1
|
Mao QY, Ran H, Hu QY, He SY, Lu Y, Li H, Chai YM, Chu ZY, Qian X, Ding W, Niu YX, Zhang HM, Li XY, Su Q. Impaired efferocytosis by monocytes and monocyte-derived macrophages in patients with poorly controlled type 2 diabetes. World J Diabetes 2025; 16:101473. [DOI: 10.4239/wjd.v16.i5.101473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/08/2025] [Accepted: 02/21/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Deficient efferocytosis (i.e., phagocytic clearance of apoptotic cells) by macrophages has been frequently reported in experimental models of type 2 diabetes (T2D).
AIM To translate these findings to humans by testing whether the efferocytosis capacity of blood monocytes and monocyte-derived macrophages is impaired in T2D patients.
METHODS Overall, 30 patients with poorly controlled T2D [glycosylated hemoglobin (HbA1c) ≥ 8.0%] and 30 age- and sex-matched control subjects were enrolled in the study. The efferocytosis capacities of peripheral blood monocytes and monocyte-derived macrophages were assessed by flow cytometry and immunostaining. Macrophage membrane CD14 expression was examined by flow cytometry. Metabolic factors such as 25(OH)D and immune factors such as interleukin-1β were also measured.
RESULTS The mean monocyte efferocytosis index in the diabetes group was significantly lower than that in the control group. Notably, efferocytosis remained impaired after monocytes differentiated into macrophages. Additionally, the percentages of classical monocytes (CD14++CD16- monocytes) and CD14+ macrophages were significantly lower in the diabetes group. Multivariate linear regression analysis in diabetes patients demonstrated that the monocyte efferocytosis index was independently associated with the HbA1c level, and that the macrophage efferocytosis index was significantly associated with the percentage of CD14+ macrophages.
CONCLUSION Impaired efferocytosis was observed in T2D patients, with poor glycemic control affecting both blood monocytes and monocyte-derived macrophages. The efferocytosis index was negatively associated with metrics of glycemic control, and glucotoxicity may impact efferocytosis through reducing CD14 expression on both monocytes and macrophages.
Collapse
Affiliation(s)
- Qian-Yun Mao
- Department of Endocrinology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Hui Ran
- Department of Endocrinology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Qiu-Yue Hu
- Department of Endocrinology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Sun-Yue He
- Department of Endocrinology and Metabolism, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 200240, Zhejiang Province, China
| | - Yao Lu
- Department of Endocrinology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Han Li
- Department of Endocrinology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Yi-Meng Chai
- Department of Endocrinology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Zhao-Yin Chu
- Department of Endocrinology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Xu Qian
- Department of Endocrinology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Wan Ding
- Department of Endocrinology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Yi-Xin Niu
- Department of Endocrinology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Hong-Mei Zhang
- Department of Endocrinology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Xiao-Yong Li
- Department of Endocrinology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Qing Su
- Department of Endocrinology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| |
Collapse
|
2
|
AbdElneam AI, Al-Dhubaibi MS, Bahaj SS, Mohammed GF, Atef LM. Exploring the effect of hsa-miR-19b-3p on IL-1R1 expression and serum levels in alopecia areata. Arch Dermatol Res 2025; 317:284. [PMID: 39825934 DOI: 10.1007/s00403-024-03788-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/23/2024] [Accepted: 12/29/2024] [Indexed: 01/20/2025]
Abstract
Alopecia areata (AA) is an autoimmune condition marked by hair loss, linked to inflammatory processes involving the interleukin-1 receptor type 1 (IL-1R1) pathway. This study aims to explore the relationship between IL-1R1 gene expression, serum IL-1R1 levels, and hsa-miR-19b-3p in relation to AA severity. Using a case-control design, we assessed 100 AA patients and 100 healthy controls, measuring serum IL-1R1 through enzyme-linked immunosorbent assay (ELISA) and analyzing IL-1R1 gene and hsa-miR-19b-3p expression levels via quantitative real-time PCR (qRT-PCR). Bioinformatic analysis predicted a binding site for hsa-miR-19b-3p on the IL-1R1 gene, suggesting a regulatory role for this miRNA in AA pathology. Demonstrated significantly higher serum IL-1R1, IL-1R1 gene expression, and hsa-miR-19b-3p levels in AA patients compared to controls. Within the AA cohort, severe cases showed the highest levels, with notable correlations between serum IL-1R1, IL-1R1 gene expression, and hsa-miR-19b-3p. Receiver Operating Characteristic (ROC) curve analysis revealed robust diagnostic potential, with area under the curve (AUC) values of 0.71, 0.73, and 0.76 for serum IL-1R1, hsa-miR-19b-3p, and IL-1R1 gene expression, respectively. Elevated IL-1R1 and hsa-miR-19b-3p levels are associated with AA and its severity, suggesting these markers have potential as diagnostic and prognostic indicators. These findings enhance the understanding of IL-1R1's role in AA and highlight potential molecular targets for future therapeutic approaches.
Collapse
Affiliation(s)
- Ahmed Ibrahim AbdElneam
- Department of Clinical Biochemistry, Department of Basic Medical Sciences, College of Medicine, Shaqra University, Dawadmi, Saudi Arabia
- Molecular Genetics and Enzymology Department, National Research Center, Human Genetics and Genome Research Institute, 33 El Bohouth St. (Former El Tahrir St.), Dokki 12622, Cairo, Egypt
| | | | - Saleh Salem Bahaj
- Department of Microbiology and Immunology, Faculty of Medicine and Health Sciences, Sana'a University, Sana'a, Yemen
| | - Ghada Farouk Mohammed
- Department of Dermatology, Venereology, and Sexology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| | - Lina Mohammed Atef
- Department of Dermatology, Venereology, and Sexology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
3
|
Kuchmerovska T, Tykhonenko T, Yanitska L, Savosko S, Pryvrotska I. Nicotinamide and Nicotinoyl-Gamma-Aminobutyric Acid as Neuroprotective Agents Against Type 1 Diabetes-Induced Nervous System Impairments in Rats. Neurochem Res 2024; 50:1. [PMID: 39527359 DOI: 10.1007/s11064-024-04257-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/05/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024]
Abstract
Diabetes is a multifunctional chronic disease that affects both the central and/or peripheral nervous systems. This study assessed whether nicotinamide (NAm) or conjugate of nicotinic acid with gamma-aminobutyric acid (N-GABA) could be potential neuroprotective agents against type 1 diabetes (T1D)-induced nervous system impairments in rats. After six weeks of T1D, induced by streptozotocin, nonlinear male Wistar rats were treated for two weeks with NAm (100 mg/kg, i. p.) or N-GABA (55 mg/kg, i. p.). Expression levels of myelin basic protein (MBP) were analyzed by immunoblotting. Polyol pathway parameters of the sciatic nerves were assessed spectrophotometrically, and their structure was examined histologically. NAm had no effect on blood glucose or body weight in T1D, while N-GABA reduced glucose by 1.5-fold. N-GABA also increased MBP expression by 1.48-fold, enhancing neuronal myelination, while NAm showed no such effect. Activation of the polyol pathway was observed in the T1D sciatic nerves. Both compounds decreased sorbitol content and aldose reductase activity, thereby alleviating changes similar to primary degeneration in the sciatic nerves and preventing peripheral neuropathy development. These results demonstrate that NAm and, more notably, N-GABA may exert neuroprotective effects against T1D-induced nervous system impairments by increasing MBP expression levels, improving myelination processes in the brain, inhibiting the polyol pathway, and partially restoring morphometric parameters in the sciatic nerves. This suggests their potential therapeutic efficacy as promising agents for the prevention of T1D-induced nervous system alterations.
Collapse
Affiliation(s)
- Tamara Kuchmerovska
- Department of Vitamin and Coenzyme Biochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine.
| | - Tetiana Tykhonenko
- Department of Vitamin and Coenzyme Biochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Lesya Yanitska
- Department of Medical Biochemistry and Molecular Biology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Serhiy Savosko
- Department of Histology and Embryology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Iryna Pryvrotska
- I. Horbachevsky Ternopil National Medical University, Ministry of Health of Ukraine, Ternopil, Ukraine
| |
Collapse
|
4
|
Yaribeygi H, Maleki M, Atkin SL, Kesharwani P, Jamialahmadi T, Sahebkar A. Anti‐inflammatory effects of sodium‐glucose cotransporter‐2 inhibitors in COVID‐19. IUBMB Life 2023. [DOI: 10.1002/iub.2719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/13/2023] [Indexed: 03/29/2023]
|
5
|
Maqsood M, Sharif S, Naz S, Farasat T, Manzoor F, Cheema M, Saqib M. Expression of pro-inflammatory cytokines (IL-6 & IL-18) exacerbate the risk of diabetic nephropathy in the Pakistani population. Mol Biol Rep 2023; 50:3249-3257. [PMID: 36708448 DOI: 10.1007/s11033-023-08249-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/04/2023] [Indexed: 01/29/2023]
Abstract
BACKGROUND Diabetic nephropathy (DN) is a micro-chronic diabetic consequence induced by metabolic and hemodynamic abnormalities. Free radicals react with other critical cellular components, causing progression of aberrant renal function. OBJECTIVE This case control study was aimed to determine the role of IL-6 and IL-18 in diabetic nephropathy in Pakistani population. METHODS AND MATERIALS The study's subjects (n = 180 from Lahore, Gujranwala, and Karachi) were divided into control, diabetes mellitus (DM) and diabetic nephropathy (DN) groups. The serum concentration of IL-6 & IL-18 were determined by enzyme-linked immunosorbent assay (ELISA). The expression analysis of IL-6 & IL-18 were performed by Real Time PCR. RESULTS The significant increase in serum levels of IL-6 were observed among the control, DM and DN groups (15.3 ± 24.1 pg/ml, 34.7 ± 24.0 pg/ml, 52.6 ± 33.2 pg/ml) whereas no significant difference was observed in serum levels of IL-18. The expression analysis of IL-6 was increased by more than forty three fold in DN group (n-fold = ~43.6) as compared to DM & control whereas the expression profile of IL-18 decreased in DN group (n-fold = ~0.89). In DN group the correlation analysis revealed direct association of GFR with serum IL-6 (r = 0.1114) & inverse relationship with serum IL-18 (r = - 0.097). In multiple regression analysis using GFR as the dependent variable, BMI and expression of IL-18 were determinants in DM subjects, but only uric acid in DN subjects. CONCLUSION The present study implicates that increased expression of IL-6 and decreased of IL-18 was associated with development of DN in Pakistani population.
Collapse
Affiliation(s)
- Maha Maqsood
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Saima Sharif
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan.
| | - Shagufta Naz
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Tasnim Farasat
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Farkhanda Manzoor
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Maqsood Cheema
- DHQ Teaching Hospital Gujranwala, Civil Lines, Gujranwala, Pakistan
| | | |
Collapse
|
6
|
Zamani M, Zarei M, Nikbaf-Shandiz M, Hosseini S, Shiraseb F, Asbaghi O. The effects of berberine supplementation on cardiovascular risk factors in adults: A systematic review and dose-response meta-analysis. Front Nutr 2022; 9:1013055. [PMID: 36313096 PMCID: PMC9614282 DOI: 10.3389/fnut.2022.1013055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
Cardiovascular disease (CVD) is a major concern today. Herbal medicine is one helping way to control CVD risks. One conclusive of herbal medicine is Berberine (BBR) and converse about it still exists, to clarify this issue, this meta-analysis was performed. PubMed/Medline, Scopus, and Web of Science were searched for RCTs in adults on the effect of BBR supplementation on CVD risk factors up to July 2022. The pooled results showed BBR significantly reduced triglyceride (WMD = -23.70 mg/dl; 95%CI -30.16, -17.25; P < 0.001), total cholesterol (WMD = -20.64 mg/dl; 95%CI -23.65, -17.63; P < 0.001), low-density lipoprotein WMD = -9.63 mg/dl; 95%CI, -13.87, -5.39; P < 0.001), fasting blood glucose (FBG) (WMD = -7.74 mg/dl; 95%CI -10.79, -4.70; P < 0.001), insulin (WMD = -3.27 mg/dl; 95%CI -4.46,-2.07; P < 0.001), HbA1c (WMD = -0.45%; 95%CI -0.68, -0.23; P < 0.001), HOMA-IR (WMD = -1.04; 95%CI -1.55, -0.52; P < 0.001), systolic blood pressure (WMD = -5.46 mmHg; 95%CI -8.17, -2.76; P < 0.001), weight (WMD = -0.84; 95%CI -1.34,-0.34; P < 0.001), body mass index (WMD = -0.25 kg/m2; 95%CI -0.46, -0.04; P = 0.020), while increased high-density lipoprotein (HDL) (WMD = 1.37 mg/dl; 95%CI 0.41,2.23; P = 0.005). The optimal dose of BBR was 1 g/day for TG, TC, and weight, 1.8 g/day for insulin and HOMA-IR, and 5 g/day for HDL. FBG's most efficient time frame was 40 weeks from the beginning of supplementation, whereas DBP and waist circumference was 50 weeks. In conclusion, the lipid profile, FBG balance, obesity parameters, and SBP were improved with BBR supplementation. Systematic review registration CRD42022347004.
Collapse
Affiliation(s)
- Mohammad Zamani
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahtab Zarei
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | | | - Shabnam Hosseini
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farideh Shiraseb
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Vulichi SR, Runthala A, Begari N, Rupak K, Chunduri VR, Kapur S, Chippada AR, Sistla DSM. Type-2 diabetes mellitus-associated cancer risk: In pursuit of understanding the possible link. Diabetes Metab Syndr 2022; 16:102591. [PMID: 35995030 DOI: 10.1016/j.dsx.2022.102591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND AIM The insulin resistance-mediated abnormal gluconeogenesis when exceeds a given threshold culminates in type 2 diabetes mellitus (T2DM). This induces severe cellular oxidative stress that may eventually facilitate typical neoplastic transformations. This narrative review aims to portray some of the plausible key mechanistic links bridging T2DM and specific cancers. METHODS A thorough literature search was conducted in the PubMedCentral database to retrieve information from various reputed biomedical reports/articles published from the year 2000. The information regarding the key biochemical signaling pathways mediating the carcinogenic transformation, especially in T2DM patients, was extensively excavated to systematically compile and present a narrative review. RESULTS T2DM-associated insulin resistance is known to negatively influence certain crucial genetic and metabolic components (such as insulin/IGFs, PI-3K/Akt, AMPK, and AGEs/RAGE) that may eventually lead to neoplastic transformation. In particular, the risk of developing cancers like pancreatic, colorectal, breast, liver, endometrial, and bladder seems to be more significant in T2DM patients. CONCLUSION Despite the fact that several studies have suggested a possible correlation between T2DM and cancer mortality, a more detailed research at both pre-clinical and clinical levels is still required so as to fully understand the intricate relationship and make a precise conclusion.
Collapse
Affiliation(s)
- Srinivasa Rao Vulichi
- S V University College of Pharmaceutical Sciences, S V University, Tirupati, India; Department of Biological Sciences, BITS-Pilani, Hyderabad Campus, Hyderabad, India.
| | - Ashish Runthala
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vijayawada, India.
| | | | | | | | - Suman Kapur
- Department of Biological Sciences, BITS-Pilani, Hyderabad Campus, Hyderabad, India.
| | - Appa Rao Chippada
- S V University College of Pharmaceutical Sciences, S V University, Tirupati, India; Department of Biochemistry, S V University, Tirupati, India
| | | |
Collapse
|
8
|
Zatterale F, Raciti GA, Prevenzano I, Leone A, Campitelli M, De Rosa V, Beguinot F, Parrillo L. Epigenetic Reprogramming of the Inflammatory Response in Obesity and Type 2 Diabetes. Biomolecules 2022; 12:biom12070982. [PMID: 35883538 PMCID: PMC9313117 DOI: 10.3390/biom12070982] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
For the past several decades, the prevalence of obesity and type 2 diabetes (T2D) has continued to rise on a global level. The risk contributing to this pandemic implicates both genetic and environmental factors, which are functionally integrated by epigenetic mechanisms. While these conditions are accompanied by major abnormalities in fuel metabolism, evidence indicates that altered immune cell functions also play an important role in shaping of obesity and T2D phenotypes. Interestingly, these events have been shown to be determined by epigenetic mechanisms. Consistently, recent epigenome-wide association studies have demonstrated that immune cells from obese and T2D individuals feature specific epigenetic profiles when compared to those from healthy subjects. In this work, we have reviewed recent literature reporting epigenetic changes affecting the immune cell phenotype and function in obesity and T2D. We will further discuss therapeutic strategies targeting epigenetic marks for treating obesity and T2D-associated inflammation.
Collapse
Affiliation(s)
- Federica Zatterale
- Department of Translational Medical Science, Federico II University of Naples, 80131 Naples, Italy; (F.Z.); (G.A.R.); (I.P.); (A.L.); (M.C.)
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy;
| | - Gregory Alexander Raciti
- Department of Translational Medical Science, Federico II University of Naples, 80131 Naples, Italy; (F.Z.); (G.A.R.); (I.P.); (A.L.); (M.C.)
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy;
| | - Immacolata Prevenzano
- Department of Translational Medical Science, Federico II University of Naples, 80131 Naples, Italy; (F.Z.); (G.A.R.); (I.P.); (A.L.); (M.C.)
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy;
| | - Alessia Leone
- Department of Translational Medical Science, Federico II University of Naples, 80131 Naples, Italy; (F.Z.); (G.A.R.); (I.P.); (A.L.); (M.C.)
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy;
| | - Michele Campitelli
- Department of Translational Medical Science, Federico II University of Naples, 80131 Naples, Italy; (F.Z.); (G.A.R.); (I.P.); (A.L.); (M.C.)
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy;
| | - Veronica De Rosa
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy;
| | - Francesco Beguinot
- Department of Translational Medical Science, Federico II University of Naples, 80131 Naples, Italy; (F.Z.); (G.A.R.); (I.P.); (A.L.); (M.C.)
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy;
- Correspondence: (F.B.); (L.P.); Tel.: +39-081-746-3248 (F.B.); +39-081-746-3045 (L.P.)
| | - Luca Parrillo
- Department of Translational Medical Science, Federico II University of Naples, 80131 Naples, Italy; (F.Z.); (G.A.R.); (I.P.); (A.L.); (M.C.)
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy;
- Correspondence: (F.B.); (L.P.); Tel.: +39-081-746-3248 (F.B.); +39-081-746-3045 (L.P.)
| |
Collapse
|
9
|
Molina-Ayala MA, Rodríguez-Amador V, Suárez-Sánchez R, León-Solís L, Gómez-Zamudio J, Mendoza-Zubieta V, Cruz M, Suárez-Sánchez F. Expression of obesity- and type-2 diabetes-associated genes in omental adipose tissue of individuals with obesity. Gene X 2022; 815:146181. [PMID: 34995730 DOI: 10.1016/j.gene.2021.146181] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/22/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022] Open
Abstract
AIMS Obesity and type 2 diabetes mellitus are two pathologies that share metabolic abnormalities in most of the cases; however, there are differences as well. Some studies have reported that approximately 30% of obese patients have normal glucose and lipid levels in blood despite an accumulation of abdominal adipose tissue. Here, we compare the gene expression in adipose tissue of several genes associated with obesity and/or diabetes between obese patients without T2D and obese patients with T2D. METHODS Omental adipose tissue was collected during the patients elective bariatric surgery. Gene expression was determined by real-time PCR. Phenotypic variables were correlated with gene expression and 2^-ΔΔCt relative expression analysis between groups was performed. RESULTS The stronger correlations in the obese without T2D or reference group was between ICAM1 and HbA1c; HP and TC and LDL while in the obese with diabetes or case group the correlation occurred between CSF1 and BMI. A correlation between HP and TC was found in the case group as well. The expression of VEGFA, CCND2, IL1R1 and PTEN was downregulated in the obese with T2D group. CONCLUSIONS This study identified genes whose expression is different between obese subjects with and without diabetes. Those genes are related to inflammation, cholesterol transport, adipocyte differentiation/expansion and browning.
Collapse
Affiliation(s)
- Mario A Molina-Ayala
- Diabetes and Obesity Clinic, Hospital de Especialidades del Centro Médico Nacional Siglo XXI, IMSS. Av. Cuauhtémoc 330, CP 06720 Mexico City, Mexico
| | - Virginia Rodríguez-Amador
- Medical and Biochemistry Research Unit, Hospital de Especialidades Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, IMSS. Av. Cuauhtémoc 330, CP 06720 Mexico City, Mexico
| | - Rocío Suárez-Sánchez
- Laboratory of Genomic Medicine, 6th floor, CENIAQ, Instituto Nacional de Rehabilitación, Mexico City, Mexico
| | - Lizbel León-Solís
- Department of Microbiology, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Jaime Gómez-Zamudio
- Medical and Biochemistry Research Unit, Hospital de Especialidades Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, IMSS. Av. Cuauhtémoc 330, CP 06720 Mexico City, Mexico
| | - Victoria Mendoza-Zubieta
- Endocrinology Unit, Hospital de Especialidades del Centro Médico Nacional Siglo XXI, IMSS. Av. Cuauhtémoc 330, CP 06720 Mexico City, Mexico
| | - Miguel Cruz
- Medical and Biochemistry Research Unit, Hospital de Especialidades Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, IMSS. Av. Cuauhtémoc 330, CP 06720 Mexico City, Mexico
| | - Fernando Suárez-Sánchez
- Medical and Biochemistry Research Unit, Hospital de Especialidades Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, IMSS. Av. Cuauhtémoc 330, CP 06720 Mexico City, Mexico.
| |
Collapse
|
10
|
Tsameret S, Jakubowicz D, Landau Z, Wainstein J, Ganz T, Raz I, Chapnik N, Froy O. Serum from type 2 diabetes patients consuming a three-meal diet resets circadian rhythms in cultured hepatocytes. Diabetes Res Clin Pract 2021; 178:108941. [PMID: 34245798 DOI: 10.1016/j.diabres.2021.108941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 12/15/2022]
Abstract
AIMS Feeding regimens alter circadian rhythms in peripheral tissues, but the mechanism is not understood. We aimed to study whether soluble factors, rather than neuronal-based communication, directly influence circadian rhythms in the liver, in response to a nutritional treatment in type 2 diabetes (T2D) patients. METHODS Cultured hepatocytes were treated with serum of insulin-treated T2D patients following either a three-meal diet (3Mdiet) or six-meal diet (6Mdiet) and the circadian expression of clock and metabolic genes was measured. RESULTS Serum of the 3Mdiet group led to increased amplitudes and daily mRNA levels of the positive limb of the circadian clock (Clock, Bmal1, Rorα). In parallel, serum of the 3Mdiet group led to the downregulation of the negative limb of the circadian clock (Cry1 and Per1), compared to both baseline and 6Mdiet. In contrast, serum of the 6Mdiet group led to a more distorted expression pattern. The catabolic genes Sirt1 and Ampk were significantly upregulated only by serum of the 3Mdiet group. CONCLUSIONS Our results show that serum of type 2 diabetes patients consuming the 3Mdiet contains soluble factors that reset circadian rhythms leading to an expression pattern similar to that of healthy people. This clock pattern contributes to improved glucose metabolism.
Collapse
Affiliation(s)
- Shani Tsameret
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Daniela Jakubowicz
- Diabetes Unit, Wolfson Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Holon, Israel.
| | - Zohar Landau
- Diabetes Unit, Wolfson Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Holon, Israel
| | - Julio Wainstein
- Diabetes Unit, Wolfson Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Holon, Israel
| | - Tali Ganz
- Diabetes Unit, Wolfson Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Holon, Israel
| | - Itamar Raz
- Diabetes Unit, Department of Internal Medicine, Hadassah Hebrew University Hospital, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nava Chapnik
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Oren Froy
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
11
|
Darwish NM, Elnahas YM, AlQahtany FS. Diabetes induced renal complications by leukocyte activation of nuclear factor κ-B and its regulated genes expression. Saudi J Biol Sci 2021; 28:541-549. [PMID: 33424337 PMCID: PMC7783672 DOI: 10.1016/j.sjbs.2020.10.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 01/08/2023] Open
Abstract
Type 2 diabetes mellitus (T2D) is a metabolic disorder characterized by inappropriate insulin function. Despite wide progress in genome studies, defects in gene expression for diabetes prognosis still incompletely identified. Prolonged hyperglycemia activates NF-κB, which is a main player in vascular dysfunctions of diabetes. Activated NF-κB, triggers expression of various genes that promote inflammation and cell adhesion process. Alteration of pro-inflammatory and profibrotic gene expression contribute to the irreversible functional and structural changes in the kidney resulting in diabetic nephropathy (DN). To identify the effect of some important NF-κB related genes on mediation of DN progression, we divided our candidate genes on the basis of their function exerted in bloodstream into three categories (Proinflammatory; NF-κB, IL-1B, IL-6, TNF-α and VEGF); (Profibrotic; FN, ICAM-1, VCAM-1) and (Proliferative; MAPK-1 and EGF). We analyzed their expression profile in leukocytes of patients and explored their correlation to diabetic kidney injury features. Our data revealed the overexpression of both proinflammatory and profibrotic genes in DN group when compared to T2D group and were associated positively with each other in DN group indicating their possible role in DN progression. In DN patients, increased expression of proinflammatory genes correlated positively with glycemic control and inflammatory markers indicating their role in DN progression. Our data revealed that the persistent activation NF-κB and its related genes observed in hyperglycemia might contribute to DN progression and might be a good diagnostic and therapeutic target for DN progression. Large-scale studies are needed to evaluate the potential of these molecules to serve as disease biomarkers.
Collapse
Key Words
- 2hPPBG, 2 h post prandial blood glucose.
- ACR, albumin creatinine ratio
- BMI, body mass index.
- DBP, Diastolic blood pressure.
- DN, diabetic nephropathy.
- FBS, fasting blood glucose.
- FN
- HDL, High density lipoprotein-cholesterol.
- HbA1c, Glycosylated hemoglobin.
- ICAM-1
- IL-1β
- IL-6
- LDL, Low density lipoprotein-cholesterol.
- M, male, F, female.
- NF-κB
- S.Cr, serum creatinine.
- SBP, Systolic blood pressure.
- T2D, type 2 diabetes mellitus without nephropathy.
- TC, total cholesterol.
- TGs, Triglyceride.
- TNF-α
- VCAM-1
- VEGF
- VLDL, Very low-density lipoprotein.
- e-GFR, estimated glomerular filtration rate.
Collapse
Affiliation(s)
- Noura M. Darwish
- Department of Biochemistry, Faculty of Science, Ain Shams University, 11566, Egypt
- Ministry of Health Laboratories, Tanta, Egypt
| | - Yousif M. Elnahas
- Department of Surgery, College of Medicine, King Saud University, Medical City, Riyadh 24251, Saudi Arabia
| | - Fatmah S. AlQahtany
- Department of Pathology, Hematopathology Unit, College of Medicine, King Saud University, Medical City, King Saud University, Riyadh 24251, Saudi Arabia
| |
Collapse
|
12
|
Alamdari NM, Rahimi FS, Afaghi S, Zarghi A, Qaderi S, Tarki FE, Ghafouri SR, Besharat S. The impact of metabolic syndrome on morbidity and mortality among intensive care unit admitted COVID-19 patients. Diabetes Metab Syndr 2020; 14:1979-1986. [PMID: 33080538 PMCID: PMC7550894 DOI: 10.1016/j.dsx.2020.10.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/03/2020] [Accepted: 10/11/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIMS Given the limited information describing the connection between metabolic syndrome (MetS) and Coronavirus Disease 2019 (COVID-19), we aimed to assess the impact of MetS on morbidity and mortality among COVID-19 patients. METHODS This retrospective cohort study was performed from 1st April to May 3, 2020 on 157 ICU-admitted COVID-19 patients in Shahid Modarres Hospital in Tehran, Iran. Patients' clinical, laboratory and radiological findings, and subsequent complications, were collected and compared between MetS and non-MetS groups. RESULTS 74 of all cases had MetS. Among the MetS components, waist circumference (p-value = 0.006 for men; p-value<0.0001 for women), Triglycerides (p-value = 0.002), and Fasting Blood Sugar (p-value = 0.007) were significantly higher in MetS group; with no statistical difference found in HDL levels (p-value = 0.21 for men; p-value = 0.13 for women), systolic blood pressure(p-value = 0.07), and diastolic blood pressure (p-value = 0.18) between two groups. Length of ICU admission (p-value = 0.009), the need for invasive mechanical ventilation (p-value = 0.0001), respiratory failure (p-value = 0.0008), and pressure ulcers (p-value = 0.02) were observed significantly more in MetS group. The Odds Ratio (OR) of mortality with 0(OR = 0.3660), 1(OR = 0.5155), 2(OR = 0.5397), 3(OR = 1.9511), 4(OR = 5.7018), and 5(OR = 8.3740) MetS components showed an increased mortality risk as the components' count increased. The patient with BMI>40 (OR = 6.9368) had more odds of fatality comparing to those with BMI>35 (OR = 4.0690) and BMI>30 (OR = 2.5287). Furthermore, the waist circumference (OR = 8.31; p-value<0.0001) and fasting blood sugar (OR = 2.4588; p-value = 0.0245) were obtained by multivariate logistic regression as independent prognostic factors for mortality. CONCLUSION The findings suggest a strong relationship between having MetS and increased risk of severe complications and mortality among COVID-19 ICU-admitted patients.
Collapse
Affiliation(s)
- Nasser Malekpour Alamdari
- Critical Care and Quality Improvement Research Center, Department of General Surgery, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Clinical Research and Development Center, Department of General Surgery, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Fateme Sadat Rahimi
- Clinical Research and Development Center, Department of General Surgery, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Siamak Afaghi
- Research Institute of Internal Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Afshin Zarghi
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Shohra Qaderi
- Research Institute of Internal Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Farzad Esmaeili Tarki
- Research Institute of Internal Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | - Sara Besharat
- Clinical Research and Developmental Center, Department of Radiology, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Rodrigues KB, Dufort MJ, Llibre A, Speake C, Rahman MJ, Bondet V, Quiel J, Linsley PS, Greenbaum CJ, Duffy D, Tarbell KV. Innate immune stimulation of whole blood reveals IFN-1 hyper-responsiveness in type 1 diabetes. Diabetologia 2020; 63:1576-1587. [PMID: 32500289 PMCID: PMC10091865 DOI: 10.1007/s00125-020-05179-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/17/2020] [Indexed: 01/05/2023]
Abstract
AIMS/HYPOTHESIS Self-antigen-specific T cell responses drive type 1 diabetes pathogenesis, but alterations in innate immune responses are also critical and not as well understood. Innate immunity in human type 1 diabetes has primarily been assessed via gene-expression analysis of unstimulated peripheral blood mononuclear cells, without the immune activation that could amplify disease-associated signals. Increased responsiveness in each of the two main innate immune pathways, driven by either type 1 IFN (IFN-1) or IL-1, have been detected in type 1 diabetes, but the dominant innate pathway is still unclear. This study aimed to determine the key innate pathway in type 1 diabetes and assess the whole blood immune stimulation assay as a tool to investigate this. METHODS The TruCulture whole blood ex vivo stimulation assay, paired with gene expression and cytokine measurements, was used to characterise changes in the stimulated innate immune response in type 1 diabetes. We applied specific cytokine-induced signatures to our data, pre-defined from the same assays measured in a separate cohort of healthy individuals. In addition, NOD mice were stimulated with CpG and monocyte gene expression was measured. RESULTS Monocytes from NOD mice showed lower baseline vs diabetes-resistant B6.g7 mice, but higher induced IFN-1-associated gene expression. In human participants, ex vivo whole blood stimulation revealed higher induced IFN-1 responses in type 1 diabetes, as compared with healthy control participants. In contrast, neither the IL-1-induced gene signature nor response to the adaptive immune stimulant Staphylococcal enterotoxin B were significantly altered in type 1 diabetes samples vs healthy control participants. Targeted gene-expression analysis showed that this enhanced IFN response was specific to IFN-1, as IFN-γ-driven responses were not significantly different. CONCLUSIONS/INTERPRETATION Our study identifies increased responsiveness to IFN-1 as a feature of both the NOD mouse model of autoimmune diabetes and human established type 1 diabetes. A stimulated IFN-1 gene signature may be a potential biomarker for type 1 diabetes and used to evaluate the effects of therapies targeting this pathway. DATA AVAILABILITY Mouse gene expression data are found in the gene expression omnibus (GEO) repository, accession GSE146452 ( www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE146452 ). Nanostring count data from the human experiments were deposited in the GEO repository, accession GSE146338 ( www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE146338 ). Data files and R code for all analyses are available at https://github.com/rodriguesk/T1D_truculture_diabetologia . Graphical abstract.
Collapse
Affiliation(s)
- Kameron B Rodrigues
- Immune Tolerance Section, Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
- Pathology Department, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Matthew J Dufort
- Systems Immunology Division, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Alba Llibre
- Immunobiology of Dendritic Cells/Inserm U1223, Département d'Immunologie, Institut Pasteur, 25 rue de Dr. Roux, 75724, Paris, France
| | - Cate Speake
- Diabetes Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - M Jubayer Rahman
- Immune Tolerance Section, Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Vincent Bondet
- Immunobiology of Dendritic Cells/Inserm U1223, Département d'Immunologie, Institut Pasteur, 25 rue de Dr. Roux, 75724, Paris, France
| | - Juan Quiel
- Immune Tolerance Section, Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Peter S Linsley
- Systems Immunology Division, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Carla J Greenbaum
- Diabetes Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Darragh Duffy
- Immunobiology of Dendritic Cells/Inserm U1223, Département d'Immunologie, Institut Pasteur, 25 rue de Dr. Roux, 75724, Paris, France.
| | - Kristin V Tarbell
- Immune Tolerance Section, Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA.
- Amgen Discovery Research, 1120 Veterans Blvd, South San Francisco, CA, 94080, USA.
| |
Collapse
|
14
|
Wang F, Wei F, Liu H, Wang X, Wang W, Ouyang Y, Liu J, Chen D, Zang Y. Association of the IL-6 Rs1800796 SNP with Concentration/dose Ratios of Tacrolimus and Donor Liver Function after Transplantation. Immunol Invest 2020; 50:939-948. [PMID: 32674627 DOI: 10.1080/08820139.2020.1793775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Feng Wang
- Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, China
- Institute of Transplantationation Science, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Feili Wei
- Institute of Hepatology, Beijing You’An Hospital, Capital Medical University, Beijing, China
| | - Huan Liu
- Institute of Transplantationation Science, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xin Wang
- Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenjing Wang
- Institute of Hepatology, Beijing You’An Hospital, Capital Medical University, Beijing, China
| | - Yabo Ouyang
- Institute of Hepatology, Beijing You’An Hospital, Capital Medical University, Beijing, China
| | - Jianyu Liu
- Institute of Transplantationation Science, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dexi Chen
- Institute of Transplantationation Science, The Affiliated Hospital of Qingdao University, Qingdao, China
- Institute of Hepatology, Beijing You’An Hospital, Capital Medical University, Beijing, China
| | - Yunjin Zang
- Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, China
- Institute of Transplantationation Science, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
15
|
De Marañon AM, Iannantuoni F, Abad-Jiménez Z, Canet F, Díaz-Pozo P, López-Domènech S, Jover A, Morillas C, Mariño G, Apostolova N, Rocha M, Victor VM. Relationship between PMN-endothelium interactions, ROS production and Beclin-1 in type 2 diabetes. Redox Biol 2020; 34:101563. [PMID: 32416353 PMCID: PMC7226867 DOI: 10.1016/j.redox.2020.101563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes is closely related to oxidative stress and cardiovascular diseases. In this study, we hypothesized that polymorphonuclear leukocytes (PMN)-endothelium interactions and autophagy are associated. We evaluated PMN-endothelial interactions, ROS production and autophagy parameters in 47 type 2 diabetic patients and 57 control subjects. PMNs from type 2 diabetic patients exhibited slower rolling velocity (p < 0.001), higher rolling flux (p < 0.001) and adhesion (p < 0.001) in parallel to higher levels of total (p < 0.05) and mitochondrial ROS (p < 0.05). When the protein expression of autophagy markers was analysed, an increase of Beclin-1 (p < 0.05), LC3I (p < 0.05), LC3II (p < 0.01) and LC3II/LC3I ratio (p < 0.05) was observed. Several correlations between ROS and leukocyte-endothelium parameters were found. Interestingly, in control subjects, an increase of Beclin-1 levels was accompanied by a decrease in the number of rolling (r = 0.561) and adhering PMNs (r = 0.560) and a rise in the velocity of the rolling PMNs (r = 0.593). In contrast, in the type 2 diabetic population, a rise in Beclin-1 levels was related to an increase in the number of rolling (r = 0.437), and adhering PMNs (r = 0.467). These results support the hypothesis that PMN-endothelium interactions, ROS levels and formation of autophagosomes, especially Beclin-1 levels, are enhanced in type 2 diabetes.
Collapse
Affiliation(s)
- Aranzazu M De Marañon
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Francesca Iannantuoni
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Zaida Abad-Jiménez
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Francisco Canet
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Pedro Díaz-Pozo
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Sandra López-Domènech
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Ana Jover
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Carlos Morillas
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Guillermo Mariño
- Instituto de Investigación Sanitaria del Principado de Asturias, 33011, Oviedo, Spain
| | - Nadezda Apostolova
- CIBERehd - Department of Pharmacology, University of Valencia, Valencia, Spain
| | - Milagros Rocha
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain; CIBERehd - Department of Pharmacology, University of Valencia, Valencia, Spain.
| | - Victor M Victor
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain; CIBERehd - Department of Pharmacology, University of Valencia, Valencia, Spain; Department of Physiology, University of Valencia, Valencia, Spain.
| |
Collapse
|
16
|
Zahran AM, Nafady-Hego H, Askar E, Elmasry HM, Mohamad IL, El-Asheer OM, Esmail AM, Elsayh KI. Analysis of Toll-Like Receptor-2 and 4 Expressions in Peripheral Monocyte Subsets in Patients with Type 1 Diabetes Mellitus. Immunol Invest 2020; 50:113-124. [PMID: 32281447 DOI: 10.1080/08820139.2020.1714649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background: Dysfunction of the peripheral blood monocytes in the form of changes in their proportion, cytokines or pattern-recognition receptors (PRR) expressions may be involved in the pathogenesis of type 1 diabetes mellitus (T1DM). Our aim is to analyze the three monocyte subsets; classical, non-classical and intermediate monocytes and their expression of Toll-like receptors 2 (TLR-2) and 4 (TLR-4) in T1DM patients. Methods: The peripheral blood monocytes of 20 T1DM patients were analyzed by Flow cytometry to measure their count and TLR-2 and TLR-4 expression. Results: T1DM patients had more non-classical and intermediate monocytes, whereas classical monocytes were comparable between patients and control (20 healthy volunteers). Classical, non-classical and intermediate monocytes had no significant correlations with hemoglobin (Hb) A1C in controls, while all subsets showed positive correlations with HbA1C in T1DM. TLR-2 and TLR-4 expression were significantly increased in classical monocytes in patients, especially those with diabetic ketoacidosis (DKA), and both of them showed positive correlations with the duration of T1DM. The expression of TLR-2 inside non-classical monocytes showed a negative correlation with LDL cholesterol and TLR-4/TLR-2 ratio showed positive correlations with the duration of T1DM and negative correlations with total cholesterol. The expression of TLR-2 inside intermediate monocytes showed positive correlations with the duration of T1DM and TLR-4/TLR-2 ratio showed negative correlations with the duration of T1DM Conclusions: The observed changes in both proportions and TLR-2 and TLR-4 expression of monocyte subsets can raise the possible role in the pathogenesis of early stages of T1DM and DKA. Abbreviations APC: allophycocyanin; CBC: complete blood picture; DKA: diabetic acidosis; DM: diabetes mellitus; FITC: fluorescein isothiocyanate; FSC: forward scatter; Hb: haemoglobin; MFI: mean channel fluorescence intensity; PE: phycoerythrin; PRR: pattern-recognition receptors; SPSS: statistical package for the social sciences; SSC: side scatter; T1DM: Type1DM; TLRs: toll-like receptors.
Collapse
Affiliation(s)
- Asmaa M Zahran
- Department of Clinical Pathology, South Egypt Cancer Institute , Assiut, Egypt
| | - Hanaa Nafady-Hego
- Microbiology and Immunology Department, Faculty of Medicine, Assiut University , Assiut, Egypt.,Division of Translational Medicine, Sidra Medical and Research Center , Doha, Qatar
| | - Eman Askar
- Paediatric Department, Faculty of Medicine, Assiut University , Assiut, Egypt
| | - Heba M Elmasry
- Department of Clinical Pathology, South Egypt Cancer Institute , Assiut, Egypt
| | - Ismail L Mohamad
- Paediatric Department, Faculty of Medicine, Assiut University , Assiut, Egypt
| | - Osama M El-Asheer
- Paediatric Department, Faculty of Medicine, Assiut University , Assiut, Egypt
| | - Asmaa M Esmail
- Paediatric Department, Faculty of Medicine, Aswan University , Aswan, Egypt
| | - Khalid I Elsayh
- Paediatric Department, Faculty of Medicine, Assiut University , Assiut, Egypt
| |
Collapse
|
17
|
The inflammatory effect of epigenetic factors and modifications in type 2 diabetes. Inflammopharmacology 2019; 28:345-362. [PMID: 31707555 DOI: 10.1007/s10787-019-00663-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023]
Abstract
Inflammation has a central role in the etiology of type 2 diabetes (T2D) and its complications. Both genetic and epigenetic factors have been implicated in the development of T2D-associated inflammation. Epigenetic mechanisms regulate the function of several components of the immune system. Diabetic conditions trigger aberrant epigenetic alterations that contribute to the progression of insulin resistance and β-cell dysfunction by induction of inflammatory responses. Thus, targeting epigenetic factors and modifications, as one of the underlying causes of inflammation, could lead to the development of novel immune-based strategies for the treatment of T2D. The aim of this review is to provide an overview of the epigenetic mechanisms involved in the propagation and perpetuation of chronic inflammation in T2D. We also discuss the possible anti-inflammatory approaches that target epigenetic factors for the treatment of T2D.
Collapse
|
18
|
Ramteke P, Deb A, Shepal V, Bhat MK. Hyperglycemia Associated Metabolic and Molecular Alterations in Cancer Risk, Progression, Treatment, and Mortality. Cancers (Basel) 2019; 11:E1402. [PMID: 31546918 PMCID: PMC6770430 DOI: 10.3390/cancers11091402] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer and diabetes are amongst the leading causes of deaths worldwide. There is an alarming rise in cancer incidences and mortality, with approximately 18.1 million new cases and 9.6 million deaths in 2018. A major contributory but neglected factor for risk of neoplastic transformation is hyperglycemia. Epidemiologically too, lifestyle patterns resulting in high blood glucose level, with or without the role of insulin, are more often correlated with cancer risk, progression, and mortality. The two conditions recurrently exist in comorbidity, and their interplay has rendered treatment regimens more challenging by restricting the choice of drugs, affecting surgical consequences, and having associated fatal complications. Limited comprehensive literature is available on their correlation, and a lack of clarity in understanding in such comorbid conditions contributes to higher mortality rates. Hence, a critical analysis of the elements responsible for enhanced mortality due to hyperglycemia-cancer concomitance is warranted. Given the lifestyle changes in the human population, increasing metabolic disorders, and glucose addiction of cancer cells, hyperglycemia related complications in cancer underline the necessity for further in-depth investigations. This review, therefore, attempts to shed light upon hyperglycemia associated factors in the risk, progression, mortality, and treatment of cancer to highlight important mechanisms and potential therapeutic targets.
Collapse
Affiliation(s)
- Pranay Ramteke
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune-411 007, India.
| | - Ankita Deb
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune-411 007, India.
| | - Varsha Shepal
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune-411 007, India.
| | - Manoj Kumar Bhat
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune-411 007, India.
| |
Collapse
|
19
|
Roshanzamir N, Hassan-Zadeh V. Methylation of Specific CpG Sites in IL-1β and IL1R1 Genes is Affected by Hyperglycaemia in Type 2 Diabetic Patients. Immunol Invest 2019; 49:287-298. [PMID: 31476928 DOI: 10.1080/08820139.2019.1656227] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Objective: Type 2 diabetes (T2D), which is the most common metabolic disorder in the world, results from insulin resistance of target tissues and reduced production of insulin from pancreatic β cells with genetic and environmental factors both playing roles in the pathogenesis. The aim of this study was to investigate the effect of blood glucose levels on DNA methylation of IL-1β and IL1R1 genes in the peripheral blood mononuclear cells (PBMCs) of non-diabetic, type 2 pre-diabetic and diabetic individuals.Methods: In this case-control study, 54 non-diabetic, pre-diabetic and type 2 diabetic individuals were enrolled and categorized based on their fasting plasma glucose (FPG) and glycated hemoglobin (A1C) levels. DNA was extracted from PBMCs and subjected to bisulfite treatment. The methylation status of two CpG sites in the IL-1β gene and three CpG sites in IL1R1 gene was then determined using Sanger sequencing.Results: Our results show that the methylation of IL-1β gene is decreased and the methylation of IL1R1 gene is increased in diabetic individuals with hyperglycemia. Further analysis revealed that both CpG sites in IL-1β gene are affected by hyperglycemia and display decreased methylation while only one CpG site in IL1R1 gene is affected by hyperglycemia.Conclusion: We propose that the DNA methylation status of the CpG sites cg18773937 and cg23149881 in IL-1β gene and the CpG site cg13399261 in IL1R1 gene could serve as an epigenetic marker of chronic inflammation and T2D development. These CpG sites can also be considered for studies on metabolic memory.
Collapse
Affiliation(s)
- Naeimeh Roshanzamir
- Department of Cell and Molecular Biology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Vahideh Hassan-Zadeh
- Department of Cell and Molecular Biology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
20
|
Deng F, Li Y, Hossain MJ, Kendig MD, Arnold R, Goldys EM, Morris MJ, Liu G. Polymer brush based fluorescent immunosensor for direct monitoring of interleukin-1β in rat blood. Analyst 2019; 144:5682-5690. [PMID: 31418433 DOI: 10.1039/c9an01300h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A sandwich immunosensor was successfully developed for monitoring of interleukin-1β (IL-1β) in rat whole blood. The substrate stainless steel (SS) was first coated with a polydopamine layer and subsequently grafted with poly(ethylene glycol) methacrylate brushes, onto which a sandwich immunosensor was modified for detection of IL-1β. The device has been successfully applied for monitoring of IL-1β with a limit of detection of 4.7 pg mL-1, and a linear detection range of 12.5-200 pg mL-1. Good specificity and selectivity for monitoring of IL-1β in rat macrophage secretion were achieved. Furthermore, this device was validated by detection of IL-1β in rat whole blood samples with greater concentrations observed in obese rats compared to control, and strong positive correlation between concentrations of IL-1β and blood glucose. These results suggest this device is feasible for direct detection of target analytes in biological samples.
Collapse
Affiliation(s)
- Fei Deng
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics, Faculty of Engineering, UNSW Sydney, NSW 2052, Australia. and Australian Centre for NanoMedicine, UNSW Sydney, NSW 2052, Australia
| | - Yi Li
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics, Faculty of Engineering, UNSW Sydney, NSW 2052, Australia. and Australian Centre for NanoMedicine, UNSW Sydney, NSW 2052, Australia
| | | | | | - Ria Arnold
- School of Medical Sciences, UNSW Sydney, NSW 2052, Australia
| | - Ewa M Goldys
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics, Faculty of Engineering, UNSW Sydney, NSW 2052, Australia. and Australian Centre for NanoMedicine, UNSW Sydney, NSW 2052, Australia
| | | | - Guozhen Liu
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics, Faculty of Engineering, UNSW Sydney, NSW 2052, Australia. and Australian Centre for NanoMedicine, UNSW Sydney, NSW 2052, Australia
| |
Collapse
|
21
|
Inayat H, Azim MK, Baloch AA. Analysis of Inflammatory Gene Expression Profile of Peripheral Blood Leukocytes in Type 2 Diabetes. Immunol Invest 2019; 48:618-631. [PMID: 30961396 DOI: 10.1080/08820139.2019.1586917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The pathophysiology of type 2 diabetes (T2DM) is associated with perturbation of innate immune response. Several studies indicated alteration of pro-inflammatory and anti-inflammatory cytokines, chemokines and other mediators of innate immune response in T2DM. This study was designed to perform quantitative PCR-based expression profiling of genes involved in inflammation (i.e. CASP1, CASP5, CCL5, CXC11, CCR5, NF-Κb, IL-4, PPARG and PGC1α) in peripheral blood leukocytes of T2DM patients. The T2DM patients are often prescribed with metformin and insulin while metformin has also been reported to possess anti-inflammatory activity. To address the question whether metformin exerts any effect on inflammatory mediators in bloodstream, human subjects in this study were divided into four groups on the basis of medication they were taking during last 6 month. These groups included NT-T2DM (T2DM patients not taking medication, n = 34), Met-T2DM (T2DM patients taking metformin, n = 33), INS-T2DM (T2DM patients taking insulin, n = 15) and NGT (normoglycemic subjects, n = 34) groups. Differential expression of gene transcripts at a cutoff of fourfold was considered significant. In the NT-T2DM group, transcripts of inflammation-related genes (i.e. CASP1, CASP5, CCL5, CCR5 and NF-kB) were up-regulated while transcripts of PPARG and PGC1α genes were down-regulated compared to NGT group. On the other hand, down-regulation of CASP1, CASP5, CCL5, CCR5 and NF-kB transcripts was evident in Met-T2DM and INS-T2DM groups when compared to the NT-T2DM group. The Met-T2DM group and INS-T2DM group showed a significant difference in the transcript level of CASP1 and CCL5 which are more down-regulated in the Met-T2DM group compared to INS-T2DM group. These findings indicated that (a) in T2DM, expression of inflammation-related genes is up-regulated and (b) anti-inflammatory activity of metformin appears to be independent of its anti-hyperglycemic activity.
Collapse
Affiliation(s)
- Humera Inayat
- a H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences , University of Karachi , Karachi , Pakistan
| | - M Kamran Azim
- b Department of Biosciences , Mohammad Ali Jinnah University , Karachi , Pakistan
| | - Akhter Ali Baloch
- c National Institute of Diabetes and Endocrinology , Dow University Health Sciences , Karachi , Pakistan
| |
Collapse
|