1
|
Ozturk Civelek D, Ozturk Seyhan N, Akyel YK, Gazioglu I, Pala Kara Z, Orman MN, Okyar A. Dosing-time, feeding, and sex-dependent variations of everolimus pharmacokinetics in mice. Fundam Clin Pharmacol 2024; 38:883-896. [PMID: 38500383 DOI: 10.1111/fcp.13003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 01/01/2024] [Accepted: 02/19/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Everolimus is an oral mammalian target of rapamycin (mTOR) inhibitor used as an immunosuppressant and anticancer. Its pharmacokinetics is highly variable, it has a narrow therapeutic window and shows chronotoxicity with the best time at ZT13 and worst time at ZT1 (ZT; Zeitgeber time, time after light onset) in the preclinical setting. OBJECTIVES In the present study, we aimed to investigate whether the pharmacokinetics of everolimus vary according to dosing time and whether sex and feeding status interfere with the chronopharmacokinetics. METHOD A single dosage of 5 mg/kg everolimus was administered orally to C57BL/6J male and female mice, in fed or fasted states at ZT1-rest and ZT13-activity times and blood and tissue samples were collected at 0.5, 1, 2, 4, 12, and 24 h following drug administration. Ileum, liver, plasma, and thymus concentrations of everolimus were determined. RESULTS Females had a greater ileum AUC0-24h than males when fed (P = 0.043). Everolimus AUC0-24h in the liver was substantially greater at ZT1 than at ZT13 in a fasted state (P = 0.001). Plasma Cmax, AUC0-24h, and AUCtotal were not statistically significant between the groups (P = 0.098). In one of the target organs of everolimus, the thymus, males had considerably higher amounts at ZT1 than females (P = 0.029). CONCLUSION Our findings imply that the pharmacokinetics of everolimus in mice may differ according to dosing time, sex, and feeding. Greater tissue distribution of everolimus at ZT1 may be associated with the worst tolerated time of everolimus. Our research suggests that oral chronomodulated everolimus therapy may be more effective and safer for cancer patients.
Collapse
Affiliation(s)
- Dilek Ozturk Civelek
- Department of Pharmacology, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkey
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Narin Ozturk Seyhan
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Yasemin Kubra Akyel
- Department of Medical Pharmacology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Isil Gazioglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkey
- Applied Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Zeliha Pala Kara
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Mehmet N Orman
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Ege University, Bornova, Izmir, Turkey
| | - Alper Okyar
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| |
Collapse
|
2
|
Cornelissen G, Gubin D, Otsuka K. Disease Conditions. CHRONOBIOLOGY AND CHRONOMEDICINE 2024:455-475. [DOI: 10.1039/bk9781839167553-00455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
Since clock genes are involved in all physiological systems, their role in most disease conditions is not surprising. To complement the information reviewed in Part II for each physiological system considered separately, this chapter illustrates the interdigitating network of interactions taking place within multiple physiological systems in any given disease condition. Circadian disruption, a common factor in disease, is almost inseparable from disturbed sleep, which is present in conditions ranging from psychological to cardio-metabolic and neurodegenerative conditions. Sleep disruption also modifies the immune system. Herein, we highlight the pervasive role played by the circadian system in pathology based on a few examples of selected disease conditions, including some sleep disorders, mental disorders, neurodegenerative conditions, and cancer.
Collapse
Affiliation(s)
- Germaine Cornelissen
- aHalberg Chronobiology Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Denis Gubin
- bTyumen State Medical University, Tyumen, Russia
- cTyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk, Russia
| | - Kuniaki Otsuka
- aHalberg Chronobiology Center, University of Minnesota, Minneapolis, Minnesota, USA
- dExecutive Medical Center, Totsuka Royal Clinic, Tokyo Women’s Medical University, Tokyo, Japan
| |
Collapse
|
3
|
Lévi FA, Okyar A, Hadadi E, Innominato PF, Ballesta A. Circadian Regulation of Drug Responses: Toward Sex-Specific and Personalized Chronotherapy. Annu Rev Pharmacol Toxicol 2024; 64:89-114. [PMID: 37722720 DOI: 10.1146/annurev-pharmtox-051920-095416] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Today's challenge for precision medicine involves the integration of the impact of molecular clocks on drug pharmacokinetics, toxicity, and efficacy toward personalized chronotherapy. Meaningful improvements of tolerability and/or efficacy of medications through proper administration timing have been confirmed over the past decade for immunotherapy and chemotherapy against cancer, as well as for commonly used pharmacological agents in cardiovascular, metabolic, inflammatory, and neurological conditions. Experimental and human studies have recently revealed sexually dimorphic circadian drug responses. Dedicated randomized clinical trials should now aim to issue personalized circadian timing recommendations for daily medical practice, integrating innovative technologies for remote longitudinal monitoring of circadian metrics, statistical prediction of molecular clock function from single-timepoint biopsies, and multiscale biorhythmic mathematical modelling. Importantly, chronofit patients with a robust circadian function, who would benefit most from personalized chronotherapy, need to be identified. Conversely, nonchronofit patients could benefit from the emerging pharmacological class of chronobiotics targeting the circadian clock.
Collapse
Affiliation(s)
- Francis A Lévi
- Chronotherapy, Cancers and Transplantation Research Unit, Faculty of Medicine, Paris-Saclay University, Villejuif, France;
- Gastrointestinal and General Oncology Service, Paul-Brousse Hospital, Assistance Publique-Hôpitaux de Paris, Villejuif, France
- Department of Statistics, University of Warwick, Coventry, United Kingdom
| | - Alper Okyar
- Faculty of Pharmacy, Department of Pharmacology, Istanbul University, Beyazit-Istanbul, Turkey
| | - Eva Hadadi
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory for Myeloid Cell Immunology, Center for Inflammation Research VIB, Zwijnaarde, Belgium
| | - Pasquale F Innominato
- Oncology Department, Ysbyty Gwynedd Hospital, Betsi Cadwaladr University Health Board, Bangor, United Kingdom
- Warwick Medical School and Cancer Research Centre, University of Warwick, Coventry, United Kingdom
| | - Annabelle Ballesta
- Inserm Unit 900, Cancer Systems Pharmacology, Institut Curie, MINES ParisTech CBIO-Centre for Computational Biology, PSL Research University, Saint-Cloud, France
| |
Collapse
|
4
|
Lee SH, Wan Q, Wentworth A, Ballinger I, Ishida K, Collins JE, Tamang S, Huang HW, Li C, Hess K, Lopes A, Kirtane AR, Lee JS, Lee S, Chen W, Wong K, Selsing G, Kim H, Buckley ST, Hayward A, Langer R, Traverso G. Implantable system for chronotherapy. SCIENCE ADVANCES 2021; 7:eabj4624. [PMID: 34826238 PMCID: PMC8626078 DOI: 10.1126/sciadv.abj4624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/07/2021] [Indexed: 05/17/2023]
Abstract
Diurnal variation in enzymes, hormones, and other biological mediators has long been recognized in mammalian physiology. Developments in pharmacobiology over the past few decades have shown that timing drug delivery can enhance drug efficacy. Here, we report the development of a battery-free, refillable, subcutaneous, and trocar-compatible implantable system that facilitates chronotherapy by enabling tight control over the timing of drug administration in response to external mechanical actuation. The external wearable system is coupled to a mobile app to facilitate control over dosing time. Using this system, we show the efficacy of bromocriptine on glycemic control in a diabetic rat model. We also demonstrate that antihypertensives can be delivered through this device, which could have clinical applications given the recognized diurnal variation of hypertension-related complications. We anticipate that implants capable of chronotherapy will have a substantial impact on our capacity to enhance treatment effectiveness for a broad range of chronic conditions.
Collapse
Affiliation(s)
- Seung Ho Lee
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Qianqian Wan
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Adam Wentworth
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Gastroenterology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Ian Ballinger
- Division of Gastroenterology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Keiko Ishida
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Gastroenterology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Joy E. Collins
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Gastroenterology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Siddartha Tamang
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hen-Wei Huang
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Gastroenterology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Canchen Li
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kaitlyn Hess
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aaron Lopes
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Gastroenterology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Ameya R. Kirtane
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Gastroenterology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jung Seung Lee
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - SeJun Lee
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Wei Chen
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kaitlyn Wong
- Division of Gastroenterology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - George Selsing
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Gastroenterology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Hyunjoon Kim
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Stephen T. Buckley
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alison Hayward
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Gastroenterology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Global Research Technologies, Novo Nordisk A/S, Måløv, Denmark
| | - Robert Langer
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Giovanni Traverso
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Gastroenterology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
5
|
Ozturk N, Ozturk Civelek D, Sancar S, Kaptan E, Pala Kara Z, Okyar A. Dosing-time dependent testicular toxicity of everolimus in mice. Eur J Pharm Sci 2021; 165:105926. [PMID: 34242751 DOI: 10.1016/j.ejps.2021.105926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/13/2021] [Accepted: 07/04/2021] [Indexed: 11/19/2022]
Abstract
The circadian timing system controls many biological functions in mammals including drug metabolism and detoxification, cell cycle events, and thus may affect pharmacokinetics, target organ toxicity and efficacy of medicines. Selective mTOR (mammalian target of rapamycin) inhibitor everolimus is an immunosuppressant and anticancer drug that is effective against several cancers. The aim of this study was to investigate dosing-time dependent testicular toxicity of subacute everolimus administration in mice. C57BL/6 J male mice were synchronized with Light-Dark (12h:12 h) cycle, with Light-onset at Zeitgeber Time (ZT)-0. Everolimus (5 mg/kg/day) was administered orally to mice at ZT1rest-span or ZT13activity-span for 4 weeks. Body weight loss, clinical signs, changes in testicular weights, testis histology, spermatogenesis and proliferative activity of germinal epithelium of seminiferous tubules were examined. Steady-state everolimus concentrations in testes were determined with validated HPLC method. Everolimus toxicity was less severe following dosing at ZT13 compared to ZT1, as shown with least body weight loss (p<0.001), least reductions in testes weights (p<0.001) and least histopathological findings. Everolimus-induced histological changes on testes included vacuolisation and atrophy of germinal epithelium, and loss of germinal cell attachment. The severity of everolimus-induced histological toxicity on testes was significantly more evident in mice treated at ZT1 than ZT13 (p<0.001). Spermatogenic cell population significantly decreased when everolimus administered at ZT1 compared to ZT13 (p<0.001). Proliferative activity of germinal epithelium was significantly decreased due to treatment at ZT1 compared to ZT13 (p<0.001). Everolimus concentrations in testes indicated a pronounced circadian variation, which was greater in mice treated at ZT1 compared to ZT13 (p<0.05). Our study revealed dosing-time dependent testicular toxicity of everolimus in mice, which was greater in severity when everolimus administered at early rest-span (daytime-ZT1) than early activity-span (nighttime-ZT13). These findings support the concept of everolimus chronotherapy for minimizing reproductive toxicity and increasing the tolerability of everolimus, as a clinical advantage.
Collapse
Affiliation(s)
- Narin Ozturk
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Beyazit-Istanbul, Turkey
| | - Dilek Ozturk Civelek
- Department of Pharmacology, Faculty of Pharmacy, Bezmialem Vakif University, Fatih-Istanbul, Turkey
| | - Serap Sancar
- Department of Biology, Faculty of Science, Istanbul University, Vezneciler-Istanbul, Turkey
| | - Engin Kaptan
- Department of Biology, Faculty of Science, Istanbul University, Vezneciler-Istanbul, Turkey
| | - Zeliha Pala Kara
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Beyazit-Istanbul, Turkey
| | - Alper Okyar
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Beyazit-Istanbul, Turkey.
| |
Collapse
|
6
|
Patel SA, Kondratov RV. Clock at the Core of Cancer Development. BIOLOGY 2021; 10:150. [PMID: 33672910 PMCID: PMC7918730 DOI: 10.3390/biology10020150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 12/29/2022]
Abstract
To synchronize various biological processes with the day and night cycle, most organisms have developed circadian clocks. This evolutionarily conserved system is important in the temporal regulation of behavior, physiology and metabolism. Multiple pathological changes associated with circadian disruption support the importance of the clocks in mammals. Emerging links have revealed interplay between circadian clocks and signaling networks in cancer. Understanding the cross-talk between the circadian clock and tumorigenesis is imperative for its prevention, management and development of effective treatment options. In this review, we summarize the role of the circadian clock in regulation of one important metabolic pathway, insulin/IGF1/PI3K/mTOR signaling, and how dysregulation of this metabolic pathway could lead to uncontrolled cancer cell proliferation and growth. Targeting the circadian clock and rhythms either with recently discovered pharmaceutical agents or through environmental cues is a new direction in cancer chronotherapy. Combining the circadian approach with traditional methods, such as radiation, chemotherapy or the recently developed, immunotherapy, may improve tumor response, while simultaneously minimizing the adverse effects commonly associated with cancer therapies.
Collapse
Affiliation(s)
- Sonal A. Patel
- Fusion Pharmaceuticals Inc., Hamilton, ON L8P 0A6, Canada;
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Roman V. Kondratov
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| |
Collapse
|
7
|
Wang X, Su Q, Dou Z, Zhao X, Zhang N, Yu B, Wang Y, Rong Z. Effect of Sirolimus on the Level of Peripheral Blood Lymphocyte Autophagy in Children With Systemic Lupus Erythematosus. Front Pediatr 2021; 9:685497. [PMID: 34722413 PMCID: PMC8554325 DOI: 10.3389/fped.2021.685497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/08/2021] [Indexed: 11/13/2022] Open
Abstract
Background: To observe the changes of autophagy-related protein levels in peripheral blood lymphocytes before and after sirolimus treatment in children with systemic lupus erythematosus (SLE). Methods: Children with SLE were randomly divided into two groups, 28 in the traditional treatment group and 28 in the sirolimus group. Fifteen healthy children who were in the same period were collected as the normal control group. Clinical laboratory indexes, the percentage of routine lymphocytes, complement C3, complement C4, serum Anti-dsDNA and SLEDAI were detected. Results: At 3 and 6 months after treatment, compared with the traditional treatment group, the percentage of routine lymphocytes in the sirolimus group increased (P = 0.03), SLEDAI score and positive rate of Anti-dsDNA decreased (P = 0.01). Compared with normal children, the expression of microtubule-associated protein 1 light chain 3 (LC3) protein in peripheral blood lymphocytes was significantly higher (P = 0.006); peripheral blood expression of P62/SQSTM1 (sequestosome 1) protein in lymphocytes decreased (P = 0.02). Conclusion: Sirolimus can play a role in the treatment of systemic lupus erythematosus by regulating the level of autophagy.
Collapse
Affiliation(s)
- Xinliang Wang
- Department of Peadiatrics, The Second Hospital of HeBei Medical University, Shijiazhuang, China
| | - Qingxiao Su
- Department of Peadiatrics, The Second Hospital of HeBei Medical University, Shijiazhuang, China
| | - Zhiyan Dou
- Department of Peadiatrics, The Second Hospital of HeBei Medical University, Shijiazhuang, China
| | - Xue Zhao
- Department of Peadiatrics, The Second Hospital of HeBei Medical University, Shijiazhuang, China
| | - Naiqi Zhang
- Department of Peadiatrics, The Second Hospital of HeBei Medical University, Shijiazhuang, China
| | - Bo Yu
- Department of Peadiatrics, The Second Hospital of HeBei Medical University, Shijiazhuang, China
| | - Yuxue Wang
- Department of Peadiatrics, The Second Hospital of HeBei Medical University, Shijiazhuang, China
| | - Zanhua Rong
- Department of Peadiatrics, The Second Hospital of HeBei Medical University, Shijiazhuang, China
| |
Collapse
|
8
|
The Impact of Ramadan Fasting on the Reduction of PASI Score, in Moderate-To-Severe Psoriatic Patients: A Real-Life Multicenter Study. Nutrients 2019; 11:nu11020277. [PMID: 30691245 PMCID: PMC6412911 DOI: 10.3390/nu11020277] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 12/21/2022] Open
Abstract
Fasting during the month of Ramadan consists of alternate abstinence and re-feeding periods (circadian or intermittent fasting). Nothing is currently known on the impact of this kind of fasting on psoriasis. A sample of 108 moderate-to-severe plaque psoriasis patients (aged 42.84 ± 13.61 years, 62 males, 46 females) volunteered to take part in the study. A significant decrease in the “Psoriasis Area and Severity Index” (PASI) score after the Ramadan fasting (mean difference = −0.89 ± 1.21, p < 0.0001) was found. At the multivariate regression, the use of cyclosporine (p = 0.0003), interleukin-17 or IL-17 blockers (p < 0.0001), and tumor necrosis factor or TNF blockers (p = 0.0107) was independently associated with a low PASI score, while the use of apremilast (p = 0.0009), and phototherapy (p = 0.0015) was associated with a high PASI score before the Ramadan fasting. Similarly, the consumption of cyclosporine (p < 0.0001), IL-17 blockers (p < 0.0001), mammalian target of rapamycin or mTOR inhibitors (p = 0.0081), and TNF blockers (p = 0.0017) predicted a low PASI score after the Ramadan fasting. By contrast, narrow band ultraviolet light B or NB-UVB (p = 0.0015) was associated with a high PASI score after Ramadan fasting. Disease duration (p = 0.0078), use of apremilast (p = 0.0005), and of mTOR inhibitors (p = 0.0034) were independent predictors of the reduction in the PASI score after the Ramadan fasting. These findings reflect the influence of dieting strategy, the biological clock, and circadian rhythm on the treatment of plaque psoriasis.
Collapse
|
9
|
Zhu B, Dacso CC, O’Malley BW. Unveiling "Musica Universalis" of the Cell: A Brief History of Biological 12-Hour Rhythms. J Endocr Soc 2018; 2:727-752. [PMID: 29978151 PMCID: PMC6025213 DOI: 10.1210/js.2018-00113] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/01/2018] [Indexed: 12/18/2022] Open
Abstract
"Musica universalis" is an ancient philosophical concept claiming the movements of celestial bodies follow mathematical equations and resonate to produce an inaudible harmony of music, and the harmonious sounds that humans make were an approximation of this larger harmony of the universe. Besides music, electromagnetic waves such as light and electric signals also are presented as harmonic resonances. Despite the seemingly universal theme of harmonic resonance in various disciplines, it was not until recently that the same harmonic resonance was discovered also to exist in biological systems. Contrary to traditional belief that a biological system is either at stead-state or cycles with a single frequency, it is now appreciated that most biological systems have no homeostatic "set point," but rather oscillate as composite rhythms consisting of superimposed oscillations. These oscillations often cycle at different harmonics of the circadian rhythm, and among these, the ~12-hour oscillation is most prevalent. In this review, we focus on these 12-hour oscillations, with special attention to their evolutionary origin, regulation, and functions in mammals, as well as their relationship to the circadian rhythm. We further discuss the potential roles of the 12-hour clock in regulating hepatic steatosis, aging, and the possibility of 12-hour clock-based chronotherapy. Finally, we posit that biological rhythms are also musica universalis: whereas the circadian rhythm is synchronized to the 24-hour light/dark cycle coinciding with the Earth's rotation, the mammalian 12-hour clock may have evolved from the circatidal clock, which is entrained by the 12-hour tidal cues orchestrated by the moon.
Collapse
Affiliation(s)
- Bokai Zhu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Clifford C Dacso
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Bert W O’Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|