1
|
Mandujano-Lázaro G, Torres-Rojas MF, Ramírez-Moreno E, Marchat LA. Virtual screening combined with molecular docking for the !identification of new anti-adipogenic compounds. Sci Prog 2025; 108:368504251320313. [PMID: 39936374 DOI: 10.1177/00368504251320313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Obesity is an important risk factor for diabetes, cardiovascular diseases, and cancer, reducing the quality of life and expectancy of millions of people. Consequently, obesity has turned into one of the most health public problems worldwide, which highlights the urgent need for new and safe treatments. Obesity is mainly related to excessive fat accumulation; therefore, proteins participating in white adipose tissue increase and dysfunction are considered pertinent and attractive targets for developing new methods that can help with body weight control. In this context, virtual screening of libraries containing a large number of molecules represents a valuable strategy for the identification of potential anti-adipogenic compounds with reduced costs and time production. Here, we review the scientific literature about the prediction of new ligands of specific proteins through molecular docking and virtual screening of chemical libraries, with the aim of proposing new potential anti-adipogenic molecules. First, we present the targets related to adipogenesis and adipocyte functions that were selected for the following studies: PPARγ, Crif1, SIRT1, ERβ, PC1, FTO, Mss51, and FABP4. Then, we describe the obtention of new ligands according to the characteristics of the virtual screening approach, i.e. a structure-based drug design (SBDD) or a ligand-based drug design (LBDD). Finally, the critical analysis of these computational strategies and the corresponding results points out the necessity of combining computational and in vitro or in vivo assays for the identification of effective new anti-adipogenic molecules for obesity control. It also evidences that translating molecular docking and virtual screening results into successful drug candidates for adipogenesis and obesity control remains a huge challenge.
Collapse
Affiliation(s)
- Gilberto Mandujano-Lázaro
- Laboratorio de Biomedicina Molecular 2, ENMH, Instituto Politécnico Nacional, Ciudad de México, México
| | - María F Torres-Rojas
- Laboratorio de Biomedicina Molecular 2, ENMH, Instituto Politécnico Nacional, Ciudad de México, México
| | - Esther Ramírez-Moreno
- Laboratorio de Biomedicina Molecular 2, ENMH, Instituto Politécnico Nacional, Ciudad de México, México
| | - Laurence A Marchat
- Laboratorio de Biomedicina Molecular 2, ENMH, Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
2
|
Hu Y, Meng Z, Wang W, Hao X, Wang Y, Qi J. Carcase traits, meat quality, and lipogenic gene expression in muscle of lambs fed wheat bran feruloyl oligosaccharides. ITALIAN JOURNAL OF ANIMAL SCIENCE 2023. [DOI: 10.1080/1828051x.2023.2181107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Affiliation(s)
- Yuchao Hu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, China
| | - Ziqi Meng
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Institute of Animal Nutrition and Feed in Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Wenwen Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, China
| | - Xiran Hao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, China
| | - Yuan Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, China
| | - Jingwei Qi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, China
| |
Collapse
|
3
|
Guzmán-López EG, Reina M, Hernández-Ayala LF, Galano A. Rational Design of Multifunctional Ferulic Acid Derivatives Aimed for Alzheimer's and Parkinson's Diseases. Antioxidants (Basel) 2023; 12:1256. [PMID: 37371986 DOI: 10.3390/antiox12061256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Ferulic acid has numerous beneficial effects on human health, which are frequently attributed to its antioxidant behavior. In this report, many of them are reviewed, and 185 new ferulic acid derivatives are computationally designed using the CADMA-Chem protocol. Consequently, their chemical space was sampled and evaluated. To that purpose, selection and elimination scores were used, which are built from a set of descriptors accounting for ADME properties, toxicity, and synthetic accessibility. After the first screening, 12 derivatives were selected and further investigated. Their potential role as antioxidants was predicted from reactivity indexes directly related to the formal hydrogen atom transfer and the single electron transfer mechanisms. The best performing molecules were identified by comparisons with the parent molecule and two references: Trolox and α-tocopherol. Their potential as polygenic neuroprotectors was investigated through the interactions with enzymes directly related to the etiologies of Parkinson's and Alzheimer's diseases. These enzymes are acetylcholinesterase, catechol-O-methyltransferase, and monoamine oxidase B. Based on the obtained results, the most promising candidates (FA-26, FA-118, and FA-138) are proposed as multifunctional antioxidants with potential neuroprotective effects. The findings derived from this investigation are encouraging and might promote further investigations on these molecules.
Collapse
Affiliation(s)
- Eduardo Gabriel Guzmán-López
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Alcaldía Iztapalapa, Mexico City 09310, Mexico
| | - Miguel Reina
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Luis Felipe Hernández-Ayala
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Alcaldía Iztapalapa, Mexico City 09310, Mexico
| | - Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Alcaldía Iztapalapa, Mexico City 09310, Mexico
| |
Collapse
|
4
|
Sengani M, V B, Banerjee M, Choudhury AA, Chakraborty S, Ramasubbu K, Rajeswari V D, Al Obaid S, Alharbi SA, Subramani B, Brindhadevi K. Evaluation of the anti-diabetic effect of biogenic silver nanoparticles and intervention in PPARγ gene regulation. ENVIRONMENTAL RESEARCH 2022; 215:114408. [PMID: 36154863 DOI: 10.1016/j.envres.2022.114408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/03/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
The current study demonstrated a green, friendly, low-cost biosynthesis of silver nanoparticles (AgNPs) from Kigelia africana leaves (Lam.) Benth. extract (KAE) as both a major capping and reducing agent. The produced AgNPs were characterized using a variety of analytical methods, like the X-ray powder diffraction (XRD), HRTEM, Fourier transforms infrared (FTIR), and UV-Vis spectrophotometer. The formation of AgNPs with maximum absorbance at max = 435 nm was endorsed by surface plasmon resonance. FTIR analysis revealed that biological macromolecules of KAE were involved in the stabilization and synthesis of AgNPs. At the same time, HRTEM images revealed that the average particle size of the spherical AgNPs ranged from about 25 nm to 35 nm. Further, cytotoxicity assessment of AgNPs was done using the RINm5F insulinoma cell line with an MTT assay. Followed by, the RINm5F insulinoma cells treated with AgNPs and KAE, the expression of the Peroxisome proliferator-activated receptor gamma (PPARγ) gene was accessed. The results showed gene expression was upregulated in the RINm5F insulinoma cell line thus confirming AgNPs and KAE anti-diabetic efficacy. Furthermore, the findings show that nanotechnology has enhanced the effectiveness of current methodologies in gene expression and regulation which has contributed to the emergence of different forms of advanced regulatory systems.
Collapse
Affiliation(s)
- Manimegalai Sengani
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Ramapuram, Chennai, 600087, India
| | - Bavithra V
- School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Manosi Banerjee
- School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Abbas Alam Choudhury
- School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Shreya Chakraborty
- School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Kanagavalli Ramasubbu
- School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Devi Rajeswari V
- School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India.
| | - Sami Al Obaid
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Baskaran Subramani
- Division of Hematology and Oncology, Department of Medicine, Mays Cancer Center, University of Texas Health, San Antonio, TX, USA
| | - Kathirvel Brindhadevi
- Center for Transdisciplinary Research (CFTR), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
5
|
Dietary Intake of Polyphenols Enhances Executive/Attentional Functioning and Memory with an Improvement of the Milk Lipid Profile of Postpartum Women from Argentina. J Intell 2022; 10:jintelligence10020033. [PMID: 35736005 PMCID: PMC9224741 DOI: 10.3390/jintelligence10020033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/28/2022] [Accepted: 05/28/2022] [Indexed: 02/04/2023] Open
Abstract
Puerperium may lead to memory and executive/attentional complaints that interfere with women’s daily life. This might be prevented by dietary compounds, such as neuroprotective polyphenols. Their bioactivity depends on their effects on lipid metabolism in different tissues, such as the brain, fat, and breast. Thus, a polyphenol-related cognitive improvement may be associated with changes of lipids in human milk, which are key for infant neurodevelopment. A cross-sectional study was conducted on 75 postpartum women from Córdoba (Argentina), involving several neuropsychological tests. Diet was registered to identify polyphenol intake and food pattern adherence, with sociodemographic and other psychological variables (insomnia, stress, subjective cognitive complaints) being also studied. Triacylglycerols, cholesterol, and their oxidative forms were analyzed as milk biomarkers. Multivariate statistical methods were applied. Results confirmed that women who consumed polyphenols presented better executive/attentional performance (i.e., higher correct responses, conceptual level responses, complete categories, verbal fluency; lower attentional interferences, and perseverative errors) and word retention with lower interference. Polyphenols were positively associated with milk lipids, which were higher in women with better cognition. Furthermore, they had lower oxidized triacylglycerols. In conclusion, polyphenolic intake during postpartum may improve executive/attentional functioning, memory, and milk lipid profile.
Collapse
|
6
|
Balakrishnan D, Pragathiswaran C, Thanikasalam K, Mohanta YK, Saravanan M, Abdellattif MH. Molecular Docking and In Vitro Inhibitory Effect of Polyaniline (PANI)/ZnO Nanocomposite on the Growth of Struvite Crystal: a Step Towards Control of UTI. Appl Biochem Biotechnol 2022; 194:4462-4476. [PMID: 35435585 DOI: 10.1007/s12010-022-03911-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/14/2022] [Indexed: 11/02/2022]
Abstract
Nowadays, nanotechnology is gaining interest on diagnostics for several chronic diseases. In the present study, the chemical oxidative method of aniline in acid medium with ammonium peroxydisulfate (APS) as an oxidant was employed to develop polyaniline (PANI)-based nanocomposite overflowing/doping on ZnO. The chemical properties, morphology, and structure of the polymer and nanocomposite were investigated using FTIR, XRD, and SEM. The characteristic FTIR peaks of PANI were reported to shift to a higher or lower wave number in PANI-doped ZnO composites due to the formation of H-bonding. Different amounts of ZnO nanoparticles were used to test this influence on the strength of the generated materials. The ability of the PANI-doped ZnO nanocomposite to inhibit struvite crystal growth was determined. The size of struvite crystals was condensed from 2.9 to 1.4 cm at a concentration of 5% PANI-doped ZnO nanoparticles, and the inhibition efficiency of synthesized PANI-doped ZnO against kidney stone (struvite) was confirmed by molecular docking analyzes. The in vitro as well as in silico study revealed the potential applications of polyaniline/ZnO nanocomposite in kidney diseases.
Collapse
Affiliation(s)
- D Balakrishnan
- Department of Science and Humanities, Ariyalur Engineering College, Ariyalur-621707, India
| | - C Pragathiswaran
- Post-Graduate and Research Department of Chemistry, Periyar EVR College Affiliated to Bharathidasan University, Trichirappalli, India.
| | - K Thanikasalam
- Post-Graduate and Research Department of Chemistry, Periyar EVR College Affiliated to Bharathidasan University, Trichirappalli, India
| | - Yugal Kishore Mohanta
- Department of Applied Biology, University of Science and Technology Meghalaya, Ri-Bhoi-793101, India
| | - Muthupandian Saravanan
- Center for Transdisciplinary Research (CFTR), AMR and Nanotherapeutics Laboratory, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai-600077, India.
| | - Magda H Abdellattif
- Department of Chemistry, College of Science, Taif University, P. O. Box 11099, Al-Haweiah, Taif 21944, Saudi Arabia
| |
Collapse
|
7
|
Kaur R, Sood A, Lang DK, Arora R, Kumar N, Diwan V, Saini B. Natural Products as Sources of Multitarget Compounds: Advances in the Development of Ferulic Acid as Multitarget Therapeutic. Curr Top Med Chem 2022; 22:347-365. [PMID: 35040403 DOI: 10.2174/1568026622666220117105740] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/25/2021] [Accepted: 12/27/2021] [Indexed: 11/22/2022]
Abstract
Nature has provided therapeutic substances for millennia, with many valuable medications derived from plant sources. Multitarget drugs become essential in the management of various disorders including hepatic disorders, neurological disorders, diabetes, and carcinomas. Ferulic acid is a significant potential therapeutic agent, which is easily available at low cost, possesses a low toxicity profile, and has minimum side effects. Ferulic acid exhibits various therapeutic actions by modulation of various signal transduction pathways such as Nrf2, p38, and mTOR. The actions exhibited by ferulic acid include anti-apoptosis, antioxidant, anti-inflammatory, antidiabetic, anticarcinogenic, hepatoprotection, cardioprotection, activation of transcriptional factors, expression of genes, regulation of enzyme activity, and neuroprotection, which further help in treating various pathophysiological conditions such as cancer, skin diseases, brain disorders, diabetes, Parkinson's disease, Alzheimer's disease, hypoxia, hepatic disorders, H1N1 flu, and viral infections. The current review focuses on the significance of natural products as sources of multitarget compounds and a primary focus has been made on ferulic acid and its mechanism, role, and protective action in various ailments.
Collapse
Affiliation(s)
- Rajwinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Ankita Sood
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Rashmi Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neeraj Kumar
- National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Vishal Diwan
- Centre for Chronic Disease, The University of Queensland, Australia
| | - Balraj Saini
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
8
|
Renganathan S, Pramanik S, Ekambaram R, Kutzner A, Kim PS, Heese K. Identification of a Chemotherapeutic Lead Molecule for the Potential Disruption of the FAM72A-UNG2 Interaction to Interfere with Genome Stability, Centromere Formation, and Genome Editing. Cancers (Basel) 2021; 13:5870. [PMID: 34831023 PMCID: PMC8616359 DOI: 10.3390/cancers13225870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/15/2021] [Accepted: 11/20/2021] [Indexed: 01/05/2023] Open
Abstract
Family with sequence similarity 72 A (FAM72A) is a pivotal mitosis-promoting factor that is highly expressed in various types of cancer. FAM72A interacts with the uracil-DNA glycosylase UNG2 to prevent mutagenesis by eliminating uracil from DNA molecules through cleaving the N-glycosylic bond and initiating the base excision repair pathway, thus maintaining genome integrity. In the present study, we determined a specific FAM72A-UNG2 heterodimer protein interaction using molecular docking and dynamics. In addition, through in silico screening, we identified withaferin B as a molecule that can specifically prevent the FAM72A-UNG2 interaction by blocking its cell signaling pathways. Our results provide an excellent basis for possible therapeutic approaches in the clinical treatment of cancer.
Collapse
Affiliation(s)
- Senthil Renganathan
- Department of Bioinformatics, Marudupandiyar College, Thanjavur 613403, India;
| | - Subrata Pramanik
- Department of Biology, Life Science Centre, School of Science and Technology, Örebro University, 701-82 Örebro, Sweden;
| | | | - Arne Kutzner
- Department of Information Systems, College of Engineering, Hanyang University, Seoul 133-791, Korea;
| | - Pok-Son Kim
- Department of Information Security, Cryptology, and Mathematics, Kookmin University, Seoul 136-702, Korea;
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 133-791, Korea
| |
Collapse
|
9
|
Yin X, Liu W, Chen H, Qi C, Chen H, Niu H, Yang J, Kwok KWH, Dong W. Effects of ferulic acid on muscle development and intestinal microbiota of zebrafish. J Anim Physiol Anim Nutr (Berl) 2021; 106:429-440. [PMID: 34580932 DOI: 10.1111/jpn.13631] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 12/14/2022]
Abstract
Ferulic acid (FA) is one of a common ingredients in Chinese herbal medicine. FA has the interesting property of promoting growth and improving meat quality in livestock, but the mechanism is not understood. This study evaluated both safety and mechanism of efficacy in zebrafish model. At 15 μg/mL or above, FA led to pericardial oedema and delayed growth in zebrafish embryos. Dietary FA promoted growth and feed assimilation in male adult zebrafish. Genes related to myogenic development (myod1, myog and myf5) were significantly upregulated by FA and muscle fibre width in skeletal muscle was increased. At 20 µg/g, FA significantly increased number of goblet cells in zebrafish intestinal tissue, and gut microbiota composition also changed. Based on 16s rRNA gene sequences, 20 μg/g FA decreased Firmicutes and increased Bacteroides. 20 μg/g FA also stimulated the expression of PPAR-α, a gene associated with fat metabolism, and decreased the expression of PPAR-β and PPAR-γ. These gene expression changes were beneficial to fatty acid synthesis and metabolism and decreased fat deposition. Our overall results indicated that FA can be a safe growth promotor in fish particularly in skeletal muscles.
Collapse
Affiliation(s)
- Xiaoyu Yin
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, China
| | - Wuyun Liu
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, China.,Department of Forage Nutrition and Chemistry, College of Animal Husbandry Biotechnology, National Agricultural University of Mongolia, Ulaanbaatar, Mongolia
| | - Hao Chen
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, China
| | - Chelimuge Qi
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, China
| | - Hongsong Chen
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, China
| | - Huaxin Niu
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, China
| | - Jingfeng Yang
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, China
| | - Kevin W H Kwok
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.,Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Wu Dong
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, China
| |
Collapse
|
10
|
Renganathan S, Manokaran S, Vasanthakumar P, Singaravelu U, Kim PS, Kutzner A, Heese K. Phytochemical Profiling in Conjunction with In Vitro and In Silico Studies to Identify Human α-Amylase Inhibitors in Leucaena leucocephala (Lam.) De Wit for the Treatment of Diabetes Mellitus. ACS OMEGA 2021; 6:19045-19057. [PMID: 34337243 PMCID: PMC8320072 DOI: 10.1021/acsomega.1c02350] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/05/2021] [Indexed: 05/12/2023]
Abstract
Bioactive constituents from natural sources are of great interest as alternatives to synthetic compounds for the treatment of various diseases, including diabetes mellitus. In the present study, phytochemicals present in Leucaena leucocephala (Lam.) De Wit leaves were identified by gas chromatography-mass spectrometry and further examined by qualitative and quantitative methods. α-Amylase enzyme activity assays were performed and revealed that L. leucocephala (Lam.) De Wit leaf extract inhibited enzyme activity in a dose-dependent manner, with efficacy similar to that of the standard α-amylase inhibitor acarbose. To determine which phytochemicals were involved in α-amylase enzyme inhibition, in silico virtual screening of the absorption, distribution, metabolism, excretion, and toxicity properties was performed and pharmacophore dynamics were assessed. We identified hexadecenoic acid and oleic acid ((Z)-octadec-9-enoic acid) as α-amylase inhibitors. The binding stability of α-amylase to those two fatty acids was confirmed in silico by molecular docking and a molecular dynamics simulation performed for 100 ns. Together, our findings indicate that L. leucocephala (Lam.) De Wit-derived hexadecanoic acid and oleic acid are natural product-based antidiabetic compounds that can potentially be used to manage diabetes mellitus.
Collapse
Affiliation(s)
- Senthil Renganathan
- Department
of Bioinformatics, Marudupandiyar College, Thanjavur 613403, Tamil Nadu, India
| | - Sakthivel Manokaran
- Department
of Bioinformatics, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Preethi Vasanthakumar
- Department
of Biotechnology, Bharath College of Science
and Management, Thanjavur 613005, Tamil Nadu, India
| | - Usha Singaravelu
- Department
of Bioinformatics, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Pok-Son Kim
- Department
of Mathematics, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 136-702, Republic of Korea
| | - Arne Kutzner
- Department
of Information Systems, College of Computer Science, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Republic of Korea
| | - Klaus Heese
- Graduate
School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Republic of Korea
| |
Collapse
|
11
|
Venkatramanan M, Sankar Ganesh P, Senthil R, Akshay J, Veera Ravi A, Langeswaran K, Vadivelu J, Nagarajan S, Rajendran K, Shankar EM. Inhibition of Quorum Sensing and Biofilm Formation in Chromobacterium violaceum by Fruit Extracts of Passiflora edulis. ACS OMEGA 2020; 5:25605-25616. [PMID: 33073086 PMCID: PMC7557254 DOI: 10.1021/acsomega.0c02483] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/12/2020] [Indexed: 05/25/2023]
Abstract
Chromobacterium violaceum (C. violaceum) is a Gram-negative, rod-shaped facultatively anaerobic bacterium implicated with recalcitrant human infections. Here, we evaluated the anti-QS and antibiofilm activities of ethyl acetate extracts of Passiflora edulis (P. edulis) on the likely inactivation of acyl-homoserine lactone (AHL)-regulated molecules in C. violaceum both by in vitro and in silico analyses. Our investigations showed that the sub-MIC levels were 2, 1, and 0.5 mg/mL, and the concentrations showed a marked reduction in violacein pigment production by 75.8, 64.6, and 35.2%. AHL quantification showed 72.5, 52.2, and 35.9% inhibitions, inhibitions of EPS production (72.8, 36.5, and 25.9%), and reductions in biofilm formation (90.7, 69.4, and 51.8%) as compared to a control. Light microscopy and CLSM analysis revealed dramatic reduction in the treated biofilm group as compared to the control. GC-MS analysis showed 20 major peaks whose chemical structures were docked as the CviR ligand. The highest docking score was observed for hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl) ethyl ester bonds in the active site of CviR with a binding energy of -8.825 kcal/mol. Together, we found that hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl) ethyl ester remarkably interacted with CviR to inhibit the QS system. Hence, we concluded that hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl) ethyl ester of P. edulis could likely be evaluated for treating C. violaceum infections.
Collapse
Affiliation(s)
- Mahendrarajan Venkatramanan
- Infection
Biology, Department of Life Sciences, Central
University of Tamil Nadu, Neelakudi, Thiruvarur 610 005, India
| | - Pitchaipillai Sankar Ganesh
- Infection
Biology, Department of Life Sciences, Central
University of Tamil Nadu, Neelakudi, Thiruvarur 610 005, India
| | - Renganathan Senthil
- Department
of Bioinformatics, Marudupandiyar College, Vallam, Thanjavur 613403, India
- Lysine
Biotech Private Limited, Periyar Maniammai
University, Periyar Nagar, Vallam, Thanjavur 613403, India
| | - Jeyachandran Akshay
- Infection
Biology, Department of Life Sciences, Central
University of Tamil Nadu, Neelakudi, Thiruvarur 610 005, India
| | | | | | - Jamuna Vadivelu
- Department
of Medical Microbiology, Faculty of Medicine, University of Malaya, Lembah Pantai,
Kuala Lumpur 50603, Malaysia
| | - Samuthira Nagarajan
- Department
of Chemistry, Central University of Tamil
Nadu, Neelakudi, Thiruvarur 610 005, India
| | | | - Esaki Muthu Shankar
- Infection
Biology, Department of Life Sciences, Central
University of Tamil Nadu, Neelakudi, Thiruvarur 610 005, India
| |
Collapse
|
12
|
Kumar A, Kumar P. Identification of good and bad fragments of tricyclic triazinone analogues as potential PKC-θ inhibitors through SMILES–based QSAR and molecular docking. Struct Chem 2020. [DOI: 10.1007/s11224-020-01629-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|