1
|
Ren L, Ye H, Fang J, Cao Q, Zhang C, Dong Z, Feng D, Zuo J, Wang W. Xylooligosaccharide interferes with the cell cycle and reduces the antibiotic tolerance of avian pathogenic Escherichia coli by associating with its potential antimetabolic actions. Poult Sci 2024; 103:104405. [PMID: 39426220 PMCID: PMC11536015 DOI: 10.1016/j.psj.2024.104405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/17/2024] [Accepted: 10/05/2024] [Indexed: 10/21/2024] Open
Abstract
This study aimed to probe if xylooligosaccharide (XOS) could act as an antimetabolite to impact the cell cycle and antibiotic tolerance of avian pathogenic Escherichia coli (APEC). We firstly measured the bacteriostasis of XOS against APEC O78 and its effect on the growth of APEC O78 growing on different medium. Afterwards, the effects of XOS on xylose operon activation along with the cell cycle and antibiotic tolerance of APEC O78 were analyzed. The results showed that XOS caused no inhibitory circle against APEC O78 and did not affect (P > 0.05) the growth of APEC O78 growing on LB medium. Besides, APEC O78 was unable to grow on M9 medium (carbon-free) added with XOS. However, XOS exerted a similar role as xylose in increasing (P < 0.05) the expression of certain xylose operon genes including xylose isomerase (XylA)-encoding gene (xylA) and xylose-binding periplasmic protein (XylF)-encoding gene (xylF) in APEC O78. The molecular docking simulation revealed that the major monomer components (xylobiose, xylotriose and xylotetraose) of XOS had stable binding potentials to both XylA and XylF proteins of E. coli, as supported by the low binding free energy and the formation of considerable hydrogen bonds between them. The subsequent analysis showed that XOS altered certain cell cycle-related genes expression, especially elevated (P < 0.05) nrdB expression and decreased ihfB expression to a degree. Moreover, XOS played a similar role as 2-deoxy-glucose (a glucose analogue serving as a typical antimetabolite) in lowering (P < 0.05) the number of ampicillin-tolerant APEC O78. Collectively, XOS had no direct bacteriostasis against APEC and could not be metabolized/utilized by APEC O78. However, it might become an analogue of xylose and then activate xylose transport- and metabolism-related proteins in APEC O78, thus functioning as a potential antimetabolite and exerting antimetabolic actions. This could at least partially interpret the observed roles of XOS in interfering with the cell cycle and diminishing the antibiotic tolerance of APEC O78. The above findings expand the knowledges about the functions of XOS and provide a basis for exploring novel strategies to reduce the antibiotic tolerance of APEC.
Collapse
Affiliation(s)
- Lulu Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Hui Ye
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiarong Fang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qingyun Cao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Changming Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zemin Dong
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Dingyuan Feng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jianjun Zuo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Weiwei Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Zhu F, He S, Ni C, Wu Y, Wu H, Wen L. Study on the structure-activity relationship of rice immunopeptides based on molecular docking. Food Chem X 2024; 21:101158. [PMID: 38322762 PMCID: PMC10843992 DOI: 10.1016/j.fochx.2024.101158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 01/14/2024] [Accepted: 01/21/2024] [Indexed: 02/08/2024] Open
Abstract
Research on food-derived immunoregulatory peptides has attracted increasing attention of scientists worldwide. However, the structure-activity relationship of rice immunopeptides was not clearly. Herein, 114 rice immunopeptides were obtained by simulating the enzymatic hydrolysis of rice proteins and were further analyzed by NetMHCIipan-4.0. Subsequently, the molecular docking was used to simulate the binding of immunoreactive peptides to major histocompatibility complex class II (MHC-II) molecules. Results show that S, R, D, E, and T amino acid could easily form hydrogen bonds with MHC-II molecules, thus enhancing innate and adaptive immunity. Finally, glucose-modified rice immunopeptides were to investigate the binding of the peptides with MHC-II molecules after glycosylation modification; this provided a theoretical basis for the targeted modification of the generated immunopeptides. All in all, the present study provides a theoretical foundation to further utilize rice processing byproducts and other food products to enhance immunity.
Collapse
Affiliation(s)
- Fan Zhu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Shuwen He
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Ce Ni
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Ying Wu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Hao Wu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Li Wen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| |
Collapse
|
3
|
Ilaghi-Hoseini S, Garkani-Nejad Z. Research and study of 2-((4,6 dimethyl pyrimidine-2-yle) thio)-N-phenyl acetamide derivatives as inhibitors of sirtuin 2 protein for the treatment of cancer using QSAR, molecular docking and molecular dynamic simulation. J Mol Model 2022; 28:343. [PMID: 36198913 DOI: 10.1007/s00894-022-05288-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 08/19/2022] [Indexed: 10/10/2022]
Abstract
Phenyl acetamide derivatives have a wide range of biological activities, so their research and development can be useful and effective for the design production of new drugs. In this project, quantitative structure-activity relationship (QSAR) was performed. For modeling two methods of multiple linear regression (MLR) and nonlinear regression of support vector machine (SVR) were used. In the MLR stage, the best model with the values of R2train = 0.913 and R2test = 0.881 was selected by stepwise method. In this model, 4 descriptors of BELV2, GATS8p, GATS6e and RDF080m were included, which were used as input for the nonlinear support vector regression method. In the SVR model, the best results were obtained using the radial Gaussian kernel function (RBF) with R2train = 0.978 and R2test = 0.990. In the next step, using molecular docking and molecular dynamic simulation methods, the interaction between phenyl acetamide derivatives and the sirtuin 2 protein was investigated. Examining the results of molecular docking, it was observed that these derivatives formed complexes by forming hydrogen and hydrophobic bonds with the sirtuin 2 protein. Also, the results of molecular dynamic simulation show that phenyl acetamide compounds form stable complex with the sirtuin 2 protein, and it was found that the compounds with more activity have formed a number of hydrogen bonds with the protein.
Collapse
Affiliation(s)
- Sahar Ilaghi-Hoseini
- Chemistry Department, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran.,Young Researchers Society, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Zahra Garkani-Nejad
- Chemistry Department, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran.
| |
Collapse
|
4
|
Khangwal I, Chhabra D, Shukla P. Multi-Objective Optimization Through Machine Learning Modeling for Production of Xylooligosaccharides from Alkali-Pretreated Corn-Cob Xylan Via Enzymatic Hydrolysis. Indian J Microbiol 2021; 61:458-466. [PMID: 34744201 DOI: 10.1007/s12088-021-00970-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022] Open
Abstract
The hemicellulose content present in corn cobs can help in producing a high amount of xylooligosaccharides (XOS) in an eco-friendly manner. In this work, the XOS was produced from alkali pre-treated corn-cobs having a true yield of 38 ± 1.4% via enzymatic hydrolysis with the help of xylanase from T. lanuginosus VAPS-24. The production process was optimized to achieve a high concentration of XOS using innovative multi-objective optimization through machine learning modeling and finding out the most suitable parameters where xylobiose production is higher than xylose. The Multi-objective connected neural networks (MOCNN) model with tangent sigmoid activation function yielded a correlation coefficient of 96.51%; there were six optimal sets where xylobiose concentration was higher than xylose. The best-optimized conditions yielded 3.03 mg/ml of xylobiose and 1.31 mg/ml of xylose. Therefore, this novel approach of machine learning can target the increasing demand for xylooligosaccharides in the growing industrial market of prebiotics.
Collapse
Affiliation(s)
- Ishu Khangwal
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Deepak Chhabra
- Optimization and Mechatronics Laboratory, Department of Mechanical Engineering, University Institute of Engineering and Technology, Maharshi Dayanand University, Rohtak, Haryana India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001 India.,Present Address: School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| |
Collapse
|
5
|
Khangwal I, Skariyachan S, Uttarkar A, Muddebihalkar AG, Niranjan V, Shukla P. Understanding the Xylooligosaccharides Utilization Mechanism of Lactobacillus brevis and Bifidobacterium adolescentis: Proteins Involved and Their Conformational Stabilities for Effectual Binding. Mol Biotechnol 2021; 64:75-89. [PMID: 34542815 DOI: 10.1007/s12033-021-00392-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/08/2021] [Indexed: 11/26/2022]
Abstract
Xylooligosaccharides having various degrees of polymerization such as xylobiose, xylotriose, and xylotetraose positively affect human health by interacting with gut proteins. The present study aimed to identify proteins present in gut microflora, such as xylosidase, xylulokinase, etc., with the help of retrieved whole-genome annotations and find out the mechanistic interactions of those with the above substrates. The 3D structures of proteins, namely Endo-1,4-beta-xylanase B (XynB) from Lactobacillus brevis and beta-D-xylosidase (Xyl3) from Bifidobacterium adolescentis, were computationally predicted and validated with the help of various bioinformatics tools. Molecular docking studies identified the effectual binding of these proteins to the xylooligosaccharides, and the stabilities of the best-docked complexes were analyzed by molecular dynamic simulation. The present study demonstrated that XynB and Xyl3 showed better effectual binding toward Xylobiose with the binding energies of - 5.96 kcal/mol and - 4.2 kcal/mol, respectively. The interactions were stabilized by several hydrogen bonding having desolvation energy (- 6.59 and - 7.91). The conformational stabilities of the docked complexes were observed in the four selected complexes of XynB-xylotriose, XynB-xylotetraose, Xyl3-xylobiose, and Xyn3-xylotriose by MD simulations. This study showed that the interactions of these four complexes are stable, which means they have complex metabolic activities among each other. Extending these studies of understanding, the interaction between specific probiotics enzymes and their ligands can explore the detailed design of synbiotics in the future.
Collapse
Affiliation(s)
- Ishu Khangwal
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Sinosh Skariyachan
- Department of Microbiology, St. Pius X College, Rajapuram, Kasaragod, Kerala, India
| | - Akshay Uttarkar
- Department of Biotechnology, RV College of Engineering, Bengaluru, Karnataka, India
| | | | - Vidya Niranjan
- Department of Biotechnology, RV College of Engineering, Bengaluru, Karnataka, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|