1
|
Giri A, Rahman I, Sundar IK. Circadian clock-based therapeutics in chronic pulmonary diseases. Trends Pharmacol Sci 2022; 43:1014-1029. [PMID: 36302705 PMCID: PMC9756397 DOI: 10.1016/j.tips.2022.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/11/2022]
Abstract
The circadian clock is the biochemical oscillator that orchestrates the observable circadian rhythms in physiology and behavior. Disruption of the circadian clock in the lungs during chronic pulmonary diseases is considered one of the key etiological risk factors that drive pathobiology. Preclinical studies support that pharmacological manipulation of the circadian clock is a conceivable approach for the development of novel clock-based therapeutics. Despite recent advances, no effort has been undertaken to integrate novel findings for the treatment and management of chronic lung diseases. We, therefore, recognize the need to discuss the candidate clock genes that can be potentially targeted for therapeutic intervention. Here, we aim to create the first roadmap that will advance the development of circadian- clock-based therapeutics that may provide better outcomes in treating chronic pulmonary diseases.
Collapse
Affiliation(s)
- Allan Giri
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Irfan Rahman
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, USA
| | - Isaac Kirubakaran Sundar
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
2
|
Gao L, Wang K, Cheng M, Zeng Z, Wang T, Wen F, Chen J. Circadian clock dysfunction of epithelial cells in pulmonary diseases. Int J Biochem Cell Biol 2021; 141:106110. [PMID: 34699979 DOI: 10.1016/j.biocel.2021.106110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/17/2021] [Accepted: 10/21/2021] [Indexed: 02/05/2023]
Abstract
Highly-differentiated pulmonary epithelial cells are essential for maintaining lung homeostasis by exerting various physiological functions, which are regulated by circadian clock consisted of an autoregulatory feedback loop of clock genes, including Brain-Muscle Aryl-hydrocarbon Receptor Nuclear Translocator-Like 1 (BMAL1) and Nuclear Heme Receptor Reverse Erythroblastosis Virus α (REV-ERB-α). The circadian clock dysfunction of epithelial cells has been increasingly associated with the pulmonary diseases: BMAL1 and REV-ERB-α regulates inflammatory response of club cells induced by lipopolysaccharide and cigarette smoke (CS) respectively; the clock disfunction in alveolar epithelial type2 cells (AEC-II) has been implicated in CS-induced airway inflammation and early-life hyperoxia-related susceptibility to influenza infection; the ciliary beat frequency of ciliated cells also shows circadian rhythms. Here, we review the current knowledge on the circadian regulation of different epithelial-cell subtypes, attempting to provide insights into how clock dysfunction contributes to pulmonary diseases, and explore possible pharmacological therapies and future directions for fundamental studies.
Collapse
Affiliation(s)
- Lijuan Gao
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, and Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ke Wang
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, and Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Mengxin Cheng
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, and Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zijian Zeng
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, and Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tao Wang
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, and Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Fuqiang Wen
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, and Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Jun Chen
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, and Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
3
|
Krakowiak K, Durrington HJ. The Role of the Body Clock in Asthma and COPD: Implication for Treatment. Pulm Ther 2018; 4:29-43. [PMID: 32026248 PMCID: PMC6967276 DOI: 10.1007/s41030-018-0058-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Indexed: 01/12/2023] Open
Abstract
Asthma exhibits a marked time of day variation in symptoms, airway physiology, and airway inflammation. This is also seen in chronic obstructive pulmonary disease (COPD), but to a lesser extent. Our understanding of how physiological daily rhythms are regulated by the circadian clock is increasing, and there is growing evidence that the molecular clock is important in the pathogenesis of these two airway diseases. If time of day is important, then it follows that treatment of asthma and COPD should also be tailored to the most efficacious time of the day, a concept known as 'chronotherapy'. There have been a number of studies to determine the optimal time of day at which to take medications for asthma and COPD. Some of these agents are already used 'chronotherapeutically' in practice (often at night-time). However, several studies investigating systemic and inhaled corticosteroids have consistently shown that the best time of day to take these medications for treating asthma is in the afternoon or early evening and not in the morning, when these medications are often prescribed. Future, large, randomized, placebo-controlled studies of systemic and inhaled corticosteroids in asthma and COPD are needed to inform clinical practice.
Collapse
Affiliation(s)
- Karolina Krakowiak
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Hannah J Durrington
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.
- Wythenshawe Hospital, Manchester University NHS Foundation Trust, Southmoor Road, Wythenshawe, Manchester, M23 9LT, UK.
| |
Collapse
|
4
|
Krakowiak K, Durrington HJ. The Role of the Body Clock in Asthma and COPD: Implication for Treatment. Pulm Ther 2018. [DOI: 10.1007/s41030-018-0058-6#x002a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
AbstractAsthma exhibits a marked time of day variation in symptoms, airway physiology, and airway inflammation. This is also seen in chronic obstructive pulmonary disease (COPD), but to a lesser extent. Our understanding of how physiological daily rhythms are regulated by the circadian clock is increasing, and there is growing evidence that the molecular clock is important in the pathogenesis of these two airway diseases. If time of day is important, then it follows that treatment of asthma and COPD should also be tailored to the most efficacious time of the day, a concept known as ‘chronotherapy’. There have been a number of studies to determine the optimal time of day at which to take medications for asthma and COPD. Some of these agents are already used ‘chronotherapeutically’ in practice (often at night-time). However, several studies investigating systemic and inhaled corticosteroids have consistently shown that the best time of day to take these medications for treating asthma is in the afternoon or early evening and not in the morning, when these medications are often prescribed. Future, large, randomized, placebo-controlled studies of systemic and inhaled corticosteroids in asthma and COPD are needed to inform clinical practice.
Digital Features
This article is published with a graphical abstract to facilitate understanding of the article. To view digital features for this article go to the Supplementary Information of the article.
Collapse
|
5
|
Sundar IK, Yao H, Sellix MT, Rahman I. Circadian clock-coupled lung cellular and molecular functions in chronic airway diseases. Am J Respir Cell Mol Biol 2015; 53:285-90. [PMID: 25938935 DOI: 10.1165/rcmb.2014-0476tr] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Airway diseases are associated with abnormal circadian rhythms of lung function, reflected in daily changes of airway caliber, airway resistance, respiratory symptoms, and abnormal immune-inflammatory responses. Circadian rhythms are generated at the cellular level by an autoregulatory feedback loop of interlocked transcription factors collectively referred to as clock genes. The molecular clock is altered by cigarette smoke, LPS, and bacterial and viral infections in mouse and human lungs and in patients with chronic airway diseases. Stress-mediated post-translational modification of molecular clock proteins, brain and muscle aryl hydrocarbon receptor nuclear translocator-like 1 (BMAL1) and PERIOD 2, is associated with a reduction in the activity/level of the deacetylase sirtuin 1 (SIRT1). Similarly, the levels of the nuclear receptor REV-ERBα and retinoic acid receptor-related orphan receptor α (ROR α), critical regulators of Bmal1 expression, are altered by environmental stresses. Molecular clock dysfunction is implicated in immune and inflammatory responses, DNA damage response, and cellular senescence. The molecular clock in the lung also regulates the timing of glucocorticoid sensitivity and phasic responsiveness to inflammation. Herein, we review our current understanding of clock-controlled cellular and molecular functions in the lungs, the impact of clock dysfunction in chronic airway disease, and the response of the pulmonary clock to different environmental perturbations. Furthermore, we discuss the evidence for candidate signaling pathways, such as the SIRT1-BMAL1-REV-ERBα axis, as novel targets for chronopharmacological management of chronic airway diseases.
Collapse
Affiliation(s)
- Isaac K Sundar
- Departments of 1 Environmental Medicine, Lung Biology and Disease Program, and
| | - Hongwei Yao
- Departments of 1 Environmental Medicine, Lung Biology and Disease Program, and
| | - Michael T Sellix
- 2 Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester Medical Center, Rochester, New York
| | - Irfan Rahman
- Departments of 1 Environmental Medicine, Lung Biology and Disease Program, and
| |
Collapse
|
6
|
Sundar IK, Yao H, Sellix MT, Rahman I. Circadian molecular clock in lung pathophysiology. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1056-75. [PMID: 26361874 DOI: 10.1152/ajplung.00152.2015] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/08/2015] [Indexed: 02/06/2023] Open
Abstract
Disrupted daily or circadian rhythms of lung function and inflammatory responses are common features of chronic airway diseases. At the molecular level these circadian rhythms depend on the activity of an autoregulatory feedback loop oscillator of clock gene transcription factors, including the BMAL1:CLOCK activator complex and the repressors PERIOD and CRYPTOCHROME. The key nuclear receptors and transcription factors REV-ERBα and RORα regulate Bmal1 expression and provide stability to the oscillator. Circadian clock dysfunction is implicated in both immune and inflammatory responses to environmental, inflammatory, and infectious agents. Molecular clock function is altered by exposomes, tobacco smoke, lipopolysaccharide, hyperoxia, allergens, bleomycin, as well as bacterial and viral infections. The deacetylase Sirtuin 1 (SIRT1) regulates the timing of the clock through acetylation of BMAL1 and PER2 and controls the clock-dependent functions, which can also be affected by environmental stressors. Environmental agents and redox modulation may alter the levels of REV-ERBα and RORα in lung tissue in association with a heightened DNA damage response, cellular senescence, and inflammation. A reciprocal relationship exists between the molecular clock and immune/inflammatory responses in the lungs. Molecular clock function in lung cells may be used as a biomarker of disease severity and exacerbations or for assessing the efficacy of chronotherapy for disease management. Here, we provide a comprehensive overview of clock-controlled cellular and molecular functions in the lungs and highlight the repercussions of clock disruption on the pathophysiology of chronic airway diseases and their exacerbations. Furthermore, we highlight the potential for the molecular clock as a novel chronopharmacological target for the management of lung pathophysiology.
Collapse
Affiliation(s)
- Isaac K Sundar
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York; and
| | - Hongwei Yao
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York; and
| | - Michael T Sellix
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester Medical Center, Rochester, New York
| | - Irfan Rahman
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York; and
| |
Collapse
|
7
|
Duan QL, Lasky-Su J, Himes BE, Qiu W, Litonjua AA, Damask A, Lazarus R, Klanderman B, Irvin CG, Peters SP, Hanrahan JP, Lima JJ, Martinez FD, Mauger D, Chinchilli VM, Soto-Quiros M, Avila L, Celedón JC, Lange C, Weiss ST, Tantisira KG. A genome-wide association study of bronchodilator response in asthmatics. THE PHARMACOGENOMICS JOURNAL 2014; 14:41-7. [PMID: 23508266 PMCID: PMC3706515 DOI: 10.1038/tpj.2013.5] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 12/21/2012] [Accepted: 02/04/2013] [Indexed: 01/24/2023]
Abstract
Reversibility of airway obstruction in response to β2-agonists is highly variable among asthmatics, which is partially attributed to genetic factors. In a genome-wide association study of acute bronchodilator response (BDR) to inhaled albuterol, 534 290 single-nucleotide polymorphisms (SNPs) were tested in 403 white trios from the Childhood Asthma Management Program using five statistical models to determine the most robust genetic associations. The primary replication phase included 1397 polymorphisms in three asthma trials (pooled n=764). The second replication phase tested 13 SNPs in three additional asthma populations (n=241, n=215 and n=592). An intergenic SNP on chromosome 10, rs11252394, proximal to several excellent biological candidates, significantly replicated (P=1.98 × 10(-7)) in the primary replication trials. An intronic SNP (rs6988229) in the collagen (COL22A1) locus also provided strong replication signals (P=8.51 × 10(-6)). This study applied a robust approach for testing the genetic basis of BDR and identified novel loci associated with this drug response in asthmatics.
Collapse
Affiliation(s)
- Qing Ling Duan
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Blanca E. Himes
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Center for Genomic Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Weiliang Qiu
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Augusto A. Litonjua
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Pulmonary Division, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | | | - Ross Lazarus
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Barbara Klanderman
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Charles G. Irvin
- Vermont Lung Center, Department of Medicine and Physiology, University of Vermont, Burlington, Vermont
| | - Stephen P. Peters
- Center for Genomics and Personalized Medicine Research, Wake Forest University School of Medicine, Winston-Salem, NC
| | | | - John J. Lima
- Nemours Children’s Clinic, Centers for Clinical Pediatric Pharmacology & Pharmacogenetics, Jacksonville, FL
| | - Fernando D. Martinez
- Arizona Respiratory Center and BIO5 Institute, University of Arizona, Tucson, Ariz
| | - David Mauger
- Department of Public Health Sciences, Pennsylvania State University, Hershey, PA
| | - Vernon M. Chinchilli
- Department of Public Health Sciences, Pennsylvania State University, Hershey, PA
| | | | | | - Juan C. Celedón
- Division of Pediatric Pulmonary Medicine, Allergy and Immunology, Department of Pediatrics, Children’s Hospital University of Pittsburgh of UPMC, Pittsburgh, PA
| | | | - Scott T. Weiss
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Center for Genomic Medicine, Brigham and Women’s Hospital, Boston, MA
- Pulmonary Division, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Harvard School of Public Health, Boston, MA
| | - Kelan G. Tantisira
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Pulmonary Division, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
8
|
Sugimoto T, Morioka N, Sato K, Hisaoka K, Nakata Y. Noradrenergic regulation of period1 expression in spinal astrocytes is involved in protein kinase A, c-Jun N-terminal kinase and extracellular signal-regulated kinase activation mediated by α1- and β2-adrenoceptors. Neuroscience 2011; 185:1-13. [DOI: 10.1016/j.neuroscience.2011.04.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 04/08/2011] [Accepted: 04/08/2011] [Indexed: 10/18/2022]
|
9
|
Burioka N, Fukuoka Y, Koyanagi S, Miyata M, Takata M, Chikumi H, Takane H, Watanabe M, Endo M, Sako T, Suyama H, Ohdo S, Shimizu E. Asthma: Chronopharmacotherapy and the molecular clock. Adv Drug Deliv Rev 2010; 62:946-55. [PMID: 20359514 DOI: 10.1016/j.addr.2010.03.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 03/17/2010] [Accepted: 03/23/2010] [Indexed: 10/19/2022]
Abstract
Bronchial asthma is characterized by chronic airways inflammation and reversible airflow limitation. In patients with asthma, symptoms generally worsen during the early hours of the morning, and pulmonary function often deteriorates at the same time, suggesting a role for chronopharmacotherapy. Several drugs for asthma have been developed based on chronopharmacology. Most medications employed for the chronotherapy of asthma are administered once at night with the goal of preventing chronic airway inflammation or development of airflow limitation. In addition to bronchodilators, the inhaled glucocorticosteroid ciclesonide is now available with once-daily dosing, which also improves patients' compliance. Numerous investigations have demonstrated the usefulness of chronotherapy for asthma, especially for patients with nocturnal asthma. This review focuses on chronotherapy of asthma, and also provides a molecular biological explanation for the influence of asthma medications on the clock genes.
Collapse
|
10
|
Morioka N, Sugimoto T, Tokuhara M, Dohi T, Nakata Y. Noradrenaline Induces Clock Gene Per1 mRNA Expression in C6 Glioma Cells Through β2-Adrenergic Receptor Coupled With Protein Kinase A – cAMP Response Element Binding Protein (PKA–CREB) and Src-Tyrosine Kinase – Glycogen Synthase Kinase-3β (Src–GSK-3β). J Pharmacol Sci 2010; 113:234-45. [DOI: 10.1254/jphs.10031fp] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
11
|
Pearen MA, Ryall JG, Lynch GS, Muscat GE. Expression profiling of skeletal muscle following acute and chronic beta2-adrenergic stimulation: implications for hypertrophy, metabolism and circadian rhythm. BMC Genomics 2009; 10:448. [PMID: 19772666 PMCID: PMC2758907 DOI: 10.1186/1471-2164-10-448] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 09/23/2009] [Indexed: 02/08/2023] Open
Abstract
Background Systemic administration of β-adrenoceptor (β-AR) agonists has been found to induce skeletal muscle hypertrophy and significant metabolic changes. In the context of energy homeostasis, the importance of β-AR signaling has been highlighted by the inability of β1-3-AR-deficient mice to regulate energy expenditure and susceptibility to diet induced obesity. However, the molecular pathways and gene expression changes that initiate and maintain these phenotypic modulations are poorly understood. Therefore, the aim of this study was to identify differential changes in gene expression in murine skeletal muscle associated with systemic (acute and chronic) administration of the β2-AR agonist formoterol. Results Skeletal muscle gene expression (from murine tibialis anterior) was profiled at both 1 and 4 hours following systemic administration of the β2-AR agonist formoterol, using Illumina 46K mouse BeadArrays. Illumina expression profiling revealed significant expression changes in genes associated with skeletal muscle hypertrophy, myoblast differentiation, metabolism, circadian rhythm, transcription, histones, and oxidative stress. Differentially expressed genes relevant to the regulation of muscle mass and metabolism (in the context of the hypertrophic phenotype) were further validated by quantitative RT-PCR to examine gene expression in response to both acute (1-24 h) and chronic administration (1-28 days) of formoterol at multiple timepoints. In terms of skeletal muscle hypertrophy, attenuation of myostatin signaling (including differential expression of myostatin, activin receptor IIB, phospho-Smad3 etc) was observed following acute and chronic administration of formoterol. Acute (but not chronic) administration of formoterol also significantly induced the expression of genes involved in oxidative metabolism, including hexokinase 2, sorbin and SH3 domain containing 1, and uncoupling protein 3. Interestingly, formoterol administration also appeared to influence some genes associated with the peripheral regulation of circadian rhythm (including nuclear factor interleukin 3 regulated, D site albumin promoter binding protein, and cryptochrome 2). Conclusion This is the first study to utilize gene expression profiling to examine global gene expression in response to acute β2-AR agonist treatment of skeletal muscle. In summary, systemic administration of a β2-AR agonist had a profound effect on global gene expression in skeletal muscle. In terms of hypertrophy, β2-AR agonist treatment altered the expression of several genes associated with myostatin signaling, a previously unreported effect of β-AR signaling in skeletal muscle. This study also demonstrates a β2-AR agonist regulation of circadian rhythm genes, indicating crosstalk between β-AR signaling and circadian cycling in skeletal muscle. Gene expression alterations discovered in this study provides insight into many of the underlying changes in gene expression that mediate β-AR induced skeletal muscle hypertrophy and altered metabolism.
Collapse
Affiliation(s)
- Michael A Pearen
- Institute for Molecular Bioscience, The University of Queensland, Queensland 4072, Australia.
| | | | | | | |
Collapse
|
12
|
Antoch MP, Chernov MV. Pharmacological modulators of the circadian clock as potential therapeutic drugs. Mutat Res 2009; 679:17-23. [PMID: 20161366 DOI: 10.1016/j.mrgentox.2009.07.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Circadian clocks are molecular time-keeping systems that underlie daily fluctuations in multiple physiological and biochemical processes. It is well recognized now that dysfunctions of the circadian system (both genetically and environmentally induced) are associated with the development of various pathological conditions. Here we describe the application of high throughput screening approach designed to search for small molecules capable of pharmacological modulation of the molecular clock. We provide evidence for the feasibility and value of this approach for both scientific and therapeutic purposes.
Collapse
Affiliation(s)
- Marina P Antoch
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | |
Collapse
|
13
|
Dridi D, Ben‐Attia M, Sani M, Djebli N, Sauvage FL, Boughattas NA. Circadian Time‐Effect of Orally Administered Loratadine on Plasma Pharmacokinetics in Mice. Chronobiol Int 2009; 25:533-47. [DOI: 10.1080/07420520802257646] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Portaluppi F. Consistency and Accuracy of the Medical Subject Headings® Thesaurus for Electronic Indexing and Retrieval of Chronobiologic References. Chronobiol Int 2009; 24:1213-29. [DOI: 10.1080/07420520701791570] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
15
|
Burioka N, Takata M, Endo M, Miyata M, Takeda K, Chikumi H, Tomita K, Fukuoka Y, Nakazaki H, Sano H, Shimizu E. Treatment with beta2-adrenoceptor agonist in vivo induces human clock gene, Per1, mRNA expression in peripheral blood. Chronobiol Int 2007; 24:183-9. [PMID: 17364588 DOI: 10.1080/07420520601140043] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This study examined whether in vivo exposure to a beta2-adrenoceptor agonist, tulobuterol, induces human Period1 (hPer1) mRNA expression in cells from peripheral whole blood. In one experiment, oral tulobuterol was administered to five healthy volunteers at 22:00 h, while in another, a transdermally tulobuterol patch was applied to the same five subjects at 20:00 h. In each experiment, serum tulobuterol concentrations were measured at four time points, and total RNA was isolated from peripheral blood cells for determinations of hPer1 mRNA expression by real-time polymerase chain reaction. Both the tulobuterol tablet and the transdermal patch increased hPer1 mRNA expression, suggesting that analyses of human peripheral blood cells could reliably represent peripheral clock gene mRNA expression in vivo.
Collapse
Affiliation(s)
- Naoto Burioka
- Division of Medical Oncology and Molecular Respirology, Tottori University, Nishimachi, Yonago, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Burioka N, Fukuoka Y, Takata M, Endo M, Miyata M, Chikumi H, Tomita K, Kodani M, Touge H, Takeda K, Sumikawa T, Yamaguchi K, Ueda Y, Nakazaki H, Suyama H, Yamasaki A, Sano H, Igishi T, Shimizu E. Circadian rhythms in the CNS and peripheral clock disorders: function of clock genes: influence of medication for bronchial asthma on circadian gene. J Pharmacol Sci 2007; 103:144-9. [PMID: 17299247 DOI: 10.1254/jphs.fmj06003x4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Bronchial asthma is a chronic inflammatory disorder of the airways, in which inflammation causes bronchial hyper-responsiveness and flow limitation in the presence of various stimuli. Pulmonary function in asthmatic patients frequently deteriorates between midnight and early morning, which has suggested a role for chronotherapy. Although relationships between bronchial asthma and the function of clock genes remain unclear, some medications given for asthma such as glucocorticoids or beta(2)-adrenoceptor agonists may influence clock genes in vivo. In our studies of clock gene mRNA expressions in human bronchial epithelial cells in vitro and peripheral blood cells in vivo, we demonstrated that glucocorticoid or beta(2)-adrenoceptor agonist treatment strongly induced human Per1 mRNA expression both in vitro and in vivo. Human peripheral blood cells provide a useful indication of peripheral clock gene mRNA expression in vivo.
Collapse
Affiliation(s)
- Naoto Burioka
- Division of Medical Oncology and Molecular Respirology, Faculty of Medicine, Tottori University, 36-1 Nishimachi, Yonago 683-8504, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|