGCGGTGTGGGAATAGGGAA-3') and encompasses a Myc-associated zinc finger-binding site that regulates KRAS transcription. The NEH region therefore has been proposed as a target for new drugs that control KRAS transcription, which requires detailed knowledge of the NHE structure. In this study, we report a high-resolution NMR structure of the G-rich element within the KRAS NHE. We found that the G-rich element forms a parallel structure with three G-quartets connected by a four-nucleotide loop and two short one-nucleotide double-chain reversal loops. In addition, a thymine bulge is found between G8 and G9. The loops of different lengths and the presence of a bulge between the G-quartets are structural elements that potentially can be targeted by small chemical ligands that would further stabilize the structure and interfere or block transcriptional regulators such as Myc-associated zinc finger from accessing their binding sites on the KRAS promoter. In conclusion, our work suggests a possible new route for the development of anticancer agents that could suppress KRAS expression.
Collapse
Affiliation(s)
- Abdelaziz Kerkour
- From the Université Bordeaux, INSERM, CNRS, ARNA laboratory, European Institute of Chemistry and Biology, U1212, UMR 5320, 2 Rue Robert Escarpit, 33000 Pessac, France and
| | - Julien Marquevielle
- From the Université Bordeaux, INSERM, CNRS, ARNA laboratory, European Institute of Chemistry and Biology, U1212, UMR 5320, 2 Rue Robert Escarpit, 33000 Pessac, France and
| | - Stefaniia Ivashchenko
- From the Université Bordeaux, INSERM, CNRS, ARNA laboratory, European Institute of Chemistry and Biology, U1212, UMR 5320, 2 Rue Robert Escarpit, 33000 Pessac, France and
| | - Liliya A Yatsunyk
- From the Université Bordeaux, INSERM, CNRS, ARNA laboratory, European Institute of Chemistry and Biology, U1212, UMR 5320, 2 Rue Robert Escarpit, 33000 Pessac, France and.,Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania 19081
| | - Jean-Louis Mergny
- From the Université Bordeaux, INSERM, CNRS, ARNA laboratory, European Institute of Chemistry and Biology, U1212, UMR 5320, 2 Rue Robert Escarpit, 33000 Pessac, France and
| | - Gilmar F Salgado
- From the Université Bordeaux, INSERM, CNRS, ARNA laboratory, European Institute of Chemistry and Biology, U1212, UMR 5320, 2 Rue Robert Escarpit, 33000 Pessac, France and
| |
Collapse
|
16
|
Cao Q, Li Y, Freisinger E, Qin PZ, Sigel RKO, Mao ZW. G-quadruplex DNA targeted metal complexes acting as potential anticancer drugs. Inorg Chem Front 2017. [DOI: 10.1039/c6qi00300a] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review summarizes the recent development of G4 DNA targeted metal complexes and discusses their potential as anticancer drugs.
Collapse
Affiliation(s)
- Qian Cao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Yi Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Eva Freisinger
- University of Zurich
- Department of Chemistry
- CH-8057 Zurich
- Switzerland
| | - Peter Z. Qin
- Department of Chemistry
- University of Southern California
- Los Angeles
- USA
| | | | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- China
| |
Collapse
|
17
|
Thakor KP, Lunagariya MV, Patel MN. Acetyl pyridine-based palladium(II) compounds as an artificial metallonucleases. J Biomol Struct Dyn 2016; 35:2925-2937. [DOI: 10.1080/07391102.2016.1236748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Khyati P. Thakor
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat 388 120, India
| | - Miral V. Lunagariya
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat 388 120, India
| | - Mohan N. Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat 388 120, India
| |
Collapse
|
18
|
Banerjee A, Sanyal S, Dutta S, Chakraborty P, Das PP, Jana K, Vasudevan M, Das C, Dasgupta D. The plant alkaloid chelerythrine binds to chromatin, alters H3K9Ac and modulates global gene expression. J Biomol Struct Dyn 2016; 35:1491-1499. [PMID: 27494525 DOI: 10.1080/07391102.2016.1188154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Chelerythrine (CHL), a plant alkaloid, possesses antimicrobial, anti-inflammatory, and antitumor properties. Although CHL influences several key signal transduction pathways, its ability to interact directly with nucleoprotein complex chromatin, in eukaryotic cells has so far not been looked into. Here we have demonstrated its association with hierarchically assembled chromatin components, viz. long chromatin, chromatosome, nucleosome, chromosomal DNA, and histone H3 and the consequent effect on chromatin structure. CHL was found to repress acetylation at H3K9. It is more target-specific in terms of gene expression alteration and less cytotoxic compared to its structural analog sanguinarine.
Collapse
Affiliation(s)
- Amrita Banerjee
- a Biophysics and Structural Genomics Division , Saha Institute of Nuclear Physics , Block - AF Sector-I, Bidhan Nagar, Kolkata 700064 , India
| | - Sulagna Sanyal
- a Biophysics and Structural Genomics Division , Saha Institute of Nuclear Physics , Block - AF Sector-I, Bidhan Nagar, Kolkata 700064 , India
| | - Shreyasi Dutta
- a Biophysics and Structural Genomics Division , Saha Institute of Nuclear Physics , Block - AF Sector-I, Bidhan Nagar, Kolkata 700064 , India
| | - Payal Chakraborty
- b Genome Informatics Research Group , Bionivid Technology Pvt Ltd. , Bangalore 560043 , India
| | - Prajna Paramita Das
- a Biophysics and Structural Genomics Division , Saha Institute of Nuclear Physics , Block - AF Sector-I, Bidhan Nagar, Kolkata 700064 , India
| | - Kuladip Jana
- c Division of Molecular Medicine, Centre for Translational Animal Research , Bose Institute , P 1/12, C. I. T. Road, Scheme - VIIM, Kolkata 700054 , India
| | - Madavan Vasudevan
- b Genome Informatics Research Group , Bionivid Technology Pvt Ltd. , Bangalore 560043 , India
| | - Chandrima Das
- a Biophysics and Structural Genomics Division , Saha Institute of Nuclear Physics , Block - AF Sector-I, Bidhan Nagar, Kolkata 700064 , India
| | - Dipak Dasgupta
- a Biophysics and Structural Genomics Division , Saha Institute of Nuclear Physics , Block - AF Sector-I, Bidhan Nagar, Kolkata 700064 , India
| |
Collapse
|
19
|
Li Q, Li C, Xie L, Zhang C, Feng Y, Xie J. Characterization of a putative ArsR transcriptional regulator encoded by Rv2642 from Mycobacterium tuberculosis. J Biomol Struct Dyn 2016; 35:2031-2039. [DOI: 10.1080/07391102.2016.1206037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Qiming Li
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, Institute of Modern Biopharmaceuticals, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Chunyan Li
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, Institute of Modern Biopharmaceuticals, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Longxiang Xie
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, Institute of Modern Biopharmaceuticals, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Chenhui Zhang
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, Institute of Modern Biopharmaceuticals, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yonghong Feng
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University, Shanghai 200433, China
| | - Jianping Xie
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, Institute of Modern Biopharmaceuticals, School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
20
|
Jattinagoudar LN, Nandibewoor ST, Chimatadar SA. Binding of fexofenadine hydrochloride to bovine serum albumin: structural considerations by spectroscopic techniques and molecular docking. J Biomol Struct Dyn 2016; 35:1200-1214. [DOI: 10.1080/07391102.2016.1183229] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
21
|
Esfandfar P, Falahati M, Saboury A. Spectroscopic studies of interaction between CuO nanoparticles and bovine serum albumin. J Biomol Struct Dyn 2016; 34:1962-8. [PMID: 26555383 DOI: 10.1080/07391102.2015.1096213] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Recently, the great interests in manufacturing and application of metal oxide nanoparticles in commercial and industrial products have led to focus on the potential impact of these particles on biomacromolecules. In the present study, the interaction of copper oxide (CuO) nanoparticles with bovine serum albumin (BSA) was studied by spectroscopic techniques. The zeta potential value for BSA and CuO nanoparticles with average diameter of around 50 nm at concentration of 10 μM in the deionized (DI) water were -5.8 and -22.5 mV, respectively. Circular dichroism studies did not show any changes in the content of secondary structure of the protein after CuO nanoparticles interaction. Fluorescence data revealed that the fluorescence quenching of BSA by CuO nanoparticles was the result of the formed complex of CuO nanoparticles - BSA. Binding constants and other thermodynamic parameters were determined at three different temperatures. The hydrogen bond interactions are the predominant intermolecular forces to stabilize the CuO nanoparticle - BSA complex. This study provides important insight into the interaction of CuO nanoparticles with proteins, which may be of importance for further application of these nanoparticles in biomedical applications.
Collapse
Affiliation(s)
- Paniz Esfandfar
- a Department of Biomedical Engineering, Science and Research Branch , Islamic Azad University , Tehran , Iran
| | - Mojtaba Falahati
- b Department of Nanotechnology , Faculty of Advance Science and Technology, Pharmaceutical Sciences Branch , Islamic Azad University (IAUPS) , Tehran , Iran
| | - AliAkbar Saboury
- c Institute of Biochemistry and Biophysics, University of Tehran , Tehran , Iran
| |
Collapse
|
22
|
Hosseinzadeh R, Khorsandi K. Interaction of vitamin B1 with bovine serum albumin investigation using vitamin B1-selective electrode: potentiometric and molecular modeling study. J Biomol Struct Dyn 2016; 34:1903-10. [PMID: 26372107 DOI: 10.1080/07391102.2015.1094414] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Vitamin B1 or thiamin is one of the B vitamins. All B vitamins help the body to convert food (carbohydrates) into fuel (glucose), which produces energy. The B vitamins are necessary for healthy skin, eyes, hair, and liver. It also could help the nervous system function properly, and is necessary for brain functions. Drug interactions with protein can affect the distribution of the drug and eliminate the drug in living systems. In this study, the binding of thiamine hydrochloride (vitamin B1) to bovine serum albumin (BSA) was evaluated using a new proposed vitamin B1 (thiamine)-selective membrane electrode under various experimental conditions, such as pH, ionic strength, and protein concentration; in addition molecular modeling was applied as well. The binding isotherms plotted based on potentiometric data and analyzed using the Wyman binding potential concept. The apparent binding constant was determined and used for the calculation of intrinsic Gibbs free energy of binding. According to the electrochemical and molecular docking results, it can be concluded that the hydrophobic interactions and hydrogen binding are major interactions between BSA and vitamin B1.
Collapse
|
23
|
Yeggoni DPR, Manidhar DM, Suresh Reddy C, Subramanyam R. Investigation of binding mechanism of novel 8-substituted coumarin derivatives with human serum albumin and α-1-glycoprotein. J Biomol Struct Dyn 2016; 34:2023-36. [PMID: 26440860 DOI: 10.1080/07391102.2015.1104264] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Coumarin molecules have biological activities possessing lipid-controlling activity, anti-hepatitis C activity, anti-diabetic, anti-Parkinson activity, and anti-cancer activity. Here, we have presented an inclusive study on the interaction of 8-substituted-7-hydroxy coumarin derivatives (Umb-1/Umb-2) with α-1-glycoprotein (AGP) and human serum albumin (HSA) which are the major carrier proteins in the human blood plasma. Binding constants obtained from fluorescence emission data were found to be KUmb-1=3.1 ± .01 × 10(4) M(-1), KUmb-2 = 7 ± .01 × 10(4) M(-1), which corresponds to -6.1 and -6.5 kcal/mol of free energy for Umb-1 and Umb-2, respectively, suggesting that these derivatives bind strongly to HSA. Also these molecules bind to AGP with binding constants of KUmb-1-AGP=3.1 ± .01 × 10(3) M(-1) and KUmb-2-AGP = 4.6 ± .01 × 10(3) M(-1). Further, the distance, r between the donor (HSA) and acceptor (Umb-1/Umb-2) was calculated based on the Forster's theory of non-radiation energy transfer and the values were observed to be 1.14 and 1.29 nm in Umb-1-HSA and Umb-2-HSA system, respectively. The protein secondary structure of HSA was partially unfolded upon binding of Umb-1 and Umb-2. Furthermore, site displacement experiments with lidocaine, phenylbutazone (IIA), and ibuprofen (IIIA) proves that Umb derivatives significantly bind to subdomain IIIA of HSA which is further supported by docking studies. Furthermore, Umb-1 binds to LYS402 with one hydrogen bond distance of 2.8 Å and Umb-2 binds to GLU354 with one hydrogen bond at a distance of 2.0 Å. Moreover, these molecules are stabilized by hydrophobic interactions and hydrogen bond between the hydroxyl groups of carbon-3 of coumarin derivatives.
Collapse
Affiliation(s)
- Daniel Pushpa Raju Yeggoni
- a Department of Plant Sciences , School of Life Sciences, University of Hyderabad , Hyderabad 500046 , India
| | - Darla Mark Manidhar
- b Department of Chemistry , Sri Venkateswara University , Tirupati , Andhra Pradesh 517502 , India
| | - Cirandur Suresh Reddy
- b Department of Chemistry , Sri Venkateswara University , Tirupati , Andhra Pradesh 517502 , India
| | - Rajagopal Subramanyam
- a Department of Plant Sciences , School of Life Sciences, University of Hyderabad , Hyderabad 500046 , India
| |
Collapse
|
24
|
Maurya JK, Mir MUH, Maurya N, Dohare N, Ali A, Patel R. A spectroscopic and molecular dynamic approach on the interaction between ionic liquid type gemini surfactant and human serum albumin. J Biomol Struct Dyn 2016; 34:2130-45. [DOI: 10.1080/07391102.2015.1109552] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jitendra Kumar Maurya
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Muzaffar Ul Hassan Mir
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Neha Maurya
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Neeraj Dohare
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Anwar Ali
- Department of Chemistry, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Rajan Patel
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| |
Collapse
|
25
|
Kabir MZ, Feroz SR, Mukarram AK, Alias Z, Mohamad SB, Tayyab S. Interaction of a tyrosine kinase inhibitor, vandetanib with human serum albumin as studied by fluorescence quenching and molecular docking. J Biomol Struct Dyn 2016; 34:1693-704. [DOI: 10.1080/07391102.2015.1089187] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Md. Zahirul Kabir
- Faculty of Science, Biomolecular Research Group, Biochemistry Programme, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Shevin R. Feroz
- Faculty of Science, Biomolecular Research Group, Biochemistry Programme, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Abdul Kadir Mukarram
- Faculty of Science, Bioinformatics Programme, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Zazali Alias
- Faculty of Science, Biomolecular Research Group, Biochemistry Programme, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Saharuddin B. Mohamad
- Faculty of Science, Bioinformatics Programme, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
- Faculty of Science, Centre of Research for Computational Sciences and Informatics for Biology, Bioindustry, Environment, Agriculture and Healthcare, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Saad Tayyab
- Faculty of Science, Biomolecular Research Group, Biochemistry Programme, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
- Faculty of Science, Centre of Research for Computational Sciences and Informatics for Biology, Bioindustry, Environment, Agriculture and Healthcare, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
26
|
Awasthi S, Saraswathi N. Elucidating the molecular interaction of sinigrin, a potent anticancer glucosinolate from cruciferous vegetables with bovine serum albumin: effect of methylglyoxal modification. J Biomol Struct Dyn 2015; 34:2224-32. [DOI: 10.1080/07391102.2015.1110835] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Saurabh Awasthi
- Molecular Biophysics Lab, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613401, Tamilnadu, India
| | - N.T. Saraswathi
- Molecular Biophysics Lab, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613401, Tamilnadu, India
| |
Collapse
|
27
|
Singha Roy A, Ghosh P, Dasgupta S. Glycation of human serum albumin alters its binding efficacy towards the dietary polyphenols: a comparative approach. J Biomol Struct Dyn 2015; 34:1911-8. [DOI: 10.1080/07391102.2015.1094749] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Atanu Singha Roy
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Pooja Ghosh
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Swagata Dasgupta
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|