1
|
Philippsen GS, Seixas FAV. In silico identification of D449-0032 compound as a putative SARS-CoV-2 M pro inhibitor. J Biomol Struct Dyn 2024; 42:6440-6447. [PMID: 37424215 DOI: 10.1080/07391102.2023.2234045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
The SARS-CoV-2 pandemic originated the urgency in developing therapeutic resources for the treatment of COVID-19. Despite the current availability of vaccines and some antivirals, the occurence of severe cases of the disease and the risk of the emergence of new virus variants still motivate research in this field. In this context, this study aimed at the computational prospection of likely inhibitors of the main protease (Mpro) of SARS-CoV-2 since inhibiting this enzyme leads to disruption of the viral replication process. The virtual screening of the antiviral libraries Asinex, ChemDiv, and Enamine targeting SARS-CoV-2 Mpro was performed, indicating the D449-0032 compound as a promising inhibitor. Molecular dynamics simulations showed the stability of the protein-ligand complex and in silico predictions of toxicity and pharmacokinetic parameters indicated the probable drug-like behavior of the compound. In vitro and in vivo studies are essential to confirm the Mpro inhibition by the D449-0032.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Flavio Augusto Vicente Seixas
- Laboratory of Structural Biochemistry, Departamento de Tecnologia, Universidade Estadual de Maringá, Umuarama, Brazil
| |
Collapse
|
2
|
Bianconi E, Gidari A, Souma M, Sabbatini S, Grifagni D, Bigiotti C, Schiaroli E, Comez L, Paciaroni A, Cantini F, Francisci D, Macchiarulo A. The hope and hype of ellagic acid and urolithins as ligands of SARS-CoV-2 Nsp5 and inhibitors of viral replication. J Enzyme Inhib Med Chem 2023; 38:2251721. [PMID: 37638806 PMCID: PMC10464554 DOI: 10.1080/14756366.2023.2251721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 08/29/2023] Open
Abstract
Non-structural protein 5 (Nsp5) is a cysteine protease that plays a key role in SARS-CoV-2 replication, suppressing host protein synthesis and promoting immune evasion. The investigation of natural products as a potential strategy for Nsp5 inhibition is gaining attention as a means of developing antiviral agents. In this work, we have investigated the physicochemical properties and structure-activity relationships of ellagic acid and its gut metabolites, urolithins A-D, as ligands of Nsp5. Results allow us to identify urolithin D as promising ligand of Nsp5, with a dissociation constant in the nanomolar range of potency. Although urolithin D is able to bind to the catalytic cleft of Nsp5, the appraisal of its viral replication inhibition against SARS-CoV-2 in Vero E6 assay highlights a lack of activity. While these results are discussed in the framework of the available literature reporting conflicting data on polyphenol antiviral activity, they provide new clues for natural products as potential viral protease inhibitors.
Collapse
Affiliation(s)
- Elisa Bianconi
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Anna Gidari
- Department of Medicine and Surgery, Clinic of Infectious Diseases, University of Perugia, Perugia, Italy
| | - Maria Souma
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Samuele Sabbatini
- Medical Microbiology Section, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Deborah Grifagni
- Centre for Magnetic Resonance, University of Florence, Sesto Fiorentino, Italy
- Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Carlo Bigiotti
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Elisabetta Schiaroli
- Department of Medicine and Surgery, Clinic of Infectious Diseases, University of Perugia, Perugia, Italy
| | - Lucia Comez
- Istituto Officina dei Materiali-IOM, National Research Council-CNR, Perugia, Italy
| | | | - Francesca Cantini
- Centre for Magnetic Resonance, University of Florence, Sesto Fiorentino, Italy
- Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Daniela Francisci
- Department of Medicine and Surgery, Clinic of Infectious Diseases, University of Perugia, Perugia, Italy
| | - Antonio Macchiarulo
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
3
|
de Araujo IG, Pattaro-Júnior JR, Barbosa CG, Philippsen GS, Silva AR, Ioshino RS, Moraes CB, Freitas-Junior LH, Barros L, Peralta RM, Fernandez MA, Seixas FAV. Potential of plant extracts in targeting SARS-CoV-2 main protease: an in vitro and in silico study. J Biomol Struct Dyn 2023; 41:12204-12213. [PMID: 36651196 DOI: 10.1080/07391102.2023.2166589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/01/2023] [Indexed: 01/19/2023]
Abstract
The deaths caused by the covid-19 pandemic have recently decreased due to a worldwide effort in vaccination campaigns. However, even vaccinated people can develop a severe form of the disease that requires ICU admission. As a result, the search for antiviral drugs to treat these severe cases has become a necessity. In this context, natural products are an interesting alternative to synthetic medicines used in drug repositioning, as they have been consumed for a long time through traditional medicine. Many natural compounds found in plant extracts have already been shown to be effective in treating viral and bacterial diseases, making them possible hits to exploit against covid-19. The objective of this work was to evaluate the antiviral activity of different plant extracts available in the library of natural products of the Universidade Estadual de Maringá, by inhibiting the SARS-CoV-2 main protease (Mpro), and by preventing viral infection in a cellular model. As a result, the extract of Cytinus hypocistis, obtained by ultrasound, showed a Mpro inhibition capacity greater than 90%. In the infection model assays using Vero cells, an inhibition of 99.6% was observed, with a selectivity index of 42.7. The in silico molecular docking simulations using the extract compounds against Mpro, suggested Tellimagrandin II as the component of C. hypocistis extract most likely to inhibit the viral enzyme. These results demonstrate the potential of C. hypocistis extract as a promising source of natural compounds with antiviral activity against covid-19.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Cecilia Gomes Barbosa
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
- Universidade Municipal de São Caetano do Sul (USCS), São Caetano, Brazil
- Bela Vista, São Paulo, Brazil
| | | | - Ana Rita Silva
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha, (SusTEC), Instituto Politécnico de Bragança, Bragança, Portugal
- Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, CIETUS-IBSAL, Universidad de Salamanca, Salamanca, España
| | | | | | | | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha, (SusTEC), Instituto Politécnico de Bragança, Bragança, Portugal
| | | | - Maria Aparecida Fernandez
- Department of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Maringá, P.R. Brazil
| | | |
Collapse
|