1
|
Xin M, Bi F, Wang C, Huang Y, Xu Y, Liang S, Cai T, Xu X, Dong L, Li T, Wang X, Fang Y, Xu Z, Wang M, Song X, Zheng Y, Sun W, Li L. The circadian rhythm: A new target of natural products that can protect against diseases of the metabolic system, cardiovascular system, and nervous system. J Adv Res 2025; 69:495-514. [PMID: 38631431 PMCID: PMC11954810 DOI: 10.1016/j.jare.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/17/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND The treatment of metabolic system, cardiovascular system, and nervous system diseases remains to be explored. In the internal environment of organisms, the metabolism of substances such as carbohydrates, lipids and proteins (including biohormones and enzymes) exhibit a certain circadian rhythm to maintain the energy supply and material cycle needed for the normal activities of organisms. As a key factor for the health of organisms, the circadian rhythm can be disrupted by pathological conditions, and this disruption accelerates the progression of diseases and results in a vicious cycle. The current treatments targeting the circadian rhythm for the treatment of metabolic system, cardiovascular system, and nervous system diseases have certain limitations, and the identification of safer and more effective circadian rhythm regulators is needed. AIM OF THE REVIEW To systematically assess the possibility of using the biological clock as a natural product target for disease intervention, this work reviews a range of evidence on the potential effectiveness of natural products targeting the circadian rhythm to protect against diseases of the metabolic system, cardiovascular system, and nervous system. This manuscript focuses on how natural products restore normal function by affecting the amplitude of the expression of circadian factors, sleep/wake cycles and the structure of the gut microbiota. KEY SCIENTIFIC CONCEPTS OF THE REVIEW This work proposes that the circadian rhythm, which is regulated by the amplitude of the expression of circadian rhythm-related factors and the sleep/wake cycle, is crucial for diseases of the metabolic system, cardiovascular system and nervous system and is a new target for slowing the progression of diseases through the use of natural products. This manuscript provides a reference for the molecular modeling of natural products that target the circadian rhythm and provides a new perspective for the time-targeted action of drugs.
Collapse
Affiliation(s)
- Meiling Xin
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China
| | - Fangjie Bi
- Heart Center, Zibo Central Hospital, Zibo, Shandong 255000, China
| | - Chao Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Yuhong Huang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Yujia Xu
- Department of Echocardiography, Zibo Central Hospital, Zibo, Shandong 255000, China
| | - Shufei Liang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Tianqi Cai
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Xiaoxue Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Ling Dong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Tianxing Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China; Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xueke Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China; The Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yini Fang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China; Basic Medical College, Zhejiang Chinese Medical University, Hangzhou 310053 China
| | - Zhengbao Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Meng Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Xinhua Song
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China.
| | - Yanfei Zheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China.
| | - Wenlong Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China.
| | - Lingru Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China.
| |
Collapse
|
2
|
Zou Y, Mao Z, Zhao C, Fan Z, Yang H, Xia A, Zhang X. Fish skin dressing for wound regeneration: A bioactive component review of omega-3 PUFAs, collagen and ECM. Int J Biol Macromol 2024; 283:137831. [PMID: 39566781 DOI: 10.1016/j.ijbiomac.2024.137831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/07/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Wound healing is a complex biological process that involves several stages, including hemostasis, inflammation, proliferation, and remodeling. Traditional wound dressings, to a certain extent, can provide wound protection but are limited in promoting wound healing, reducing scar formation, and preventing bacterial infections. In recent years, with the advancement of research in biomedical materials, fish skin dressings have become a research hotspot in the field of tissue regeneration due to their remarkable biocompatibility and precious bioactive components. However, current research on fish skin dressings remains focused on clinical treatment. To further deepen and promote the development of fish skin dressings, we put emphasis on discussing main bioactive components in fish skin. This article has reviewed the advantages of fish skin dressings in wound regeneration, especially the promotive effects of its main bioactive components-Omega-3 polyunsaturated fatty acids, collagen derived from fish skin, and the extracellular matrix of fish skin-on the wound healing process. Besides, by critically summarizing the research issues of each bioactive component, this review assists researchers in better defining the next direction of research, thereby designing the optimal dressing for different types of wounds.
Collapse
Affiliation(s)
- Ying Zou
- Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning, China
| | - Zongtao Mao
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Chenyu Zhao
- Department of China Medical University-The Queen's University of Belfast Joint College, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Zhonghao Fan
- Department of China Medical University-The Queen's University of Belfast Joint College, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, Shenyang 110122, China
| | - Anqi Xia
- School of Intelligent Medicine, China Medical University, Shenyang 110122, China
| | - Xudong Zhang
- Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning, China.
| |
Collapse
|
3
|
Li Y, Lu Y, Zhao Y, Zhang N, Zhang Y, Fu Y. Deciphering the Wound-Healing Potential of Collagen Peptides and the Molecular Mechanisms: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26007-26026. [PMID: 39405278 DOI: 10.1021/acs.jafc.4c02960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Collagen peptides have been reported to display various bioactivities and high bioavailability. Recently, increasing evidence has revealed the excellent wound-healing activity of collagen peptides, but their molecular mechanisms remain incompletely elucidated. This review systematically evaluates the therapeutic efficacy of collagen peptides from diverse sources based on various wound models. Furthermore, the structure-activity relationships of collagen peptides and wound-healing mechanisms are discussed and summarized. Characterized by their low molecular weight and abundant imino acids, collagen peptides facilitate efficient absorption by the body to deliver nutrition throughout the wound-healing process. The specific mechanism of collagen peptide for wound healing is mainly through up-regulation of related cytokines and participation in the activation of relevant signaling pathways, such as TGF-β/Smad and PI3K/Akt/mTOR, which can promote cell proliferation, angiogenesis, collagen synthesis and deposition, re-epithelialization, and ECM remodeling, ultimately achieving the effect of wound healing. Collagen peptides can offer a potential therapeutic approach for treating incision and excision wounds, mucosal injuries, burn wounds, and pressure ulcers, improving the efficiency of wound healing by about 10%-30%. The present review contributes to understanding of the wound-healing potential of collagen peptides and the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Yunying Li
- College of Food Science, Southwest University, Chongqing 400715, China
- Westa College, Southwest University, Chongqing 400715, China
| | - Yujia Lu
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, 677 Huntington Ave, Boston, Massachusetts 02115, United States
| | - Yuchen Zhao
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, 677 Huntington Ave, Boston, Massachusetts 02115, United States
| | - Na Zhang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| |
Collapse
|
4
|
Guo J, Qin X, Wang Y, Li X, Wang X, Zhu H, Chen S, Zhao J, Xiao K, Liu Y. Necroptosis Mediates Muscle Protein Degradation in a Cachexia Model of Weanling Pig with Lipopolysaccharide Challenge. Int J Mol Sci 2023; 24:10923. [PMID: 37446099 DOI: 10.3390/ijms241310923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Necroptosis, an actively researched form of programmed cell death closely related to the inflammatory response, is important in a variety of disorders and diseases. However, the relationship between necroptosis and muscle protein degradation in cachexia is rarely reported. This study aimed to elucidate whether necroptosis played a crucial role in muscle protein degradation in a cachexia model of weaned piglets induced by lipopolysaccharide (LPS). In Experiment 1, the piglets were intraperitoneally injected with LPS to construct the cachexia model, and sacrificed at different time points after LPS injection (1, 2, 4, 8, 12, and 24 h). In Experiment 2, necrostatin-1 (Nec-1), a necroptosis blocker, was pretreated in piglets before the injection of LPS to inhibit the occurrence of necroptosis. Blood and longissimus dorsi muscle samples were collected for further analysis. In the piglet model with LPS-induced cachexia, the morphological and ultrastructural damage, and the release of pro-inflammatory cytokines including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 were dynamically elicited in longissimus dorsi muscle. Further, protein concentration and protein/DNA ratio were dynamically decreased, and protein degradation signaling pathway, containing serine/threonine kinase (Akt), Forkhead box O (FOXO), muscular atrophy F-box (MAFbx), and muscle ring finger protein 1 (MuRF1), was dynamically activated in piglets after LPS challenge. Moreover, mRNA and protein expression of necroptosis signals including receptor-interacting protein kinase (RIP)1, RIP3, and mixed lineage kinase domain-like pseudokinase (MLKL), were time-independently upregulated. Subsequently, when Nec-1 was used to inhibit necroptosis, the morphological damage, the increase in expression of pro-inflammatory cytokines, the reduction in protein content and protein/DNA ratio, and the activation of the protein degradation signaling pathway were alleviated. These results provide the first evidence that necroptosis mediates muscle protein degradation in cachexia by LPS challenge.
Collapse
Affiliation(s)
- Junjie Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xu Qin
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yang Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiangen Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiuying Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Huiling Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shaokui Chen
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA
| | - Kan Xiao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, No. 68 Xuefu South Rd., Wuhan 430023, China
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, No. 68 Xuefu South Rd., Wuhan 430023, China
| |
Collapse
|
5
|
Yang LN, Xu S, Tang M, Zhou X, Liao Y, Nüssler AK, Liu L, Yang W. The circadian rhythm gene Bmal1 ameliorates acute deoxynivalenol-induced liver damage. Arch Toxicol 2023; 97:787-804. [PMID: 36602574 DOI: 10.1007/s00204-022-03431-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023]
Abstract
Deoxynivalenol (DON) is widely emerging in various grain crops, milk, and wine products, which can trigger different toxic effects on humans and animals by inhalation or ingestion. It also imposes a considerable financial loss on the agriculture and food industry each year. Previous studies have reported acute and chronic toxicity of DON in liver, and liver is not only the main detoxification organ for DON but also the circadian clock oscillator directly or indirectly regulates critical physiologically hepatic functions under different physiological and pathological conditions. However, researches on the association of circadian rhythm in DON-induced liver damage are limited. In the present study, mice were divided into four groups (CON, DON, Bmal1OE, and Bmal1OE + DON) and AAV8 was used to activate (Bmal1) expression in liver. Then mice were gavaged with 5 mg/kg bw/day DON or saline at different time points (ZT24 = 0, 4, 8, 12, 16, and 20 h) in 1 day and were sacrificed 30 min after oral gavage. The inflammatory cytokines, signal transducers, and activators of transcription Janus kinase/signal transducers and activator of transcription 3 (JAKs/STAT3) pathway and bile acids levels were detected by enzyme-linked immunosorbent assay (ELISA), western blotting, and target metabolomics, respectively. The DON group showed significantly elevated interleukin-1β (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor-α (TNF-α) levels (P < 0.05 for both) and impaired liver function with rhythm disturbances compared to the CON and Bmal1OE groups. At the molecular level, expressions of some circadian clock proteins were significantly downregulated (P < 0.05 for both) and JAKs/STAT3 pathway was activated during DON exposure, accompanied by indicated circadian rhythm disturbance and inflammatory damage. Importantly, Bmal1 overexpression attenuated DON-induced liver damage, while related hepatic bile acids such as cholic acid (CA) showed a decreasing trend in the DON group compared with the CON group. Our study demonstrates a novel finding that Bmal1 plays a critical role in attenuating liver damage by inhibiting inflammatory levels and maintaining bile acids levels under the DON condition. Therefore, Bmal1 may also be a potential molecular target for reducing the hepatotoxic effects of DON in future studies.
Collapse
Affiliation(s)
- Liu-Nan Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Shiyin Xu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Mingmeng Tang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Xiaolei Zhou
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Yuxiao Liao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Andreas K Nüssler
- Department of Traumatology, BG Trauma Center, University of Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Germany
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China.
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China.
| |
Collapse
|
6
|
Thiamine pretreatment improves endotoxemia-related liver injury and cholestatic complications by regulating galactose metabolism and inhibiting macrophage activation. Int Immunopharmacol 2022; 108:108892. [DOI: 10.1016/j.intimp.2022.108892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 11/05/2022]
|
7
|
Lawther AJ, Phillips AJK, Chung NC, Chang A, Ziegler AI, Debs S, Sloan EK, Walker AK. Disrupting circadian rhythms promotes cancer-induced inflammation in mice. Brain Behav Immun Health 2022; 21:100428. [PMID: 35199050 PMCID: PMC8851215 DOI: 10.1016/j.bbih.2022.100428] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 02/09/2023] Open
Abstract
Disruption of circadian rhythms occurs in rotating shift-work, jetlag, and in individuals with irregular sleep schedules. Circadian disruption is known to alter inflammatory responses and impair immune function. However, there is limited understanding of how circadian disruption modulates cancer-induced inflammation. Inflammation is a hallmark of cancer and is linked to worse prognosis and impaired brain function in cancer patients. Here, we investigated the effect of circadian disruption on cancer-induced inflammation in an orthotopic breast cancer model. Using a validated chronic jetlag protocol that advances the light-cycle by 8 h every 2 days to disrupt circadian rhythms, we found that circadian disruption alters cancer-induced inflammation in a tissue-specific manner, increasing inflammation in the body and brain while decreasing inflammation within the tumor tissue. Circadian disruption did not affect inflammation in mice without tumors, suggesting that the impact of circadian disruption may be particularly detrimental in the context of underlying inflammatory conditions, such as cancer. Importantly, circadian disruption did not affect tumor burden, suggesting that increased inflammation was not a result of increased cancer progression. Overall, these findings identify the importance of healthy circadian rhythms for limiting cancer-induced inflammation. Circadian disruption enhances cancer-induced inflammation in the body and brain. The profile of inflammatory cytokines altered by circadian disruption is tissue specific. Changes in inflammatory profiles by circadian disruption are not due to enhanced tumor burden.
Collapse
Affiliation(s)
- Adam J Lawther
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, New South Wales, 2031, Australia
| | - Andrew J K Phillips
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Ni-Chun Chung
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Aeson Chang
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Alexandra I Ziegler
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Sophie Debs
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, New South Wales, 2031, Australia
| | - Erica K Sloan
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,Division of Cancer Surgery, Peter MacCallum Cancer Centre, East Melbourne, VIC, 3002, Australia
| | - Adam K Walker
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, New South Wales, 2031, Australia.,Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,School of Psychiatry, University of New South Wales, Kensington, NSW, 2033, Australia
| |
Collapse
|
8
|
Barahona RA, Morabito S, Swarup V, Green KN. Cortical diurnal rhythms remain intact with microglial depletion. Sci Rep 2022; 12:114. [PMID: 34997092 PMCID: PMC8742049 DOI: 10.1038/s41598-021-04079-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/01/2021] [Indexed: 12/15/2022] Open
Abstract
Microglia are subject to change in tandem with the endogenously generated biological oscillations known as our circadian rhythm. Studies have shown microglia harbor an intrinsic molecular clock which regulates diurnal changes in morphology and influences inflammatory responses. In the adult brain, microglia play an important role in the regulation of condensed extracellular matrix structures called perineuronal nets (PNNs), and it has been suggested that PNNs are also regulated in a circadian and diurnal manner. We sought to determine whether microglia mediate the diurnal regulation of PNNs via CSF1R inhibitor dependent microglial depletion in C57BL/6J mice, and how the absence of microglia might affect cortical diurnal gene expression rhythms. While we observe diurnal differences in microglial morphology, where microglia are most ramified at the onset of the dark phase, we do not find diurnal differences in PNN intensity. However, PNN intensity increases across many brain regions in the absence of microglia, supporting a role for microglia in the regulation of PNNs. Here, we also show that cortical diurnal gene expression rhythms are intact, with no cycling gene changes without microglia. These findings demonstrate a role for microglia in the maintenance of PNNs, but not in the maintenance of diurnal rhythms.
Collapse
Affiliation(s)
- Rocio A Barahona
- Department of Neurobiology and Behavior, University of California, 3208 Biological Sciences III, Irvine, CA, 92697, USA
| | - Samuel Morabito
- Mathematical, Computational and Systems Biology (MCSB) Program, University of California, Irvine, CA, USA
| | - Vivek Swarup
- Department of Neurobiology and Behavior, University of California, 3208 Biological Sciences III, Irvine, CA, 92697, USA
| | - Kim N Green
- Department of Neurobiology and Behavior, University of California, 3208 Biological Sciences III, Irvine, CA, 92697, USA.
| |
Collapse
|
9
|
Rui F, Jiawei K, Yuntao H, Xinran L, Jiani H, Ruixue M, Rui L, Na Z, Meihong X, Yong L. Undenatured type II collagen prevents and treats osteoarthritis and motor function degradation in T2DM patients and db/db mice. Food Funct 2021; 12:4373-4391. [PMID: 33890588 DOI: 10.1039/d0fo03011b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Osteoarthritis (OA) has been scarcely researched among patients with diabetes mellitus. This study aims to confirm the preventive and therapeutic effects of undenatured type II collagen (UC II) on OA in aging db/db mice and in patients with T2DM. Firstly, aging db/db mice were randomly assigned to three groups: the UC II intervention (UC II) group, old model (OM) group and positive control group. Meanwhile db/m mice and young db/db mice were used as the normal control and young control groups, respectively. Secondly, fifty-five T2DM patients diagnosed with knee OA were randomly assigned to two groups: UC-II and placebo control groups. After a three-month intervention in both mice and T2DM patients, the subjects' gait and physical activities were assessed and the serum biomarkers including inflammatory cytokines, oxidative stress factors and matrix metalloproteinases (MMPs) were measured. Compared with the OM group mice, those in the UC II group showed a significantly greater superiority in terms of motor functions including the movement trajectories area (163.25 ± 20.3 vs. 78.52 ± 20.14 cm2), the tremor index (0.42 vs. 1.23), standing time (left hind: 0.089 ± 0.03 vs. 0.136 ± 0.04 s), swing (right front: 0.12 ± 0.02 vs. 0.216 ± 0.02 s), stride length (right hind: 7.2 ± 0.9 vs. 5.7 ± 1.1 cm), step cycle (right hind: 0.252 ± 0.05 vs. 0.478 ± 0.11 s) and cadence (14.12 ± 2.7 vs. 7.35 ± 4.4 steps per s). In addition, the levels of IL-4, IL-10, CTX- II and TGF-β in the UC II group were 1.74, 2.23, 1.67 and 1.84 times higher than those in the OM group, respectively, while the levels of MMP-3 and MMP-13 in the UC II group were half those in the OM group. Correspondingly, UC II intervention significantly decreased the scores of pain, stiffness and physical function (p < 0.05), whereas the 6 MWT and total MET distances in the UC II group increased remarkably (p < 0.05). After a three-month period of intervention, the varus angle significantly decreased from 4.6 ± 2.0° to 3.0 ± 1.4° and the knee flexion range obviously increased from 57.9 ± 14.0° to 66.9 ± 10.4°. Importantly, the declining trend in the levels of hs-CRP and MDA and the incremental trend in the SOD level were consistent in the db/db mice and OA patients following UC II administration.
Collapse
Affiliation(s)
- Fan Rui
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
The circadian clock and inflammation: A new insight. Clin Chim Acta 2020; 512:12-17. [PMID: 33242468 DOI: 10.1016/j.cca.2020.11.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022]
Abstract
The circadian clock is a complex cellular mechanism that controls a series of physiological processes, including inflammation. It can directly interact physically with the components of the key inflammatory pathway. Similarly, inflammation can also lead to circadian rhythm disorders, which may further amplify the inflammatory response and aggravate tissue damage. This review offers a structured overview that focusses on the core proteins of the circadian clock and their interactions with inflammatory players, and provides a potential mechanism for the pathological rhythms observed under inflammatory conditions.
Collapse
|
11
|
Xiong X, Liang J, Xu Y, Liu J, Liu Y. The wound healing effects of the Tilapia collagen peptide mixture TY001 in streptozotocin diabetic mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:2848-2858. [PMID: 31646634 DOI: 10.1002/jsfa.10104] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 09/12/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The Tilapia collagen peptides mixture TY001 is effective in promoting wound healing in acetic acid-induced skin lesions in zebrafish and in protecting against lipopolysaccharide-induced inflammation and disruption of glucose metabolism in mice. The present study aimed to further examine the wound healing effects of TY001 in streptozotocin-induced diabetic mice. METHODS Full-thickness skin excision wounds were created with 8-mm biopsy punches and TY001 was administered via drinking water (15, 30 and 45 g L-1 in emulsion) for 15 days. RESULTS Wound healing was delayed in diabetic mice but was promoted by TY001 after 5, 10 or 15 days of treatment. Collagen deposition and tissue hydroxyproline contents were increased by TY001. The expressions of insulin growth factor-1, basic fibroblast growth factor, platelet-derived growth factor, transforming growth facts β1, vascular endothelial growth factor and epidermal growth factor were increased by TY001, as indicated by immunobiochemistry and a quantitative polymerase chain reaction. Diabetes-associated serum pro-inflammatory cytokines interleukin (IL)-1β and IL-8 were decreased, whereas anti-inflammatory IL-10 and nitric oxide were increased by TY001, along with increased tissue antioxidant superoxide dismutase and catalase activities. Diabetes-reduced serum protein levels were also recovered by TY001 CONCLUSION: Taken together, Tilapia collagen peptide mixture TY001 was effective with respect to enhancing diabetes-associated wound healing delay, probably via increasing growth factors and collagen deposition in the wound, attenuating diabetes-induced prolonged inflammation, increasing tissue antioxidants and providing nutritional support in diabetic mice. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoyun Xiong
- Yabao Pharmaceutical Group Co., Ltd, Fenglingdu, China
| | - Jun Liang
- Yabao Pharmaceutical Group Co., Ltd, Fenglingdu, China
| | - Yiqiao Xu
- Hunter Biotechnology, Inc., Hangzhou, China
| | - Jie Liu
- Zunyi Medical University, Zunyi, China
| | - Yi Liu
- The Center for Disease Control and Prevention of Shaanxi Province, Xi'an, China
| |
Collapse
|