1
|
Wang Y, Wen J, Liu F, Peng X, Xu G, Zhang M, Huang Z. Traditional usages, chemical metabolites, pharmacological activities, and pharmacokinetics of Boesenbergia rotunda (L.) Mansf.: a comprehensive review. Front Pharmacol 2025; 16:1527210. [PMID: 40176912 PMCID: PMC11962002 DOI: 10.3389/fphar.2025.1527210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/21/2025] [Indexed: 04/05/2025] Open
Abstract
Boesenbergia rotunda: (L.) Mansf. (family Zingiberaceae), also known as fingerroot, is a medicinal and food plant that is widely distributed in southern China, Southeast Asia, and South Asia. It is a traditional herb and spice that is also known for its beneficial effects on Qi, appetite, stagnation and pain relief. The objective of this study is to conduct a comprehensive and systematic review of the botanical characteristics, traditional applications, phytochemical metabolites, pharmacological properties, toxicology, quality control measures, pharmacokinetics, and clinical applications of B. rotunda. A bibliometric analysis of current studies on B. rotunda was also conducted to facilitate further exploration and utilization of B. rotunda in the functional food and pharmaceutical industries. These data were collected from PubMed, Web of Science, Google Scholar, China National Knowledge Infrastructure doctoral and master's theses and other books and scientific databases by searching the keywords Boesenbergia rotunda. Phytochemical analysis has revealed the presence of flavonoids, monoterpenes, alkaloids, aromatic metabolites, phenols, and other metabolites in B. rotunda, exhibiting a wide range of biological activities such as anti-cancer, nephroprotective, anti-inflammatory, anti-bacterial, hepatoprotective, anti-obesity, and anti-oxidant effects, both in vivo and in vitro. In this paper, the research of B. rotunda is discussed in depth by combining traditional application and modern pharmacological research, aiming to provide valuable reference for the future research and practical application of B. rotunda.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Chemical Substances and Biological Effects in Traditional Chinese Medicine, College of Medicine and Pharmacy, Shaanxi Institute of International Trade & Commerce, Xi’an, Shaanxi, China
| | - Juanjuan Wen
- Key Laboratory of Chemical Substances and Biological Effects in Traditional Chinese Medicine, College of Medicine and Pharmacy, Shaanxi Institute of International Trade & Commerce, Xi’an, Shaanxi, China
| | - Feng Liu
- Key Laboratory of Chemical Substances and Biological Effects in Traditional Chinese Medicine, College of Medicine and Pharmacy, Shaanxi Institute of International Trade & Commerce, Xi’an, Shaanxi, China
- Shaanxi Buchang Pharmaceutical Co. Ltd, Xi’an, Shaanxi, China
| | - Xiujuan Peng
- Key Laboratory of Chemical Substances and Biological Effects in Traditional Chinese Medicine, College of Medicine and Pharmacy, Shaanxi Institute of International Trade & Commerce, Xi’an, Shaanxi, China
| | - Gang Xu
- Key Laboratory of Chemical Substances and Biological Effects in Traditional Chinese Medicine, College of Medicine and Pharmacy, Shaanxi Institute of International Trade & Commerce, Xi’an, Shaanxi, China
| | - Mingliang Zhang
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Zhuangzhuang Huang
- Key Laboratory of Chemical Substances and Biological Effects in Traditional Chinese Medicine, College of Medicine and Pharmacy, Shaanxi Institute of International Trade & Commerce, Xi’an, Shaanxi, China
- Shaanxi Buchang Pharmaceutical Co. Ltd, Xi’an, Shaanxi, China
| |
Collapse
|
2
|
Mohd Abd Razak MR, Md Jelas NH, Norahmad NA, Mohmad Misnan N, Muhammad A, Padlan N, Sa'at MNF, Zainol M, Syed Mohamed AF. In vitro study on efficacy of SKF7 ®, a Malaysian medicinal plant product against SARS-CoV-2. BMC Complement Med Ther 2024; 24:333. [PMID: 39261916 PMCID: PMC11389526 DOI: 10.1186/s12906-024-04628-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 08/23/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND In early 2020, COVID-19 pandemic has mobilized researchers in finding new remedies including repurposing of medicinal plant products focusing on direct-acting antiviral and host-directed therapies. In this study, we performed an in vitro investigation on the standardized Marantodes pumilum extract (SKF7®) focusing on anti-SARS-CoV-2 and anti-inflammatory activities. METHODS Anti-SARS-CoV-2 potential of the SKF7® was evaluated in SARS-CoV-2-infected Vero E6 cells and SARS-CoV-2-infected A549 cells by cytopathic effect-based assay and RT-qPCR, respectively. Target based assays were performed on the SKF7® against the S1-ACE2 interaction and 3CL protease activities. Anti-inflammatory activity of the SKF7® was evaluated by nitric oxide inhibitory and TLR2/TLR4 receptor blocker assays. RESULTS The SKF7® inhibited wild-type Wuhan (EC50 of 21.99 µg/mL) and omicron (EC50 of 16.29 µg/mL) SARS-CoV-2 infections in Vero-E6 cells. The SKF7® also inhibited the wild-type SARS-CoV-2 infection in A549 cells (EC50 value of 6.31 µg/mL). The SKF7® prominently inhibited 3CL protease activity. The SKF7® inhibited the LPS induced-TLR4 response with the EC50 of 16.19 µg/mL. CONCLUSIONS In conclusion, our in vitro study highlighted anti-SARS-CoV-2 and anti-inflammatory potentials of the SKF7®. Future pre-clinical in vivo studies focusing on antiviral and immunomodulatory potentials of the SKF7® in affecting the COVID-19 pathogenesis are warranted.
Collapse
Affiliation(s)
- Mohd Ridzuan Mohd Abd Razak
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia.
| | - Nur Hana Md Jelas
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Nor Azrina Norahmad
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Norazlan Mohmad Misnan
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Amirrudin Muhammad
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Noorsofiana Padlan
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Muhammad Nor Farhan Sa'at
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Murizal Zainol
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Ami Fazlin Syed Mohamed
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| |
Collapse
|
3
|
Linn AK, Manopwisedjaroen S, Kanjanasirirat P, Borwornpinyo S, Hongeng S, Phanthong P, Thitithanyanont A. Unveiling the Antiviral Properties of Panduratin A through SARS-CoV-2 Infection Modeling in Cardiomyocytes. Int J Mol Sci 2024; 25:1427. [PMID: 38338708 PMCID: PMC10855687 DOI: 10.3390/ijms25031427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
Establishing a drug-screening platform is critical for the discovery of potential antiviral agents against SARS-CoV-2. In this study, we developed a platform based on human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) to investigate SARS-CoV-2 infectivity, with the aim of evaluating potential antiviral agents for anti-SARS-CoV-2 activity and cardiotoxicity. Cultured myocytes of iPSC-CMs and immortalized human cardiomyocyte cell line (AC-16) were primarily characterized for the expression of cardiac markers and host receptors of SARS-CoV-2. An infectivity model for the wild-type SARS-CoV-2 strain was then established. Infection modeling involved inoculating cells with SARS-CoV-2 at varying multiplicities of infection (MOIs) and then quantifying infection using immunofluorescence and plaque assays. Only iPSC-CMs, not AC16 cells, expressed angiotensin-converting enzyme 2 (ACE-2), and quantitative assays confirmed the dose-dependent infection of iPSC-CMs by SARS-CoV-2, unlike the uninfectable AC16 cells lacking the expression of ACE2. Cytotoxicity was evaluated using MTT assays across a concentration range. An assessment of the plant-derived compound panduratin A (panA) showed cytotoxicity at higher doses (50% cytotoxic concentration (CC50) 10.09 μM) but promising antiviral activity against SARS-CoV-2 (50% inhibition concentration (IC50) 0.8-1.6 μM), suppressing infection at concentrations 10 times lower than its CC50. Plaque assays also showed decreased viral production following panA treatment. Overall, by modeling cardiac-specific infectivity, this iPSC-cardiomyocyte platform enables the reliable quantitative screening of compound cytotoxicity alongside antiviral efficacy. By combining disease pathogenesis and pharmacology, this system can facilitate the evaluation of potential novel therapeutics, such as panA, for drug discovery applications.
Collapse
Affiliation(s)
- Aung Khine Linn
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (A.K.L.); (S.B.)
| | | | | | - Suparerk Borwornpinyo
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (A.K.L.); (S.B.)
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Phetcharat Phanthong
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Arunee Thitithanyanont
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| |
Collapse
|
4
|
Wang Z, Song XQ, Xu W, Lei S, Zhang H, Yang L. Stand Up to Stand Out: Natural Dietary Polyphenols Curcumin, Resveratrol, and Gossypol as Potential Therapeutic Candidates against Severe Acute Respiratory Syndrome Coronavirus 2 Infection. Nutrients 2023; 15:3885. [PMID: 37764669 PMCID: PMC10535599 DOI: 10.3390/nu15183885] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The COVID-19 pandemic has stimulated collaborative drug discovery efforts in academia and the industry with the aim of developing therapies and vaccines that target SARS-CoV-2. Several novel therapies have been approved and deployed in the last three years. However, their clinical application has revealed limitations due to the rapid emergence of viral variants. Therefore, the development of next-generation SARS-CoV-2 therapeutic agents with a high potency and safety profile remains a high priority for global health. Increasing awareness of the "back to nature" approach for improving human health has prompted renewed interest in natural products, especially dietary polyphenols, as an additional therapeutic strategy to treat SARS-CoV-2 patients, owing to its good safety profile, exceptional nutritional value, health-promoting benefits (including potential antiviral properties), affordability, and availability. Herein, we describe the biological properties and pleiotropic molecular mechanisms of dietary polyphenols curcumin, resveratrol, and gossypol as inhibitors against SARS-CoV-2 and its variants as observed in in vitro and in vivo studies. Based on the advantages and disadvantages of dietary polyphenols and to obtain maximal benefits, several strategies such as nanotechnology (e.g., curcumin-incorporated nanofibrous membranes with antibacterial-antiviral ability), lead optimization (e.g., a methylated analog of curcumin), combination therapies (e.g., a specific combination of plant extracts and micronutrients), and broad-spectrum activities (e.g., gossypol broadly inhibits coronaviruses) have also been emphasized as positive factors in the facilitation of anti-SARS-CoV-2 drug development to support effective long-term pandemic management and control.
Collapse
Affiliation(s)
- Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China; (W.X.); (S.L.); (H.Z.)
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus, Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Xian-qing Song
- General Surgery Department, Baoan Central Hospital, Affiliated Baoan Central Hospital of Guangdong Medical University, Shenzhen 518000, China
| | - Wenjing Xu
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China; (W.X.); (S.L.); (H.Z.)
| | - Shizeng Lei
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China; (W.X.); (S.L.); (H.Z.)
| | - Hao Zhang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China; (W.X.); (S.L.); (H.Z.)
| | - Liyan Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
5
|
Rungsa P, San HT, Sritularak B, Böttcher C, Prompetchara E, Chaotham C, Likhitwitayawuid K. Inhibitory Effect of Isopanduratin A on Adipogenesis: A Study of Possible Mechanisms. Foods 2023; 12:foods12051014. [PMID: 36900533 PMCID: PMC10000982 DOI: 10.3390/foods12051014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 03/08/2023] Open
Abstract
The root of Boesenbergia rotunda, a culinary plant commonly known as fingerroot, has previously been reported to possess anti-obesity activity, with four flavonoids identified as active principles, including pinostrobin, panduratin A, cardamonin, and isopanduratin A. However, the molecular mechanisms underlying the antiadipogenic potential of isopanduratin A remain unknown. In this study, isopanduratin A at non-cytotoxic concentrations (1-10 μM) significantly suppressed lipid accumulation in murine (3T3-L1) and human (PCS-210-010) adipocytes in a dose-dependent manner. Downregulation of adipogenic effectors (FAS, PLIN1, LPL, and adiponectin) and adipogenic transcription factors (SREBP-1c, PPARγ, and C/EBPα) occurred in differentiated 3T3-L1 cells treated with varying concentrations of isopanduratin A. The compound deactivated the upstream regulatory signals of AKT/GSK3β and MAPKs (ERK, JNK, and p38) but stimulated the AMPK-ACC pathway. The inhibitory trend of isopanduratin A was also observed with the proliferation of 3T3-L1 cells. The compound also paused the passage of 3T3-L1 cells by inducing cell cycle arrest at the G0/G1 phase, supported by altered levels of cyclins D1 and D3 and CDK2. Impaired p-ERK/ERK signaling might be responsible for the delay in mitotic clonal expansion. These findings revealed that isopanduratin A is a strong adipogenic suppressor with multi-target mechanisms and contributes significantly to anti-obesogenic activity. These results suggest the potential of fingerroot as a functional food for weight control and obesity prevention.
Collapse
Affiliation(s)
- Prapenpuksiri Rungsa
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Htoo Tint San
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Boonchoo Sritularak
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chotima Böttcher
- Experimental and Clinical Research Center, a Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité–Universitätsmedizin Berlin, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Eakachai Prompetchara
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chatchai Chaotham
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (C.C.); (K.L.)
| | - Kittisak Likhitwitayawuid
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (C.C.); (K.L.)
| |
Collapse
|