1
|
Choudhury AA, V DR. Computational analysis of potential drug-like compounds from Solanum torvum - A promising phytotherapeutics approach for the treatment of diabetes. J Biomol Struct Dyn 2025; 43:2073-2091. [PMID: 38116744 DOI: 10.1080/07391102.2023.2293279] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023]
Abstract
Diabetes mellitus (DM) is a global pandemic that is characterized by high blood glucose levels. Conventional treatments have limitations, leading to the search for natural alternatives. This study focused on Solanum torvum (STV), a medicinal plant, to identify potential anti-diabetic compounds using molecular docking and molecular dynamics simulations. We focused on identifying natural inhibitors of two key enzymes involved in glucose metabolism: α-amylase (1HNY) and α-glucosidase (4J5T). In our preliminary docking study, rutin showed the highest binding affinity (-11.58 kcal/mol) to α-amylase, followed by chlorogenin (-7.58 kcal/mol) and myricetin (-5.82 kcal/mol). For α-glucosidase, rutin had the highest binding affinity (-11.78 kcal/mol), followed by chlorogenin (-7.11 kcal/mol) and fisetin (-6.44 kcal/mol). Hence, chlorogenin and rutin were selected for further analysis and compared with acarbose, an FDA-approved antidiabetic drug. Comparative docking revealed that chlorogenin had the highest binding affinity of (-9.9 kcal/mol) > rutin (-8.7 kcal/mol) and > acarbose (-7.7 kcal/mol) for α-amylase. While docking with α-glucosidase, chlorogenin again had the highest binding affinity of (-9.8 kcal/mol) > compared to rutin (-9.5 kcal/mol) and acarbose (-7.9 kcal/mol). Molecular dynamics (MD) simulations were conducted to assess their stability. We simulated 100 nanoseconds (ns) trajectories to analyze their stability on various parameters, including RMSD, RMSF, RG, SASA, H-bond analysis, PCA, FEL, and MM-PBSA on the six docked proteins. In conclusion, our study suggests that chlorogenin and rutin derived from STV may be effective natural therapeutic agents for diabetes management because of their strong binding affinities for the α-amylase and α-glucosidase enzymes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abbas Alam Choudhury
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Devi Rajeswari V
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
2
|
Das S, Ramanathan G. Assessing the Inhibitory Potential of Pregnenolone Sulfate on Pentraxin 3 in Diabetic Kidney Disease: A Molecular Docking and Simulation Study. J Cell Biochem 2025; 126:e30661. [PMID: 39344977 DOI: 10.1002/jcb.30661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024]
Abstract
Diabetic Kidney Disease (DKD), a frequent consequence of diabetes, has substantial implications for both morbidity and mortality rates, prompting the exploration of new metabolic biomarkers due to limitations in current methods like creatinine and albumin measurements. Pentraxin 3 (PTX3) shows promise for assessing renal inflammation in DKD. This study investigates how DKD metabolites could influence PTX3 expression through molecular docking, ADMET profiling, and dynamic simulation. Network and pathway analyses were conducted to explore metabolite interactions with DKD genes and their contributions to DKD pathogenesis. Thirty-three DKD-associated metabolites were screened, using pentoxifylline (PEN) as a reference. The pharmacokinetic properties of these compounds were evaluated through molecular docking and ADMET profiling. Molecular dynamics simulations over 200 ns assessed the stability of PTX3 (apo), the PRE-PTX3 complex, and PEN-PTX3 across multiple parameters. Cytoscape identified 1082 nodes and 1381 edges linking metabolites with DKD genes. KEGG pathway analysis underscored PTX3's role in inflammation. Molecular docking revealed pregnenolone sulfate (PRE) with the highest binding affinity (-6.25 kcal/mol), followed by hydrocortisone (-6.03 kcal/mol) and 2-arachidonoylglycerol (-5.92 kcal/mol), compared to PEN (-5.35 kcal/mol). ADMET profiling selected PRE for dynamic simulation alongside PEN. Analysis of RMSD, RMSF, RG, SASA, H-bond, PCA, FEL, and MM-PBSA indicated stable complex behavior over time. Our findings suggest that increasing PRE levels could be beneficial in managing DKD, potentially through isolating PRE from fungal sources, synthesizing it as dietary supplements, or enhancing endogenous PRE synthesis within the body.
Collapse
Affiliation(s)
- Soumik Das
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Gnanasambandan Ramanathan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| |
Collapse
|
3
|
Adhish M, Manjubala I. An in-silico approach to the potential modulatory effect of taurine on sclerostin (SOST) and its probable role during osteoporosis. J Biomol Struct Dyn 2024; 42:9002-9017. [PMID: 37608541 DOI: 10.1080/07391102.2023.2249103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/12/2023] [Indexed: 08/24/2023]
Abstract
The cysteine-knot containing negative regulator of the Wnt (Wingless-related integration site) signaling pathway, sclerostin (SOST) is an emerging therapeutic target for osteoporosis. Its inhibition is responsible for the promotion of osteoblastogenesis. In this study, taurine, an amino sulfonic acid was used to study its mechanism of action for the inhibition of the SOST protein. Molecular docking and dynamic studies were performed as a part of the study whereby, it was observed that taurine binds to a probable allosteric pocket which allows it to modulate the structure of the SOST protein affecting all of the loops - loops 1, loop 2, and loop 3 - as well as the cysteine residues forming the cysteine-knot. The study also identified a set of seven taurine analogues that have better pharmacological activity than their parent compound using screening techniques. The conclusions derived from the study support that taurine has a probable antagonistic effect on the SOST protein directly through the modulation of HNQS motif and loops 2 and 3 and indirectly through its influence on the cysteine residues - 134, 165 and 167 C. Based on the results, it can be assumed that the binding of taurine with SOST protein probably reduces its binding affinity to the LRP6 protein greatly, while also inhibiting the target protein from anchoring to LRP4. Furthermore, it was noted that probable additional binding with any small molecule inhibitor (SMI) at the active site (PNAIG motif), in the presence of an already allosterically bound taurine, of the SOST protein would result in a complete potential antagonism of the target protein. Additionally, the study also uncovers the possible role of the GKWWRPS motif in providing stability to the PNAIG motif for the purpose of binding with LRP6.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mazumder Adhish
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - I Manjubala
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
4
|
Choudhury AA, Arumugam M, Ponnusamy N, Sivaraman D, Sertsemariam W, Thiruvengadam M, Pandiaraj S, Rahaman M, Devi Rajeswari V. Anti-diabetic drug discovery using the bioactive compounds of Momordica charantia by molecular docking and molecular dynamics analysis. J Biomol Struct Dyn 2024:1-15. [PMID: 38334124 DOI: 10.1080/07391102.2024.2313156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/26/2024] [Indexed: 02/10/2024]
Abstract
Diabetes mellitus (DM) is a multifactorial life-threatening endocrine disease characterized by abnormalities in glucose metabolism. It is a chronic metabolic disease that involves multiple enzymes such as α-amylase and α-glucosidases. Inhibition of these enzymes has been identified as a promising method for managing diabetes, and researchers are currently focusing on discovering novel α-amylase and α-glucosidase inhibitors for diabetes therapy. Hence, we have selected 12 bioactive compounds from the Momordica charantia (MC) plant and performed a virtual screening and molecular dynamics investigation to identify natural inhibitors of α-amylase and α-glucosidases. Our in silico result revealed that phytocompound Rutin showed the highest binding affinity against α-amylase (1HNY) enzymes at (-11.68 kcal/mol), followed by Karaviloside II (-9.39), Momordicoside F (-9.19), Campesterol (-9.11. While docking against α-glucosidases (4J5T), Rutin again showed the greatest binding affinity (-11.93 kcal/mol), followed by Momordicine (-9.89), and Campesterol (-8.99). Molecular dynamics (MD) simulation research is currently the gold standard for drug design and discovery. Consequently, we conducted simulations of 100 nanoseconds (ns) to assess the stability of protein-ligand complexes based on parameters like RMSD, RMSF, RG, PCA, and FEL. The significance of our findings indicates that rutin from MC might serve as an effective natural therapeutic agent for diabetes management due to its strongest binding affinities with α-amylase and α-glucosidase enzymes. Further research in animals and humans is essential to validate the efficacy of these drug molecules.
Collapse
Affiliation(s)
- Abbas Alam Choudhury
- Department of Biomedical Sciences, School of Bio Sciences and Technology, VIT, Vellore, India
| | - Mohanapriya Arumugam
- Department of Biotechnology, School of Bio Sciences and Technology, VIT, Vellore, India
| | - Nirmaladevi Ponnusamy
- Department of Biotechnology, School of Bio Sciences and Technology, VIT, Vellore, India
| | | | - Woldie Sertsemariam
- Department of Biomedical Sciences, School of Bio Sciences and Technology, VIT, Vellore, India
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, Konkuk University, Seoul, Republic of Korea
| | - Saravanan Pandiaraj
- Department of Self-Development Skills, King Saud University, Riyadh, Saudi Arabia
| | - Mostafizur Rahaman
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - V Devi Rajeswari
- Department of Biomedical Sciences, School of Bio Sciences and Technology, VIT, Vellore, India
| |
Collapse
|
5
|
Muniyasamy R, Manjubala I. Elucidating anti-sclerostin mechanism of baicalein using LRP6-Sclersotin complex of canonical Wnt/β-catenin signaling pathway. J Biomol Struct Dyn 2024:1-11. [PMID: 38240094 DOI: 10.1080/07391102.2024.2306494] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/10/2024] [Indexed: 02/25/2025]
Abstract
Flavonoids are polyphenolic compounds produced by plants as secondary metabolites that are known to exhibit wide range of pharmaceutical properties. Flavonoids from different medicinal plants have been used in traditional medicine to treat several musculoskeletal disorders for centuries. Of the numerous flavonoids, baicalein from Oroxylum indicum has a well-documented protective effect in skeletal health. However, studies into its influence on the canonical Wnt/β-catenin signaling pathway for musculoskeletal disorders remain limited. With the results of our previous study, the current research investigated the molecular mechanism of baicalein to inhibit the interaction between LRP6 and sclerostin to activate the canonical Wnt/β-catenin signaling pathway. Molecular docking revealed that baicalein docks between LRP6 and sclerostin with a binding energy of -8.4 kcal/mol and interacts with key binding residues of both the proteins. The molecular dynamics simulations predicted the stability of baicalein through 100 ns with more conformational changes observed in sclerostin than LRP6 especially in and around the PNAIG motif of loop-2 region, hinting at a possible inhibitory effect of baicalein over sclerostin. The findings of this research could pave the way for novel drug design approaches while promoting the use of natural flavonoids as potential therapeutics for musculoskeletal disorders.
Collapse
Affiliation(s)
- Rajeshwari Muniyasamy
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, India
| | - I Manjubala
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
6
|
Zhang T, Kim BM, Lee TH. Death-associated protein kinase 1 as a therapeutic target for Alzheimer's disease. Transl Neurodegener 2024; 13:4. [PMID: 38195518 PMCID: PMC10775678 DOI: 10.1186/s40035-023-00395-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/18/2023] [Indexed: 01/11/2024] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia in the elderly and represents a major clinical challenge in the ageing society. Neuropathological hallmarks of AD include neurofibrillary tangles composed of hyperphosphorylated tau, senile plaques derived from the deposition of amyloid-β (Aβ) peptides, brain atrophy induced by neuronal loss, and synaptic dysfunctions. Death-associated protein kinase 1 (DAPK1) is ubiquitously expressed in the central nervous system. Dysregulation of DAPK1 has been shown to contribute to various neurological diseases including AD, ischemic stroke and Parkinson's disease (PD). We have established an upstream effect of DAPK1 on Aβ and tau pathologies and neuronal apoptosis through kinase-mediated protein phosphorylation, supporting a causal role of DAPK1 in the pathophysiology of AD. In this review, we summarize current knowledge about how DAPK1 is involved in various AD pathological changes including tau hyperphosphorylation, Aβ deposition, neuronal cell death and synaptic degeneration. The underlying molecular mechanisms of DAPK1 dysregulation in AD are discussed. We also review the recent progress regarding the development of novel DAPK1 modulators and their potential applications in AD intervention. These findings substantiate DAPK1 as a novel therapeutic target for the development of multifunctional disease-modifying treatments for AD and other neurological disorders.
Collapse
Affiliation(s)
- Tao Zhang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, Fujian, China
| | - Byeong Mo Kim
- Research Center for New Drug Development, AgingTarget Inc., 10F Ace Cheonggye Tower, 53, Seonggogae-Ro, Uiwang-Si, 16006, Gyeonggi-Do, Korea.
| | - Tae Ho Lee
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, Fujian, China.
| |
Collapse
|
7
|
Kim MJ, Martin CA, Kim J, Jablonski MM. Computational methods in glaucoma research: Current status and future outlook. Mol Aspects Med 2023; 94:101222. [PMID: 37925783 PMCID: PMC10842846 DOI: 10.1016/j.mam.2023.101222] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/06/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
Advancements in computational techniques have transformed glaucoma research, providing a deeper understanding of genetics, disease mechanisms, and potential therapeutic targets. Systems genetics integrates genomic and clinical data, aiding in identifying drug targets, comprehending disease mechanisms, and personalizing treatment strategies for glaucoma. Molecular dynamics simulations offer valuable molecular-level insights into glaucoma-related biomolecule behavior and drug interactions, guiding experimental studies and drug discovery efforts. Artificial intelligence (AI) technologies hold promise in revolutionizing glaucoma research, enhancing disease diagnosis, target identification, and drug candidate selection. The generalized protocols for systems genetics, MD simulations, and AI model development are included as a guide for glaucoma researchers. These computational methods, however, are not separate and work harmoniously together to discover novel ways to combat glaucoma. Ongoing research and progresses in genomics technologies, MD simulations, and AI methodologies project computational methods to become an integral part of glaucoma research in the future.
Collapse
Affiliation(s)
- Minjae J Kim
- Department of Ophthalmology, The Hamilton Eye Institute, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| | - Cole A Martin
- Department of Ophthalmology, The Hamilton Eye Institute, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| | - Jinhwa Kim
- Graduate School of Artificial Intelligence, Graduate School of Metaverse, Department of Management Information Systems, Sogang University, 1 Shinsoo-Dong, Mapo-Gu, Seoul, South Korea.
| | - Monica M Jablonski
- Department of Ophthalmology, The Hamilton Eye Institute, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|