1
|
Kassab AE, Gedawy EM. Recent Advancements in Refashioning of NSAIDs and their Derivatives as Anticancer Candidates. Curr Pharm Des 2024; 30:1217-1239. [PMID: 38584541 DOI: 10.2174/0113816128304230240327044201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/02/2024] [Accepted: 03/09/2024] [Indexed: 04/09/2024]
Abstract
Inflammation is critical to the formation and development of tumors and is closely associated with cancer. Therefore, addressing inflammation and the mediators that contribute to the inflammatory process may be a useful strategy for both cancer prevention and treatment. Tumor predisposition can be attributed to inflammation. It has been demonstrated that NSAIDs can modify the tumor microenvironment by enhancing apoptosis and chemosensitivity and reducing cell migration. There has been a recent rise in interest in drug repositioning or repurposing because the development of innovative medications is expensive, timeconsuming, and presents a considerable obstacle to drug discovery. Repurposing drugs is crucial for the quicker and less expensive development of anticancer medicines, according to an increasing amount of research. This review summarizes the antiproliferative activity of derivatives of NSAIDs such as Diclofenac, Etodolac, Celecoxib, Ibuprofen, Tolmetin, and Sulindac, published between 2017 and 2023. Their mechanism of action and structural activity relationships (SARs) were also discussed to set the path for potential future repositioning of NSAIDs for clinical deployment in the treatment of cancer.
Collapse
Affiliation(s)
- Asmaa E Kassab
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt
| | - Ehab M Gedawy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC), Badr City, Cairo, P.O. Box 11829, Egypt
| |
Collapse
|
2
|
Hussain R, Rehman W, Khan S, Jaber F, Rahim F, Shah M, Khan Y, Iqbal S, Naz H, Khan I, Issa Alahmdi M, Awwad NS, Ibrahium HA. Investigation of novel bis-thiadiazole bearing schiff base derivatives as effective inhibitors of thymidine phosphorylase: Synthesis, in vitro bioactivity and molecular docking study. Saudi Pharm J 2023; 31:101823. [PMID: 37965293 PMCID: PMC10641276 DOI: 10.1016/j.jsps.2023.101823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
Thymidine phosphorylase (TP) is an angiogenic enzyme. It is crucial for the development, invasion and metastasis of tumors as well as angiogenesis. In our current research, we examine how structurally changing bis-thiadiazole bearing bis-schiff bases affects their ability to inhibit TP. Through the oxidative cyclization of pyridine-based bis-thiosemicarbazone with iodine, a series of fourteen analogs of bis-thiadiazole-based bis-imines with pyridine moiety were developed. Newly synthesized scaffolds were assessed in vitro for their thymidine phosphorylase inhibitory potential and showed moderate to good inhibition profile. Eleven scaffolds such as 4a-4d,4f-4 h and 4j-4 m were discovered to be more effective than standard drug at inhibiting the thymidine phosphorylase enzyme with IC50 values of 1.16 ± 1.20, 1.77 ± 1.10, 2.48 ± 1.30, 12.54 ± 1.60, 14.63 ± 1.70, 15.53 ± 1.80, 17.47 ± 1.70, 18.98 ± 1.70, 19.53 ± 1.50, 22.73 ± 2.40 and 24.87 ± 2.80 respectively, while remaining three analogs such as 4n, 4i and 4ewere found to be more potent, but they were less potent than the standard drug. All analogs underwent SAR studies based on the pattern of substitutions around the aryl part of the bis-thiadiazole skeleton. The most active analogs in the synthesized series were then molecular docking study performed to investigate their interactions of active part of enzyme. The results showed that remarkable interactions were exhibited by these analogs with the targeted enzymes active sites. Furthermore, to confirm the structure of synthesized analogs by employing spectroscopic tools such as HREI-MS and NMR.
Collapse
Affiliation(s)
- Rafaqat Hussain
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Wajid Rehman
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Shoaib Khan
- Department of Chemistry, Abbottabad University of Science and Technology (AUST), Abbottabad, Pakistan
| | - Fadi Jaber
- Department of Biomedical Engineering, Ajman University, Ajman, United Arab Emirates
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Fazal Rahim
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Mazloom Shah
- Department of Chemistry, Faculty of Science, Grand Asian University, Sialkot, Pakistan
| | - Yousaf Khan
- Department of Chemistry, COMSATS University, Islamabad 45550, Pakistan
| | - Shahid Iqbal
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham, Ningbo 315100, China
| | - Haseena Naz
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Imran Khan
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Mohammed Issa Alahmdi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Nasser S. Awwad
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Hala A. Ibrahium
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
3
|
El-Kalyoubi S, El-Sebaey SA, Elfeky SM, AL-Ghulikah HA, El-Zoghbi MS. Novel Aminopyrimidine-2,4-diones, 2-Thiopyrimidine-4-ones, and 6-Arylpteridines as Dual-Target Inhibitors of BRD4/PLK1: Design, Synthesis, Cytotoxicity, and Computational Studies. Pharmaceuticals (Basel) 2023; 16:1303. [PMID: 37765111 PMCID: PMC10535864 DOI: 10.3390/ph16091303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Structural-based drug design and solvent-free synthesis were combined to obtain three novel series of 5-arylethylidene-aminopyrimidine-2,4-diones (4, 5a-c, 6a,b), 5-arylethylidene-amino-2-thiopyrimidine-4-ones (7,8), and 6-arylpteridines (9,10) as dual BRD4 and PLK1 inhibitors. MTT assays of synthesized compounds against breast (MDA-MB-231), colorectal (HT-29), and renal (U-937) cancer cells showed excellent-to-good cytotoxic activity, compared to Methotrexate; MDA-MB-231 were the most sensitive cancer cells. The most active compounds were tested against normal Vero cells. Compounds 4 and 7 significantly inhibited BRD4 and PLK1, with IC50 values of 0.029, 0.042 µM, and 0.094, 0.02 µM, respectively, which are nearly comparable to volasertib (IC50 = 0.017 and 0.025 µM). Compound 7 triggered apoptosis and halted cell growth at the G2/M phase, similarly to volasertib. It also upregulated the BAX and caspase-3 markers while downregulating the Bcl-2 gene. Finally, active compounds fitted the volasertib binding site at BRD4 and PLK1 and showed ideal drug-like properties and pharmacokinetics, making them promising anticancer candidates.
Collapse
Affiliation(s)
- Samar El-Kalyoubi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Port Said University, Port Said 42511, Egypt
| | - Samiha A. El-Sebaey
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Youssef Abbas Street, Cairo 11754, Egypt
| | - Sherin M. Elfeky
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 355516, Egypt;
| | - Hanan A. AL-Ghulikah
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Mona S. El-Zoghbi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Menoufia University, Menoufia, Gamal Abd Al-Nasir Street, Shibin-Elkom 32511, Egypt;
| |
Collapse
|
4
|
Arshad N, Parveen U, Channar PA, Saeed A, Saeed WS, Perveen F, Javed A, Ismail H, Mir MI, Ahmed A, Azad B, Khan I. Investigation of Newly Synthesized Bis-Acyl-Thiourea Derivatives of 4-Nitrobenzene-1,2-Diamine for Their DNA Binding, Urease Inhibition, and Anti-Brain-Tumor Activities. Molecules 2023; 28:molecules28062707. [PMID: 36985680 PMCID: PMC10051851 DOI: 10.3390/molecules28062707] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Bis-acyl-thiourea derivatives, namely N,N’-(((4-nitro-1,2-phenylene)bis(azanediyl)) bis(carbonothioyl))bis(2,4-dichlorobenzamide) (UP-1), N,N’-(((4-nitro-1,2-phenylene) bis(azanediyl))bis(carbonothioyl))diheptanamide (UP-2), and N,N’-(((4-nitro-1,2-phenylene)bis(azanediyl))bis(carbonothioyl))dibutannamide (UP-3), were synthesized in two steps. The structural characterization of the derivatives was carried out by FTIR, 1H-NMR, and 13C-NMR, and then their DNA binding, anti-urease, and anticancer activities were explored. Both theoretical and experimental results, as obtained by density functional theory, molecular docking, UV-visible spectroscopy, fluorescence (Flu-)spectroscopy, cyclic voltammetry (CV), and viscometry, pointed towards compounds’ interactions with DNA. However, the values of binding constant (Kb), binding site size (n), and negative Gibbs free energy change (ΔG) (as evaluated by docking, UV-vis, Flu-, and CV) indicated that all the derivatives exhibited binding interactions with the DNA in the order UP-3 > UP-2 > UP-1. The experimental findings from spectral and electrochemical analysis complemented each other and supported the theoretical analysis. The lower diffusion coefficient (Do) values, as obtained from CV responses of each compound after DNA addition at various scan rates, further confirmed the formation of a bulky compound–DNA complex that caused slow diffusion. The mixed binding mode of interaction as seen in docking was further verified by changes in DNA viscosity with varying compound concentrations. All compounds showed strong anti-urease activity, whereas UP-1 was found to have comparatively better inhibitory efficiency, with an IC50 value of 1.55 ± 0.0288 µM. The dose-dependent cytotoxicity of the synthesized derivatives against glioblastoma MG-U87 cells (a human brain cancer cell line) followed by HEK-293 cells (a normal human embryonic kidney cell line) indicated that UP-1 and UP-3 have greater cytotoxicity against both cancerous and healthy cell lines at 400 µM. However, dose-dependent responses of UP-2 showed cytotoxicity against cancerous cells, while it showed no cytotoxicity on the healthy cell line at a low concentration range of 40–120 µM.
Collapse
Affiliation(s)
- Nasima Arshad
- Department of Chemistry, Faculty of Sciences, Allama Iqbal Open University, Islamabad 44000, Pakistan; (U.P.); (M.I.M.)
- Correspondence: or
| | - Uzma Parveen
- Department of Chemistry, Faculty of Sciences, Allama Iqbal Open University, Islamabad 44000, Pakistan; (U.P.); (M.I.M.)
| | - Pervaiz Ali Channar
- Department of Basic Sciences and Humanities, Dawood University of Engineering and Technology, Karachi 74800, Pakistan;
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.S.); (A.A.)
| | - Waseem Sharaf Saeed
- Restorative Dental Sciences Department, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia;
| | - Fouzia Perveen
- School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan; (F.P.); (B.A.)
| | - Aneela Javed
- Healthcare Biotechnology Atta-ur-Rehman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan;
| | - Hammad Ismail
- Department of Biochemistry & Biotechnology, University of Gujrat, Gujrat 50700, Pakistan;
| | - Muhammad Ismail Mir
- Department of Chemistry, Faculty of Sciences, Allama Iqbal Open University, Islamabad 44000, Pakistan; (U.P.); (M.I.M.)
| | - Atteeque Ahmed
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.S.); (A.A.)
| | - Basit Azad
- School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan; (F.P.); (B.A.)
| | - Ishaq Khan
- Texas A&M Health Science Center, Joe H. Reynolds Medical Build, College Station, TX 77843, USA;
| |
Collapse
|
5
|
Al-Shboul TMA, El-khateeb M, Obeidat ZH, Ababneh TS, Al-Tarawneh SS, Al Zoubi MS, Alshaer W, Abu Seni A, Qasem T, Moriyama H, Yoshida Y, Kitagawa H, Jazzazi TMA. Synthesis, Characterization, Computational and Biological Activity of Some Schiff Bases and Their Fe, Cu and Zn Complexes. INORGANICS 2022; 10:112. [DOI: 10.3390/inorganics10080112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Four new symmetrical Schiff bases derived from 2,2′-diamino-6,6′-dibromo-4,4′-dimethyl-1,1′-biphenyl or 2,2′-diamino-4,4′-dimethyl-1,1′-biphenyl, and 3,5-dichloro- or 5-nitro-salicylaldehyde, were synthesized and reacted with copper-, iron- and zinc-acetate, producing the corresponding complexes. The Schiff bases and their metal complexes were characterized by 1H-, 13C-NMR, IR and UV-Vis spectroscopy and elemental analysis. The structures of one Schiff base and the two zinc complexes were resolved by X-ray structure determination. Density functional theory (DFT) calculations at the B3LYP/6-31G(d) level of the latter compounds were carried out to optimize and examine their molecular geometries. The biomedical applications of the Schiff bases and their complexes were investigated as anticancer or antimicrobial agents.
Collapse
Affiliation(s)
- Tareq M. A. Al-Shboul
- Department of Chemistry and Chemical Technology, Tafila Technical University, Tafila 66110, Jordan
| | - Mohammad El-khateeb
- Chemistry Department, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Zaid H. Obeidat
- Department of Chemistry, Yarmouk University, Irbid 21163, Jordan
| | - Taher S. Ababneh
- Department of Chemistry, Yarmouk University, Irbid 21163, Jordan
| | - Suha S. Al-Tarawneh
- Department of Chemistry and Chemical Technology, Tafila Technical University, Tafila 66110, Jordan
| | - Mazhar S. Al Zoubi
- Department of Basic Medical Sciences, Yarmouk University, Irbid 21163, Jordan
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| | - Anas Abu Seni
- Department of Chemistry, Yarmouk University, Irbid 21163, Jordan
| | - Taqwa Qasem
- Department of Basic Medical Sciences, Yarmouk University, Irbid 21163, Jordan
| | - Hayato Moriyama
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yukihiro Yoshida
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | | |
Collapse
|
6
|
Khalid A, Arshad N, Channar PA, Saeed A, Mir MI, Abbas Q, Ejaz SA, Hökelek T, Saeed A, Tehzeeb A. Structure and surface analyses of a newly synthesized acyl thiourea derivative along with its in silico and in vitro investigations for RNR, DNA binding, urease inhibition and radical scavenging activities. RSC Adv 2022; 12:17194-17207. [PMID: 35755589 PMCID: PMC9185314 DOI: 10.1039/d2ra03160d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/06/2022] [Indexed: 01/18/2023] Open
Abstract
N-((4-Acetylphenyl)carbamothioyl)-2,4-dichlorobenzamide (4) was synthesized by the treatment of 2,4-dichlorobenzoyl chloride with potassium thiocyanate in a 1 : 1 molar ratio in dry acetone to afford the 2,4-dichlorobenzoyl isothiocyanate in situ which on reaction with acetyl aniline furnished (4) in good yield and high purity. The compound was confirmed by FTIR, 1H-NMR, and 13C-NMR and single crystal X-ray diffraction studies. The planar rings were situated at a dihedral angle of 33.32(6)°. The molecules, forming S(6) ring motifs with the intramolecular N-H⋯O hydrogen bonds, were linked through intermolecular C-H⋯O and N-H⋯S hydrogen bonds, enclosing R2 2(8) ring motifs, into infinite double chains along [101]. C-H⋯π and π⋯π interactions with an inter-centroid distance of 3.694 (1) Å helped to consolidate a three-dimensional architecture. Hirshfeld surface (HS) analysis further indicated that the most important contributions for the crystal packing were from H⋯C/C⋯H (20.9%), H⋯H (20.5%), H⋯Cl/Cl⋯H (19.4%), H⋯O/O⋯H (13.8%) and H⋯S/S⋯H (8.9%) interactions. Thus C-H⋯π (ring), π⋯π, van der Waals interactions and hydrogen bonding played the major roles in the crystal packing. The electronic structure and computed DFT (density functional theory) parameters identified the reactivity profile of compound (4). In silico binding of (4) with RNA indicated the formation of a stable protein-ligand complex via hydrogen bonding, while DNA docking studies inferred (4) as a potent groove binder. The experimentally observed hypochromic change (57.2%) in the UV-visible spectrum of (4) in the presence of varying DNA concentrations together with the evaluated binding parameters (K b; 7.9 × 104 M-1, ΔG; -28.42 kJ mol-1) indicated spontaneous interaction of (4) with DNA via groove binding and hence supported the findings obtained through docking analysis. This compound also showed excellent urease inhibition activity in both in silico and vitro studies with an IC50 value of 0.0389 ± 0.0017 μM. However, the radical scavenging efficiency of (4) was found to be modest in comparison to vitamin C.
Collapse
Affiliation(s)
- Aqsa Khalid
- Department of Chemistry, Quaid-i-Azam University 45320 Islamabad Pakistan
| | - Nasima Arshad
- Department of Chemistry, Allama Iqbal Open University 44000 Islamabad Pakistan
| | | | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University 45320 Islamabad Pakistan
| | - Muhammad Ismail Mir
- Department of Chemistry, Allama Iqbal Open University 44000 Islamabad Pakistan
| | - Qamar Abbas
- Department of Biology, College of Science, University of Bahrain, Sakhir Campus 32038 Bahrain
| | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur Pakistan
| | - Tuncer Hökelek
- Department of Physics, Faculty of Engineering, Hacettepe University Beytepe-Ankara 06800 Turkey
| | - Amna Saeed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur Pakistan
| | - Arfa Tehzeeb
- Department of Chemistry, Quaid-i-Azam University 45320 Islamabad Pakistan
| |
Collapse
|
7
|
Arshad N, Mir MI, Perveen F, Javed A, Javaid M, Saeed A, Channar PA, Farooqi SI, Alkahtani S, Anwar J. Investigations on Anticancer Potentials by DNA Binding and Cytotoxicity Studies for Newly Synthesized and Characterized Imidazolidine and Thiazolidine-Based Isatin Derivatives. Molecules 2022; 27:354. [PMID: 35056668 PMCID: PMC8778244 DOI: 10.3390/molecules27020354] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 02/04/2023] Open
Abstract
Imidazolidine and thiazolidine-based isatin derivatives (IST-01-04) were synthesized, characterized, and tested for their interactions with ds-DNA. Theoretical and experimental findings showed good compatibility and indicated compound-DNA binding by mixed mode of interactions. The evaluated binding parameters, i.e., binding constant (Kb), free energy change (ΔG), and binding site sizes (n), inferred comparatively greater and more spontaneous binding interactions of IST-02 and then IST-04 with the DNA, among all compounds tested under physiological pH and temperature (7.4, 37 °C). The cytotoxic activity of all compounds was assessed against HeLa (cervical carcinoma), MCF-7 (breast carcinoma), and HuH-7 (liver carcinoma), as well as normal HEK-293 (human embryonic kidney) cell lines. Among all compounds, IST-02 and 04 were found to be cytotoxic against HuH-7 cell lines with percentage cell toxicity of 75% and 66%, respectively, at 500 ng/µL dosage. Moreover, HEK-293 cells exhibit tolerance to the increasing drug concentration, suggesting these two compounds are less cytotoxic against normal cell lines compared to cancer cell lines. Hence, both DNA binding and cytotoxicity studies proved imidazolidine (IST-02) and thiazolidine (IST-04)-based isatin derivatives as potent anticancer drug candidates among which imidazolidine (IST-02) is comparatively the more promising.
Collapse
Affiliation(s)
- Nasima Arshad
- Department of Chemistry, Faculty of Sciences, Allama Iqbal Open University, Islamabad 44000, Pakistan; (M.I.M.); (S.I.F.)
| | - Muhammad Ismail Mir
- Department of Chemistry, Faculty of Sciences, Allama Iqbal Open University, Islamabad 44000, Pakistan; (M.I.M.); (S.I.F.)
| | - Fouzia Perveen
- Research Center for Modeling and Simulations, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan;
| | - Aneela Javed
- Healthcare Biotechnology Atta-ur-Rehman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan;
| | - Memona Javaid
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan; (M.J.); (P.A.C.)
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan; (M.J.); (P.A.C.)
| | - Pervaiz Ali Channar
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan; (M.J.); (P.A.C.)
| | - Shahid Iqbal Farooqi
- Department of Chemistry, Faculty of Sciences, Allama Iqbal Open University, Islamabad 44000, Pakistan; (M.I.M.); (S.I.F.)
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh 12546, Saudi Arabia;
| | - Jamshed Anwar
- Department of Chemistry, University of Lancaster, Lancaster LA1 4YB, UK;
| |
Collapse
|
8
|
Neolaka YA, Lawa Y, Riwu M, Darmokoesoemo H, Setyawati H, Naat J, Ayu Widyaningrum B, Osagie Aigbe U, Eghonghon Ukhurebor K, Birundu Onyancha R, Kusuma HS. Synthesis of Zinc(II)-natural zeolite mordenite type as a drug carrier for ibuprofen: Drug release kinetic modeling and cytotoxicity study. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
9
|
Ujan R, Arshad N, Perveen F, Abbas Q, Channar PA, Saeed A, Farooqi SI, Channar KA, Hökelek T, Flörke U. Single crystal, Hirshfeld surface, DFT analyses of (E)‐2‐(2‐chloro‐6‐fluorobenzylidene)hydrazinecarbothioamide: Elastase inhibition and DNA binding studies. J PHYS ORG CHEM 2021. [DOI: 10.1002/poc.4296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Rabail Ujan
- Dr. M. A. Kazi Institute of Chemistry University of Sindh Jamshoro Pakistan
| | - Nasima Arshad
- Department of Chemistry Allama Iqbal Open University Islamabad Pakistan
| | - Fouzia Perveen
- Research Center for Modeling and Simulations National University of Sciences and Technology (NUST) Islamabad Pakistan
| | - Qamar Abbas
- College of Science, Department of Biology University of Bahrain Zallaq Bahrain
| | | | - Aamer Saeed
- Department of Chemistry Quaid‐i‐Azam University Islamabad Pakistan
| | - Shahid I. Farooqi
- Department of Chemistry Allama Iqbal Open University Islamabad Pakistan
| | - Kashif Ali Channar
- Department of Oral and Maxillofacial Surgery Liaquat University of Medical and Health Sciences Jamshoro Pakistan
| | - Tuncer Hökelek
- Department of Physics, Faculty of Engineering Hacettepe University Ankara Turkey
| | - Ulrich Flörke
- Department Chemie, Fakultät für Naturwissenschaften Universität Paderborn Paderborn Germany
| |
Collapse
|
10
|
Arshad N, Abbas N, Perveen F, Mirza B, Almuhaini AM, Alkahtani S. Molecular docking analysis and spectroscopic investigations of zinc(II), nickel(II) N-phthaloyl-β-alanine complexes for DNA binding: Evaluation of antibacterial and antitumor activities. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|