1
|
Alamier WM, Alaghaz ANMA. Design, spectral characterization, quantum chemical investigation, biological activity of nano-sized transition metal complexes of tridentate 3-mercapto-4H-1,2,4-triazol-4-yl-aminomethylphenol Schiff base ligand. J Biomol Struct Dyn 2025; 43:2138-2158. [PMID: 38133937 DOI: 10.1080/07391102.2023.2294171] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023]
Abstract
A tridentate Schiff base ligand, H2MTIP, was produced by condensing salicylaldehyde with 4-amino-4H-1,2,4-triazole-3-thiol. The ligand was then used to create nanosized complexes of Pt(II), Ni(II), Cu(II), and Pd(II). The complexes have the composition [Pt/Ni/Cu/or Pd(MTIP)(H2O)], this conclusion is supported by molar conductance, magnetic moments, elemental analyses, spectral analyses. In DFT analysis, the 6-31+ g(d,p) basis set was used to fully optimize the energy with respect to the shapes of Schiff base ligand and metal complexes. Pt(II), Ni(II), Cu(II), and Pd(II) complexes have been assigned square-planar geometries. At the same time, the intense diffraction peaks in X-ray diffractograms show their crystalline features with particle sizes in the nanoscale range. The binding interaction of calf thymus DNA with these metal complexes and their insulin-like activity was examined in vitro by inhibiting α-amylase. The study investigated the in-vitro activity of several complexes and identified Pt(II) complex as the one with the highest activity. The researchers then tested this complex for in-vivo antidiabetic activity in induced diabetic rats using the STZ model, and it significantly lowered blood glucose levels. The antioxidant activity and toxicity level of Pt(II) complex were also excellent, suggesting that it could be a good candidate for further research as a possible diabetes drug.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Waleed M Alamier
- Department of Chemistry, College of Science, Jazan University, Jazan, Kingdom of Saudi Arabia
| | | |
Collapse
|
2
|
Sindhu I, Singh A. Nitro Substituted Co(II), Ni(II) and Cu(II) Schiff Base Metal complexes: design, spectral analysis, antimicrobial and in-silico molecular docking investigation. Biometals 2025; 38:297-320. [PMID: 39714739 DOI: 10.1007/s10534-024-00655-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024]
Abstract
The Schiff base metal complexes containing the transition metal ions Co(II), Ni(II) and Cu(II) were synthesized using their nitrate and acetate salts. An octahedral environment encircling metal complexes has been demonstrated by the findings of multiple spectroscopic approaches that were employed to demonstrate the structure of the metal complexes. The Coats-Redfern method of thermal analysis was employed to carry out the kinetic and thermodynamic calculations. The crystalline size of ligand was 36.67 nm and for the metal complexes it varies from 22.43 to 49.21 nm. To assess the biological effectiveness of these compounds, molecular docking studies were emanated. The docking binding studies were established through the interaction of metal complexes with human cancer protein, such as 3W2S (ovarian cancer) and 4ZVM (breast cancer). The results exemplified that the complexes are more efficient towards ovarian cancer (3W2S) in contrast to breast cancer (4ZVM) while among complexes, the nickel acetate (- 7.0 kcal/mol) and copper acetate (- 7.9 kcal/mol) complex were more efficient towards 4ZVM and 3W2S receptors respectively. Additionally, DNA binding studies against 1BNA receptor protein was examined from docking evaluations and the finding concludes the highest efficiency of nickel (- 8.1 kcal/mol) complexes. Further, a number of bacterial and fungal strains have been implemented in antimicrobial examinations to assess the compounds effectualness. The results untangled the extreme potential of copper nitrate (0.0051-0.0102 µmol/mL) and copper acetate (0.0051-0.0103 µmol/mL) complexes against all bacterial and fungal strains except for S. aureus in which nickel acetate proved out to be highly competent.
Collapse
Affiliation(s)
- Indu Sindhu
- Department of Chemistry, Baba Mastnath University, Asthal Bohar, Rohtak, 124021, India
| | - Anshul Singh
- Department of Chemistry, Baba Mastnath University, Asthal Bohar, Rohtak, 124021, India.
| |
Collapse
|
3
|
Hosseini MS, Hadadzadeh H, Mirahmadi-Zare SZ, Farrokhpour H, Aboutalebi F, Morshedi D. A curcumin-nicotinoyl derivative and its transition metal complexes: synthesis, characterization, and in silico and in vitro biological behaviors. Dalton Trans 2023; 52:14477-14490. [PMID: 37779393 DOI: 10.1039/d3dt01351k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Curcumin-nicotinoyl (Cur-Nic) was synthesized by the chemical modification of the curcumin structure, characterized, and used as a ligand for the synthesis of copper(II) and zinc(II) complexes. The biological activities of Cur-Nic and its metal complexes were predicted using the PASS and Swiss Target Prediction online software, respectively, and docking studies with tyrosine-protein kinase SRC were performed using the PyRx software to predict their anticancer activities. The toxicity effects of the complexes on a human breast cancer cell line (MCF-7) compared to a healthy breast cell line (MCF-10A) were investigated by the MTS assay. Although the metal complexes maintained the least toxicity against normal cells, the results indicated that compared to curcumin and Cur-Nic, the cytotoxicity toward cancer cells increased due to the complexation process. Moreover, the antibacterial evaluation of the compounds against a Gram-positive bacterium (MRSA) and a Gram-negative bacterium (E. coli) indicated that the Cu(II) complex and Cur-Nic were the best, respectively. Also, the Zn(II) complex was the most stable compound, and the Cu(II) complex was the best ROS scavenger based on the in vitro evaluation.
Collapse
Affiliation(s)
- Marziyeh-Sadat Hosseini
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, 8159358686, Isfahan, Iran.
| | - Hassan Hadadzadeh
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Seyede Zohreh Mirahmadi-Zare
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, 8159358686, Isfahan, Iran.
| | - Hossein Farrokhpour
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Fatemeh Aboutalebi
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, 8159358686, Isfahan, Iran.
| | - Dina Morshedi
- Bioprocess Engineering Department, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
4
|
Jaryal R, Khan SA. Liquid-assisted mechanochemical synthesis, crystallographic, theoretical and molecular docking study on HIV instasome of novel copper complexes: (µ-acetato)-bis(2,2'-bipyridine)-copper and bromidotetrakis(2-methyl-1H-imidazole)-copper bromide. Biometals 2023; 36:975-996. [PMID: 37010713 DOI: 10.1007/s10534-023-00498-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/01/2023] [Indexed: 04/04/2023]
Abstract
In the present work the two new Cu(II) complexes, (µ-acetato)-bis(2,2'-bipyridine)-copper [Cu(bpy)2(CH3CO2)] and bromidotetrakis(2-methyl-1H-imidazole)-copper bromide [Cu(2-methylimid)4Br]Br have been synthesized by liquid assisted mechanochemical method. The [Cu(bpy)2(CH3CO2)] complex (1) and [Cu(2-methylimid)4Br]Br complex (2) characterised by IR and UV-visible spectroscopy and the structure are confirmed by XRD diffraction studies. Complex (1) crystallized in the Monoclinic with the space group of C2/c where a = 24.312(5) Å, b = 8.5892(18) Å, c = 14.559(3) Å, α = 90°, β = 106.177(7)° and γ = 90° and Complex (2) crystallized in the Tetragonal with the space group of P4nc, a = 9.9259(2) Å, b = 9.9259(2) Å, c = 10.9357(2) Å, α = 90°, β = 90° and γ = 90°. The complex (1) has distorted octahedral geometry where the acetate ligand showed bidentate bridging with the central metal ion and complex (2) has slightly deformed square pyramidal geometry. The HOMO-LUMO energy gap value and the low chemical potential showed that the complex (2) is stable and difficult to polarize compare to complex (1). The molecular docking study of complexes with the HIV instasome nucleoprotein showed the binding energy values - 7.1 and - 5.3 kcal/mol for complex (1) and complex (2) respectively. The negative binding energy values showed the complexes have affinity to bind with HIV instasome nucleoproteins. The in-silico pharmacokinetic study of the complex (1) and complex (2) showed non AMES toxicity, non-carcinogens and low honey Bee toxicity but weakly inhibit Human Ether-a-go-go-related gene.
Collapse
Affiliation(s)
- Ruchika Jaryal
- Chemistry Department, DAV PG College, Jai Prakash University, Siwan, Bihar, 841226, India.
| | - Shamshad Ahmad Khan
- Chemistry Department, DAV PG College, Jai Prakash University, Siwan, Bihar, 841226, India
| |
Collapse
|
5
|
In silico and biological exploration of greenly synthesized curcumin-incorporated isoniazid Schiff base and its ruthenium complexes. Struct Chem 2022. [DOI: 10.1007/s11224-022-02065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Combined experimental and theoretical analyses on design, synthesis, characterization, and in vitro cytotoxic activity evaluation of some novel imino derivatives containing pyrazolone ring. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Laxmi, Shahzaib A, Khan S, Ghosal A, Zafar F, Alam M, Nami SAA, Nishat N. One-pot synthesis of zinc ion coordinated hydroxy-terminated polyurethanes based on low molecular weight polyethylene glycol and toluene diisocyanate. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02994-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Ngoepe MP, Clayton HS. Metal Complexes as DNA Synthesis and/or Repair Inhibitors: Anticancer and Antimicrobial Agents. PHARMACEUTICAL FRONTS 2021. [DOI: 10.1055/s-0041-1741035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AbstractMedicinal inorganic chemistry involving the utilization of metal-based compounds as therapeutics has become a field showing distinct promise. DNA and RNA are ideal drug targets for therapeutic intervention in the case of various diseases, such as cancer and microbial infection. Metals play a vital role in medicine, with at least 10 metals known to be essential for human life and a further 46 nonessential metals having been involved in drug therapies and diagnosis. These metal-based complexes interact with DNA in various ways, and are often delivered as prodrugs which undergo activation in vivo. Metal complexes cause DNA crosslinking, leading to the inhibition of DNA synthesis and repair. In this review, the various interactions of metal complexes with DNA nucleic acids, as well as the underlying mechanism of action, were highlighted. Furthermore, we also discussed various tools used to investigate the interaction between metal complexes and the DNA. The tools included in vitro techniques such as spectroscopy and electrophoresis, and in silico studies such as protein docking and density-functional theory that are highlighted for preclinical development.
Collapse
Affiliation(s)
| | - Hadley S. Clayton
- Department of Chemistry, University of South Africa, Pretoria, South Africa
| |
Collapse
|
9
|
İLHAN CEYLAN B. Oxovanadium(IV) template derived from benzophenone S-allyl thiosemicarbazone: Synthesis, crystal structure, antioxidant activity and electrochemistry. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2021. [DOI: 10.18596/jotcsa.911318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
10
|
Microwave-Assisted Synthesis of Schiff Bases of Isoniazid and Evaluation of Their Anti-Proliferative and Antibacterial Activities. MOLBANK 2021. [DOI: 10.3390/m1189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Three new Schiff bases of isoniazid were synthesized using microwave-assisted synthesis and conventional condensation with aromatic aldehydes. Synthesized compounds were characterized using elemental analysis, IR, NMR, and Mass spectroscopy. Synthesized compounds were evaluated for antiproliferative activity against MCF-7 cell line. The IC50 values were from 125 to 276 µM. The compounds were also evaluated for antibacterial activity against Staphylococcus aureus and Escherichia coli. Results showed that the synthesized compounds produce significant antibacterial activity in vitro. Inhibition of compounds ranged from 13 to 18 mm.
Collapse
|
11
|
John L, Joseyphus RS, Joe IH. Molecular docking, photocatalytic activity and biomedical investigations of some metal complexes. J Biomol Struct Dyn 2020; 39:5600-5612. [PMID: 32687439 DOI: 10.1080/07391102.2020.1794964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Metal(II)-(furfural-L-his) complexes with a potentially bidentate furfural-L-his have been synthesized. Furfural-L-his and its Co/Ni/Cu/Zn(II)-(furfural-L-his) complexes have been optimized by DFT. The structural features were determined from their elemental analyses, molar conductance, magnetic, UV-Vis, IR, mass, 1H NMR and EPR spectral studies. On the basis of electronic spectral data and magnetic measurements, suitable geometry has been proposed for each complex. The redox behaviour of Cu(II)-(furfural-L-his) complex has been studied by cyclic voltammetry. Thermal decomposition profiles are consistent with the proposed formulation of Co/Ni/Cu/Zn(II)-(furfural-L-his) complexes. PXRD studies reveal that furfural-L-his and Zn(II)-(furfural-L-his) complex are of nanomeric structure. SEM images of furfural-L-his exhibit flake-like morphology. Photodegradation of methylene blue dye indicates that they are photocatalyticaly efficient. NBO and NPA shown considerable reduction in the formal charge on metal ions. Docking analysis with EGFR and cyclooxygenase-2 receptor has been performed to find the best binding energy. Antimicrobial, antioxidant and anti-inflammatory activity against standard at variable concentrations revealed that the Co/Ni/Cu/Zn(II)-(furfural-L-his) complexes show enhanced antimicrobial, free radical scavenging and anti-inflammatory activities as compared to furfural-L-his. Furfural-L-his and Cu(II)-(furfural-L-his) complex have been tested against human ovarian cancer cells, which showed that Cu(II)-(furfural-L-his) complex exhibited promising anticancer activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Liji John
- PG & Research Department of Chemistry, Mar Ivanios College (Autonomous) (Research Centre: University of Kerala), Thiruvananthapuram, India
| | - R Selwin Joseyphus
- PG & Research Department of Chemistry, Mar Ivanios College (Autonomous) (Research Centre: University of Kerala), Thiruvananthapuram, India
| | - I Hubert Joe
- Department of Physics, University of Kerala, Thiruvananthapuram, India
| |
Collapse
|
12
|
İlhan-Ceylan B. Oxovanadium(IV) and Nickel(II) complexes obtained from 2,2'-dihydroxybenzophenone-S-methyl-thiosemicarbazone: Synthesis, characterization, electrochemistry, and antioxidant capability. Inorganica Chim Acta 2020; 517:120186. [PMID: 33318715 PMCID: PMC7724315 DOI: 10.1016/j.ica.2020.120186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 11/19/2022]
Abstract
2,2'-Dihydroxybenzophenone-S-methyl-thiosemicarbazone and 3-methoxy-salicylaldehyde were reacted in the presence of oxovanadium(IV) or nickel(II) ions to yield the N2O2-type-chelate complex. The synthesized complexes were characterized by employing elemental analysis, electronic and infrared spectra, 1H NMR spectra, magnetic measurements, and thermogravimetric analyses. The expected structures of oxovanadium(IV) and nickel(II) complexes were confirmed by using the single-crystal X-ray diffraction method. The presence of π-π stacked dimeric structures provided stronger crystalline formations. The optimized geometries and vibrational frequencies of the compounds were obtained using the DFT/ωB97XD method with the 6-31G (d,p) basis set and compared with the experimental data. The electrochemical characterization of the oxovanadium(IV) and nickel(II) complexes were carried out by using the cyclic voltammetry (CV) method. The oxovanadium(IV) complex gives a ligand-centered oxidation and a metal-centered one electron reduction and oxidation peaks corresponding to the VIV/IIIO and VIV/VO, respectively. The nickel(II) complex gives a ligand-centered oxidation and metal-centered (NiII/I) reduction peaks in a dimethyl sulfoxide (DMSO) solution. The redox potentials were calculated in terms of Gibbs free energy change of the redox reaction at the theory level of M06-L/LANL2DZ/PCM. In addition, the energy gap, HOMO and LUMO distributions were calculated. The total antioxidant capacities of the compounds were determined by using cupric reducing antioxidant capacity (CUPRAC) method, in which the oxovanadium(IV) complex was found to be powerful as an antioxidant agent.
Collapse
Affiliation(s)
- Berat İlhan-Ceylan
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, 34320, Avcılar, Istanbul, Turkey
| |
Collapse
|
13
|
Omidi S, Kakanejadifard A. A review on biological activities of Schiff base, hydrazone, and oxime derivatives of curcumin. RSC Adv 2020; 10:30186-30202. [PMID: 35518272 PMCID: PMC9056295 DOI: 10.1039/d0ra05720g] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
Schiff base, hydrazone, and oxime derivatives of curcumin showed enhanced biological activities.
Collapse
Affiliation(s)
- Sakineh Omidi
- Department of Chemistry
- Faculty of Science
- Lorestan University
- Khorramabad
- Iran
| | - Ali Kakanejadifard
- Department of Chemistry
- Faculty of Science
- Lorestan University
- Khorramabad
- Iran
| |
Collapse
|
14
|
Angelova VT, Simeonova R. Effects of a new 1,2,3-thiadiazole containing hydrazone antimycobacterial agent on serum and liver biochemical parameters in female mice. Drug Chem Toxicol 2019; 45:113-119. [PMID: 31495229 DOI: 10.1080/01480545.2019.1660671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Isoniazid (INH), a first-line drug in anti-tuberculosis therapy, is known to be potentially harmful and is associated with numerous side effects especially in the blood and liver. In the course of our previous investigations, 1,2,3-thiadiazole containing hydrazone (compound 3) showed excellent antimycobacterial activity against a referent strain M. tuberculosis H37Rv (MIC value 0.39 μM), low cytotoxicity, and did not have toxic effects when administered by oral or intraperitoneal routes to experimental animals (selectivity index SI > 1979, LD50>2000 mg/kg b.w.) what revealed its suitability for further exploration. In the present study compound 3 was chosen to determine its effects on the liver and kidney functions in female mice. The compound was administered orally for 14 days at three doses (100, 200, and 400 mg/kg b.w.). The quantity of malondialdehyde (MDA), the level of reduced glutathione (GSH), blood hematological and biochemical parameters were assessed, and urine analysis was carried out. As a positive control INH was used orally at a dose of 50 mg/kg b.w. The investigated compound 3 did not affect the urine and serum hematological and biochemical parameters as INH did, compared to those of the control mice. The new compound did not affect significantly the MDA quantity and maintained its level near to the control values, though lower by 36% (p < 0.05) than in the INH treated animals. At the higher doses, 200 and 400 mg/kg, it depleted the GSH content by 25% (p < 0.05), compared to the control. However, its level remained 47% (p < 0.05) higher than in the INH treated animals.
Collapse
Affiliation(s)
- Violina T Angelova
- Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia , Sofia , Bulgaria
| | - Rumyana Simeonova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University-Sofia , Sofia , Bulgaria
| |
Collapse
|
15
|
Uddin N, Rashid F, Ali S, Tirmizi SA, Ahmad I, Zaib S, Zubair M, Diaconescu PL, Tahir MN, Iqbal J, Haider A. Synthesis, characterization, and anticancer activity of Schiff bases. J Biomol Struct Dyn 2019; 38:3246-3259. [PMID: 31411114 DOI: 10.1080/07391102.2019.1654924] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Five Schiff bases, 2-((3-chlorophenylimino)methyl)-5-(diethylamino)phenol (L1), 2-((2,4-dichlorophenylimino)methyl)-5-(diethylamino)phenol (L2), 5-(diethylamino)-2-((3,5-dimethylphenylimino)methyl)phenol (L3), 2-((2-chloro-4-methylphenylimino)methyl)-5-(diethylamino)phenol (L4), and 5-(diethylamino)-2-((2,6-diethylphenylimino)methyl)phenol (L5) were synthesized and characterized by elemental analysis, FT-IR, 1H and 13C NMR spectroscopy. Three of the compounds (L1, L2, and L4) were analyzed by single crystal X-ray diffraction: L1 and L2 crystallized in orthorhombic P212121 and Pca21 space group, respectively, while L4 crystallized in monoclinic P21/c space group. Theoretical investigations were performed for all the synthesized compounds to evaluate the structural details. Drug-DNA interaction studies results from UV-Vis spectroscopy and electrochemistry complement that the compounds bind to DNA through electrostatic interactions. The cytotoxicity of the synthesized compounds was studied against cancer cell lines (HeLa and MCF-7) and a normal cell line (BHK-21) by means of an MTT assay compared to carboplatin, featuring IC50 values in the micromolar range. The pro-apoptotic mechanism for the active compound L5 was evaluated by fluorescence microscopy, cell cycle analysis, caspase-9 and -3 activity, reactive oxygen species production, and DNA binding studies that further strengthen the results of that L5 is a potent drug against cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Noor Uddin
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Faisal Rashid
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Saqib Ali
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Iqbal Ahmad
- Department of Chemistry, Allama Iqbal Open University, Islamabad, Pakistan
| | - Sumera Zaib
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Muhammad Zubair
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Paula L Diaconescu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Ali Haider
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
16
|
Mudavath R, Ushaiah B, Kishan Prasad C, Sudeepa K, Ravindar P, Sunitha SNT, Sarala Devi C. Molecular docking, QSAR properties and DNA/BSA binding, anti-proliferative studies of 6-methoxy benzothiozole imine base and its metal complexes. J Biomol Struct Dyn 2019; 38:2849-2864. [PMID: 31340723 DOI: 10.1080/07391102.2019.1647878] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The molecular and QSAR (Quantitative Structure-Activity Relationship) properties of title compound 2-((6-Methoxybenzo[d]thiazol-2-ylimino)methyl)-6-ethoxyphenol (HL) were evaluated employing HyperChem 7.5 tools. The interaction of the 1a-1e complexes of HL with calf thymus DNA (CT-DNA) was investigated by absorption titrations, Fluorescence quenching and viscosity measurements. The experimental data suggest that these complexes bind to CT-DNA through an intercalative mode, wherein DNA-binding affinity of 1e is found to be greater compared to other complexes. The tryptophan emission-quenching with bovine serum albumin (BSA) experiment revealed stronger binding of 1e than other complexes in the hydrophobic region of protein. The photocleavage of plasmid pBR322 DNA investigated in the presence of the title complexes inferred conversion of supercoiled form of DNA plasmid to circular nicked form. Free-radical scavenging activity studies of HL and its metal complexes determined by their interaction with the stable free-radical DPPH have shown promising antioxidant property. Further cytotoxicity studies with HeLa and MCF-7 cell lines indicated that the compounds can efficiently inhibit the cell proliferation in a dose dependent manner. The DAPI staining assay studies revealed the higher potency of 1e to induce apoptosis. AbbreviationsBSABovine serum albumin proteinCT-DNACalf thymus DNADMSODimethyl sulfoxideDAPI4',-6-Diamidino-2-phenylindole dihydrochlorideESI-MSElectrospray ionization mass spectrometryIC50Half-maximal inhibitory concentrationMBTYE2-((6-methoxybenzo[d]thiazol-2-ylimino) methyl)-6-ethoxyphenolMTT3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromidePBSPhosphate-buffered salineTrisTris(hydroxymethyl)aminomethaneCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ravi Mudavath
- Department of Chemistry, Osmania University, Hyderabad, India
| | - B Ushaiah
- Department of Chemistry, Osmania University, Hyderabad, India
| | | | - K Sudeepa
- Department of Chemistry, Osmania University, Hyderabad, India
| | - P Ravindar
- Department of Chemistry, Osmania University, Hyderabad, India
| | - S N T Sunitha
- Department of Chemistry, Osmania University, Hyderabad, India
| | - Ch Sarala Devi
- Department of Chemistry, Osmania University, Hyderabad, India
| |
Collapse
|
17
|
Arunadevi A, Raman N. Indole-derived water-soluble N, O bi-dentate ligand-based mononuclear transition metal complexes: in silico and in vitro biological screening, molecular docking and macromolecule interaction studies. J Biomol Struct Dyn 2019; 38:1499-1513. [PMID: 31035905 DOI: 10.1080/07391102.2019.1611475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A novel tryptophan-derived Schiff base ligand (potassium (E)-2-((4-chloro-3-nitrobenzylidene)amino)-3-(1H-indol-3-yl)propanoate) and a series of its transition metal complexes of the types [ML2] and [ML(1,10-phen)2]Cl where M = Cu(II), Co(II), Ni(II) and Zn(II) were prepared. They were analyzed by various spectral and physicochemical studies. The XRD data were also used to determine the average lattice parameters and crystalline size of the compounds. All the synthesized compounds were tested against a series of five bacterial and fungal strains. The obtained results showed that the biological activity of free ligand was increased on complexation. PASS online software predicts the various biological activities of ligand such as enzyme inhibitor, antiviral, analgesic and antituberculosis. The in silico theoretical prediction of synthesized compounds is also deliberated by Swiss ADME predictor which gives the properties of molecular hydrophobicity (log P), topological polar surface area (TPSA) and oral bioavailability score. The binding energy of the docked molecule with macromolecules 1BNA and 3EQM is also determined by using Hex 8.0 software. The ligand has the least binding energy score which signifies that the potential of binding is greater in the receptor. Moreover, the interactions of complexes with DNA have been explored by electronic absorption titration, fluorescence emission titration, viscosity measurements and gel electrophoresis. HighlightsSynthesis and characterization of novel indole-derived compounds.X-ray diffraction studies demonstrate average crystalline size of the compounds.Metal complexes act as good metallointercalators.Metal complexes show higher antimicrobial activity compared to ligand.Prediction of biological activities of the ligand by PASS online software.Drug-like nature and bioavailability of synthesized compounds predicted by Swiss ADME predictorDocking of the synthesized compounds with 1BNA and 3EQM using HEX 8.0 software.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Natarajan Raman
- Research Department of Chemistry, VHNSN College, Virudhunagar, India
| |
Collapse
|
18
|
Shahraki S, Heydari A, Delarami HS, Oveisi Keikha A, Azizi Z, Fathollahi Zonouz A. Preparation, characterization and comparison of biological potency in two new Zn(II) and Pd(II) complexes of butanedione monoxime derivatives. J Biomol Struct Dyn 2019; 38:997-1011. [PMID: 30938659 DOI: 10.1080/07391102.2019.1591305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A novel Schiff base ligand (2-iminothiophenol-2,3-butanedione monoxime, ITBM) and its complexes with Pd(II) and Zn(II) metal ions ([M(ITBM)2]Cl2) were synthesized and characterized in the present study. The formulated complexes were evaluated for in vitro antioxidant activity as radical scavengers against 1,1-diphenyl-2-picrylhydrazyl radicals (DPPH•). According to the results, antioxidant activity of Pd complex (IC50=36 mg L-1) was more effective than that of Zn(II) complex (IC50=72 mg L-1). Biophysical techniques along with computational modeling were employed to examine the binding of these complexes with human serum albumin (HSA) as the model protein. The trial findings revealed an interaction between Schiff base complexes and HSA with a modest binding affinity [Kb=6.31(±0.11)×104 M-1 for Zn(II) complex and 0.71(±0.05)×104 M-1 for Pd(II) complex at 310 K]. An intense fluorescence quenching of protein through a static quenching mechanism was occurred due to the binding of both complexes to HSA. Hydrogen bonds and van der Waals forces in both examined systems were the main stabilizing forces in the development of drug-protein complex. Based on far-UV-CD observations, the content of α-helical structure in the protein was reduced through induction by both complexes. Analysis of protein-ligand docking demonstrated binding of the two Schiff base complexes to residues placed in the IIA subdomain of HSA. In addition, Zn complex with HSA showed a stronger binding ability than that of Pd complex.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Ali Heydari
- Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran
| | | | | | - Zahra Azizi
- Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | | |
Collapse
|