1
|
Chhabra N, Matore BW, Lakra N, Banjare P, Murmu A, Bhattacharya A, Gayen S, Singh J, Roy PP. Multilayered screening for multi-targeted anti-Alzheimer's and anti-Parkinson's agents through structure-based pharmacophore modelling, MCDM, docking, molecular dynamics and DFT: a case study of HDAC4 inhibitors. In Silico Pharmacol 2025; 13:16. [PMID: 39850265 PMCID: PMC11751275 DOI: 10.1007/s40203-024-00302-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 12/31/2024] [Indexed: 01/25/2025] Open
Abstract
Abstract Alzheimer's disease (AD) and Parkinson's disease (PD) are neurological conditions that primarily impact the elderly having distinctive traits and some similarities in terms of symptoms and progression. The multifactorial nature of AD and PD encourages exploring potentiality of multi-target therapy for addressing these conditions to conventional, the "one drug one target" strategy. This study highlights the searching of potential HDAC4 inhibitors through multiple screening approaches. In this context, structure-based pharmacophore model, ligand profiler mapping and MCDM approaches were performed for target prioritization. Similarly, ligand profiler, MCDM and Docking studies were performed to prioritize multi-targeted HDAC4 inhibitors. These comprehensive approaches unveiled 5 common targets and 5 multi-targeted prioritized compounds consensually. MD simulations, DFT and binding free energy calculations corroborated the stability and robustness of propitious compound 774 across 5 prioritized targets. In conclusion, the screened compound 774 (ChEMBL 4063938) could be a promising multi-targeted therapy for managing AD and PD further rendering experimental validation. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00302-4.
Collapse
Affiliation(s)
- Nikita Chhabra
- Laboratory of Drug Discovery and Ecotoxicology, Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009 India
| | - Balaji Wamanrao Matore
- Laboratory of Drug Discovery and Ecotoxicology, Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009 India
| | - Nisha Lakra
- Laboratory of Drug Discovery and Ecotoxicology, Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009 India
| | - Purusottam Banjare
- Laboratory of Drug Discovery and Ecotoxicology, Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009 India
| | - Anjali Murmu
- Laboratory of Drug Discovery and Ecotoxicology, Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009 India
| | - Arijit Bhattacharya
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032 India
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032 India
| | - Jagadish Singh
- Laboratory of Drug Discovery and Ecotoxicology, Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009 India
| | - Partha Pratim Roy
- Laboratory of Drug Discovery and Ecotoxicology, Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009 India
| |
Collapse
|
2
|
Shanmugam V, Muthukrishnan S. Investigation of novel ligand targeting bromodomain-containing protein 4 (BRD4) for cancer drug discovery: complete pharmacophore approach. J Biomol Struct Dyn 2023; 41:14524-14539. [PMID: 36841551 DOI: 10.1080/07391102.2023.2183034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/15/2023] [Indexed: 02/27/2023]
Abstract
The Bromodomain (BRD4) and extra-terminal (BET) protein family are reversible; lysine-acetylated epigenetic readers identified as key important epigenetic regulators for protein recognition in posttranslational modifications for targeting cancer for its role in super-enhancers and transcription of oncogene expression in cancer and other forms of cancer and various diseases. Firstly, JQ-1a small potent BET inhibitors, targeting BET proteins were currently in clinical trials to ablate cancer. The identified compounds were taken from the library of preexisting therapeutically potent molecules. The objective of the present study is to identify the potential small molecule inhibitors against BRD4 through in-silico approach for the treatment of cancer. In present study, designed an in-silico screening of small molecules through ligand-based pharmacophore studies against bromodomain-containing protein 4 (BRD-4) protein and used for virtual screening through Database and their binding affinity and interaction of identified molecules were predicted through molecular docking, molecular dynamics simulations for 12 fixed time period, Molecular mechanics (MMGBSA) binding free energy calculations, ADME with drug-likeness properties including violations of lipinski's rule of 5, Jorgensens rule of 3 and other parameters were studied. The docking results indicate from the reported database screened molecules were validated with docking score -7.92 to -4.27Kcal/mol for BRD4-BD1 and the best model identified 21 hits. Among these two drugs were filtered and scrutinized for their ability based on binding modes and common interaction, MMGBSA of the highest affinity -54.53 Kcal/mol of BRD4-BD1 and ADME properties of selected molecules were predicted for its various parameters, dynamics studies evaluating its binding stability using Maestro software. In Conclusion, two BRD4 inhibitors were found to bind strongly in the similar binding sites as JQ-1, highlighting the role of BRD4-BD1. These compounds were identified as promising new options for regulating epigenetics and understanding the structural needs of BRD4 protein, further research in these areas could lead to the development of more effective and targeted cancer drugs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vaishnavi Shanmugam
- Department of Pharmacology, PSG College of Pharmacy, Peelamedu, Coimbatore, India
| | | |
Collapse
|
3
|
Bharathi, Roy KK. Structural basis for the binding of a selective inverse agonist AF64394 with the human G-protein coupled receptor 3 (GPR3). J Biomol Struct Dyn 2022; 40:10181-10190. [PMID: 34157950 DOI: 10.1080/07391102.2021.1940282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The orphan class A G-protein coupled receptor 3 (GPR3) is highly expressed in brain and linked with various neuronal functions, and therefore, expected to play a vital role in the progression of Alzheimer's disease. In view of the lack of its experimental structure, we describe herein the three-dimensional structure and conformational dynamics of GPR3 complexed with the inverse agonist AF64394. The GPR3 model was predicted using the Iterative Threading ASSEmbly Refinement (I-TASSER) method. The Induced Fit Docking predicted two unique poses, Pose 1 and Pose 2, for AF64394, and then, molecular dynamics (MD) simulations followed by binding free-energy calculation revealed the Pose 1 as a very stable pose with the least fluctuation during the MD simulation while the Pose 2 underwent a significant fluctuation. The [1,2,4]triazolo[1,5-a]pyrimidine core was engaged in multiple hydrogen bonds (H-bonds), such as a water-mediated H-bond between the triazole nitrogen and T31, two direct H-bonds between the protonated triazole-ring nitrogen and V186 and T279, a direct H-bond between the secondary amine and V187. The phenyl substituent of AF64394 exhibited aromatic π-π stacking interactions with F97, F101, W43 and Y280. AF64394 showed a direct interaction with E28 and polar interactions with H96, T31 and T279. Throughout the MD simulation, the toggle switch residues, F120 and W260, remained in close contact, indicating that the GPR3 conformation represented an inactive state. The 4-(3-chloro-5-isopropoxyphenethyl) group resided near to the toggle switch residues. The insights gained here are expected to be useful in the structure-based design of new ligands targeting GPR3 modulation. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bharathi
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Kuldeep K Roy
- Department of Pharmaceutical Technology, School of Medical Sciences, Adamas University, Kolkata, India
| |
Collapse
|
4
|
Zhao L, Hsiao T, Stonesifer C, Daniels J, Garcia-Saleem TJ, Choi J, Geskin L, Rook AH, Wood GS. The Robust Tumoricidal Effects of Combined BET/HDAC Inhibition in Cutaneous T-Cell Lymphoma Can Be Reproduced by ΔNp73 Depletion. J Invest Dermatol 2022; 142:3253-3261.e4. [PMID: 35787399 PMCID: PMC9691518 DOI: 10.1016/j.jid.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/11/2022] [Accepted: 06/07/2022] [Indexed: 01/05/2023]
Abstract
Combined BET inhibitor/histone deacetylase inhibitor treatment induces marked apoptosis of cutaneous T-cell lymphoma (CTCL) with minimal normal T-cell toxicity. At 96 hours when apoptosis was extensive, a majority of CTCL lines showed ≥2-fold suppression of T-cell survival factors (e.g., AKT1, BCL2 antiapoptotic factors, BIRC5, CD40, CD70, GADD45A, PRKCA, TNFRSF1B, ΔNp73) and ≥2-fold upregulation of proapoptotic factors and tumor suppressors (e.g., ATM, BAK, BIM, multiple caspases, FHIT, HIC1, MGMT, NOD1) (P < 0.05). The largest alterations were in TP73 isoform expression, resulting in increased TAp73/ΔNp73 ratios in CTCL lines and leukemic Sézary cells. Targeted ΔNp73 inhibition by small interfering RNA knockdown resulted in robust CTCL apoptosis comparable with that induced by BET inhibitor/histone deacetylase inhibitor with minimal normal T-cell toxicity. Chromatin immunoprecipitation analysis showed that BET inhibitor/histone deacetylase inhibitor treatment reduced RNA polymerase II binding to ΔNp73, MYC, and AKT1 while increasing its binding to TAp73. CTCL skin lesions expressed both TAp73 and ΔNp73 isoforms in situ. In aggregate, these findings implicate TAp73/ΔNp73 balance as a major factor governing CTCL survival, show that the expression of p73 isoforms can be altered by molecular biological and pharmaceutical means, show that p73 isoforms are expressed across the entire CTCL clinical spectrum, and identify the p73 pathway as a potential target for therapeutics.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Dermatology, The School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Tony Hsiao
- Department of Dermatology, The School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Connor Stonesifer
- Department of Dermatology, Columbia University, New York, New York, USA
| | - Jay Daniels
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Ilinois, USA
| | | | - Jaehyuk Choi
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Ilinois, USA
| | - Larisa Geskin
- Department of Dermatology, Columbia University, New York, New York, USA
| | - Alain H Rook
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gary S Wood
- Department of Dermatology, The School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
5
|
Jiang Y, Wang G, Mu H, Ma X, Wang Z, Lv Y, Zhang T, Xu J, Wang J, Li Y, Han J, Yang M, Wang Z, Zeng K, Jin X, Xue S, Yin M, Sun W, Hua Y, Cai Z. Bromodomain Inhibition Attenuates the Progression and Sensitizes the Chemosensitivity of Osteosarcoma by Repressing GP130/STAT3 Signaling. Front Oncol 2021; 11:642134. [PMID: 34168981 PMCID: PMC8219214 DOI: 10.3389/fonc.2021.642134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/30/2021] [Indexed: 01/25/2023] Open
Abstract
Osteosarcoma is the most common primary malignant bone tumor, and there are few ideal clinically available drugs. The bromodomain and extraterminal domain (BET) protein is an emerging target for aggressive cancer, but therapies targeting the BET in osteosarcoma have been unsuccessful in clinical trials to date, and further exploration of specific BET inhibitors is of great significance. In our study, we demonstrated that NHWD-870, a potent BET inhibitor in a phase I clinical trial, significantly inhibited tumor proliferation and promoted cell apoptosis by reversing the oncogenic signature in osteosarcoma. More importantly, we identified NHWD-870 impeded binding of BRD4 to the promoter of GP130 leading to diminished activation of JAK/STAT3 signaling pathway. Furthermore, GP130 knockdown significantly sensitizes the chemosensitivity in vitro. In OS cell-derived xenografts, NHWD-870 effectively inhibited the growth of osteosarcoma. Beyond that, NHWD-870 effectively inhibited the differentiation and maturation of precursor osteoclasts in vitro and attenuated osteoclast-mediated bone loss in vivo. Finally, we confirmed the efficacy of synthetic lethal effects of NHWD-870 and cisplatin in antagonizing osteosarcoma in a preclinical PDX model. Taken together, these findings demonstrate that NHWD-870, as an effective BET inhibitor, may be a potential candidate for osteosarcoma intervention linked to its STAT3 signaling inhibitory activity. In addition, NHWD-870 appears to be a promising therapeutic strategy for bone-associated tumors, as it interferes with the vicious cycle of tumor progression and bone destruction.
Collapse
Affiliation(s)
- Yafei Jiang
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Bone Tumor Institution, Shanghai, China
| | - Gangyang Wang
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Bone Tumor Institution, Shanghai, China
| | - Haoran Mu
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Bone Tumor Institution, Shanghai, China
| | - Xiaojun Ma
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Bone Tumor Institution, Shanghai, China
| | - Zhuoying Wang
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Bone Tumor Institution, Shanghai, China
| | - Yu Lv
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Zhang
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Bone Tumor Institution, Shanghai, China
| | - Jing Xu
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Bone Tumor Institution, Shanghai, China
| | - Jinzeng Wang
- National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
| | - Yunqi Li
- National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
| | - Jing Han
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Bone Tumor Institution, Shanghai, China
| | - Mengkai Yang
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Bone Tumor Institution, Shanghai, China
| | - Zongyi Wang
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Bone Tumor Institution, Shanghai, China
| | - Ke Zeng
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Bone Tumor Institution, Shanghai, China
| | - Xinmeng Jin
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Bone Tumor Institution, Shanghai, China
| | - Song Xue
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Bone Tumor Institution, Shanghai, China
| | - Mingzhu Yin
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Sun
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Bone Tumor Institution, Shanghai, China
| | - Yingqi Hua
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Bone Tumor Institution, Shanghai, China
| | - Zhengdong Cai
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Bone Tumor Institution, Shanghai, China
| |
Collapse
|
6
|
Ansar S, Vetrivel U. Structure-based design of small molecule and peptide inhibitors for selective targeting of ROCK1: an integrative computational approach. J Biomol Struct Dyn 2021; 40:7450-7468. [PMID: 33715594 DOI: 10.1080/07391102.2021.1898470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Rho-associated, coiled-coil-containing protein kinase (ROCK1) regulates cell contraction, morphology, and motility by phosphorylating its downstream targets. ROCK1 is a proven target for many pathological conditions like cancer, atherosclerosis, glaucoma, neuro-degeneration, etc. Though many kinase inhibitors are available, there is a dearth of studies on repurposing approved drugs and novel peptide inhibitors that could potentially target ROCK1. Hence, in this study, an extensive integration of open-source pipelines was employed to probe the potential inhibitors (ligand/peptide) for targeting ROCK1. To start with, a systematic enrichment analysis was performed to delineate the most optimal ROCK1 crystal structure that can be harnessed for drug design. A comparative analysis of conformational flexibility between monomeric and dimeric forms was also performed to prioritize the optimal assembly for structural studies. Subsequently, Virtual screening of FDA-approved drugs in Drugbank was performed using POAP pipeline. Further, the top hits were probed for binding affinity, crucial interaction fingerprints, and complex stability during MD simulation. In parallel, a combinatorial tetrapeptide library was also virtually screened against ROCK1 using the PepVis pipeline. Following which, all these shortlisted inhibitors (compounds/peptides) were subjected to Kinomerun analysis to infer other potential kinase targets. Finally, Polydatin and conivaptan were prioritized as the most potential repurposable inhibitors, and WWWF, WWVW as potential inhibitory peptides for targeting ROCK1. The prioritized inhibitors are highly promising for use in therapeutics, as these are resultants of the multilevel stringent filtration process. The computational strategies implemented in this study could potentially serve as a scaffold towards selective inhibitor design for other kinases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Samdani Ansar
- Centre for Bioinformatics, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, Tamil Nadu, India.,School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Umashankar Vetrivel
- Centre for Bioinformatics, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, Tamil Nadu, India.,Department of Health Research, (Govt. of India), National Institute of Traditional Medicine, Indian Council of Medical Research, Belagavi, Karnataka, India
| |
Collapse
|
7
|
Montalvo-Casimiro M, González-Barrios R, Meraz-Rodriguez MA, Juárez-González VT, Arriaga-Canon C, Herrera LA. Epidrug Repurposing: Discovering New Faces of Old Acquaintances in Cancer Therapy. Front Oncol 2020; 10:605386. [PMID: 33312959 PMCID: PMC7708379 DOI: 10.3389/fonc.2020.605386] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022] Open
Abstract
Gene mutations are strongly associated with tumor progression and are well known in cancer development. However, recently discovered epigenetic alterations have shown the potential to greatly influence tumoral response to therapy regimens. Such epigenetic alterations have proven to be dynamic, and thus could be restored. Due to their reversible nature, the promising opportunity to improve chemotherapy response using epigenetic therapy has arisen. Beyond helping to understand the biology of the disease, the use of modern clinical epigenetics is being incorporated into the management of the cancer patient. Potential epidrug candidates can be found through a process known as drug repositioning or repurposing, a promising strategy for the discovery of novel potential targets in already approved drugs. At present, novel epidrug candidates have been identified in preclinical studies and some others are currently being tested in clinical trials, ready to be repositioned. This epidrug repurposing could circumvent the classic paradigm where the main focus is the development of agents with one indication only, while giving patients lower cost therapies and a novel precision medical approach to optimize treatment efficacy and reduce toxicity. This review focuses on the main approved epidrugs, and their druggable targets, that are currently being used in cancer therapy. Also, we highlight the importance of epidrug repurposing by the rediscovery of known chemical entities that may enhance epigenetic therapy in cancer, contributing to the development of precision medicine in oncology.
Collapse
Affiliation(s)
- Michel Montalvo-Casimiro
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| | - Rodrigo González-Barrios
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| | - Marco Antonio Meraz-Rodriguez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| | | | - Cristian Arriaga-Canon
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| | - Luis A. Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
- Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| |
Collapse
|
8
|
Prieto-Martínez FD, Medina-Franco JL. Current advances on the development of BET inhibitors: insights from computational methods. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 122:127-180. [PMID: 32951810 DOI: 10.1016/bs.apcsb.2020.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Epigenetics was coined almost 70 years ago for the description of heritable phenotype without altering DNA sequences. Research on the field has uncovered significant roles of such mechanisms, that account for the biogenesis of several diseases. Further studies have led the way for drug development which targets epi-enzymes, mainly for cancer treatment. Of the numerous epi-targets involved with histone acetylation, bromodomains have captured the spotlight of drug discovery focused on novel therapies. However, due to high sequence identity, the development of potent and selective inhibitors poses a significant challenge. Herein, we discuss recent computational developments on BET inhibitors and other methods that may be applied for drug discovery in general. As a proof-of-concept, we discuss a virtual screening to identify novel BET inhibitors based on coumarin derivatives. From public data, we identified putative structure-activity relationships of coumarin scaffold and propose R-group modifications for BET selectivity. Results showed that the optimization and design of novel coumarins could be further explored.
Collapse
Affiliation(s)
- Fernando D Prieto-Martínez
- Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, Mexico City, Mexico
| | - José L Medina-Franco
- Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
9
|
Satish Kumar K, Velayutham R, Roy KK. A systematic computational analysis of human matrix metalloproteinase 13 (MMP-13) crystal structures and structure-based identification of prospective drug candidates as MMP-13 inhibitors repurposable for osteoarthritis. J Biomol Struct Dyn 2019; 38:3074-3086. [PMID: 31378153 DOI: 10.1080/07391102.2019.1651221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Ravichandiran Velayutham
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| | - Kuldeep K. Roy
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| |
Collapse
|
10
|
Syed MM, Doshi PJ, Dhavale DD, Doshi JB, Kate SL, Kulkarni G, Sharma N, Uppuladinne M, Sonavane U, Joshi R, Kulkarni MV. Potential of isoquercitrin as antisickling agent: a multi-spectroscopic, thermophoresis and molecular modeling approach. J Biomol Struct Dyn 2019; 38:2717-2736. [PMID: 31315526 DOI: 10.1080/07391102.2019.1645735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Sickle cell disease is an inherited disease caused by point mutation in hemoglobin (β-globin gene). Under oxygen saturation, sickle hemoglobin form polymers, leading to rigid erythrocytes. The transition of the blood vessels is altered and initiated by the adhesion of erythrocytes, neutrophils and endothelial cells. Sickle Hemoglobin (HbS) polymerization is a major cause in red blood cells (RBC), promoting sickling and destruction of RBCs. Isoquercitrin, a medicinal bioactive compound found in various medicinal plants, has multiple health benefits. The present study examines the potential of isoquercitrin as an anti-sickle agent, showing a significant decrease in the rate of polymerization as well as sickling of RBCs. Isoquercitrin-induced graded alteration in absorbance and fluorescence of HbS, confirmed their interaction. A negative value of ΔG° strongly suggests that it is a spontaneous exothermic reaction induced by entropy. Negative ΔH° and positive ΔS° predicted that hydrogen and hydrophobic binding forces interfered with a hydrophobic microenvironment of β6Val leading to polymerization inhibition of HbS. HbS-Isoquercitrin complex exhibits helical structural changes leading to destabilization of the HbS polymer as confirmed by CD spectroscopy. MST and DSC results indicate greater changes in thermophoretic mobility and thermal stability of sickle hemoglobin in the presence of isoquercitrin, respectively. These findings were also supported by molecular simulation studies using DOCK6 and GROMACS. Hence, we can conclude that isoquercitrin interacts with HbS through hydrogen bonding, which leads to polymerization inhibition. Consequently, isoquercitrin could potentially be used as a medication for the treatment of sickle cell disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Muntjeeb M Syed
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, India
| | - Pooja J Doshi
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, India
| | - Dilip D Dhavale
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, India
| | | | - Sudam L Kate
- College of Ayurveda and Research Centre Hadapsar, Maharashtra Arogya Mandal's Sumatibhai Shah Ayurved Mahavidyalaya, Pune, India
| | - Girish Kulkarni
- College of Ayurveda and Research Centre Hadapsar, Maharashtra Arogya Mandal's Sumatibhai Shah Ayurved Mahavidyalaya, Pune, India
| | - Neeru Sharma
- HPC Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Savitribai Phule Pune University Campus, Pune, India
| | - Mallikarjunachari Uppuladinne
- HPC Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Savitribai Phule Pune University Campus, Pune, India
| | - Uddhavesh Sonavane
- HPC Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Savitribai Phule Pune University Campus, Pune, India
| | - Rajendra Joshi
- HPC Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Savitribai Phule Pune University Campus, Pune, India
| | - Mohan V Kulkarni
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, India
| |
Collapse
|
11
|
Syed MM, Doshi PJ, Kulkarni MV, Dhavale DD, Kadam NS, Kate SL, Doshi JB, Sharma N, Uppuladinne M, Sonavane U, Joshi R, Doshi SJ, Bhattacharya N. Alizarin interaction with sickle hemoglobin: elucidation of their anti-sickling properties by multi-spectroscopic and molecular modeling techniques. J Biomol Struct Dyn 2019; 37:4614-4631. [DOI: 10.1080/07391102.2018.1557557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Muntjeeb M. Syed
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, India
| | - Pooja. J. Doshi
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, India
| | - Mohan V. Kulkarni
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, India
| | - Dilip D. Dhavale
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, India
| | - Nitin S. Kadam
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, India
| | - Sudam L. Kate
- Maharashtra Arogya Mandal’s Sumatibhai Shah Ayurved Mahavidyalaya, College of Ayurveda and Research Centre Hadapsar, Pune, India
| | - Jignesh B. Doshi
- Toxoid Purification Department, Serum Institute of India Ltd., Hadapsar, Pune, India
| | - Neeru Sharma
- HPC Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Savitribai Phule Pune University Campus, Pune, India
| | - Mallikarjunachari Uppuladinne
- HPC Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Savitribai Phule Pune University Campus, Pune, India
| | - Uddhavesh Sonavane
- HPC Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Savitribai Phule Pune University Campus, Pune, India
| | - Rajendra Joshi
- HPC Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Savitribai Phule Pune University Campus, Pune, India
| | - Saurav J. Doshi
- Institute of Bioinformatics & Biotechnology (IBB), Savitribai Phule Pune University, Pune, India
| | - Nandika Bhattacharya
- Institute of Bioinformatics & Biotechnology (IBB), Savitribai Phule Pune University, Pune, India
| |
Collapse
|