1
|
Hou JJ, Ma AH, Qin YH. Activation of the aryl hydrocarbon receptor in inflammatory bowel disease: insights from gut microbiota. Front Cell Infect Microbiol 2023; 13:1279172. [PMID: 37942478 PMCID: PMC10628454 DOI: 10.3389/fcimb.2023.1279172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory intestinal disease that affects more than 3.5 million people, with rising prevalence. It deeply affects patients' daily life, increasing the burden on patients, families, and society. Presently, the etiology of IBD remains incompletely clarified, while emerging evidence has demonstrated that altered gut microbiota and decreased aryl hydrocarbon receptor (AHR) activity are closely associated with IBD. Furthermore, microbial metabolites are capable of AHR activation as AHR ligands, while the AHR, in turn, affects the microbiota through various pathways. In light of the complex connection among gut microbiota, the AHR, and IBD, it is urgent to review the latest research progress in this field. In this review, we describe the role of gut microbiota and AHR activation in IBD and discussed the crosstalk between gut microbiota and the AHR in the context of IBD. Taken as a whole, we propose new therapeutic strategies targeting the AHR-microbiota axis for IBD, even for other related diseases caused by AHR-microbiota dysbiosis.
Collapse
Affiliation(s)
| | | | - Yue-Hua Qin
- Department of Gastroenterology, Shaoxing People’s Hospital, Shaoxing, China
| |
Collapse
|
2
|
Zhang TP, Li R, Li HM, Xiang N, Tan Z, Wang GS, Li XM. The Contribution of Genetic Variation and Aberrant Methylation of Aryl Hydrocarbon Receptor Signaling Pathway Genes to Rheumatoid Arthritis. Front Immunol 2022; 13:823863. [PMID: 35309329 PMCID: PMC8924038 DOI: 10.3389/fimmu.2022.823863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/01/2022] [Indexed: 12/24/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) signaling pathway participates in immune regulation of multiple autoimmune diseases, including rheumatoid arthritis (RA). We conducted this study to investigate the association of AHR signaling pathway genes (AHR, ARNT, AHRR) single nucleotide polymorphisms (SNPs), as well as their methylation levels, with RA susceptibility. Nine SNPs (AHR gene rs2066853, rs2158041, rs2282885, ARNT gene rs10847, rs1889740, rs11204735, AHRR gene rs2292596, rs2672725, rs349583) were genotyped via improved multiple ligase detection reaction (iMLDR) in 479 RA patients and 496 healthy controls. We used the Illumina Hiseq platform to detect methylation levels of these genes in 122 RA patients and 123 healthy controls. A significant increase in rs11204735 C allele frequency was observed in RA patients when compared to controls. Further, rs11204735 polymorphism was associated with a decreased risk of RA under the dominant model. ARNT CCC haplotype frequency was significantly increased in RA patients in comparison to controls. In the AHRR gene, rs2672725 GG genotype, G allele frequencies were significantly related to an increased risk of RA and rs2292596, rs2672725 polymorphism were significantly associated with an increased risk of RA under the dominant model, recessive model, respectively. However, no significant association was identified between AHR gene polymorphism and RA susceptibility. The AHR methylation level in RA patients was significantly higher than the controls, while AHRR methylation level was abnormally reduced in RA patients. In addition, AHRR rs2672725 genotype distribution was significantly associated with the AHRR methylation level among RA patients. In summary, ARNT rs11204735, AHRR rs2292596, and rs2672725 polymorphisms were associated with RA susceptibility and altered AHR, AHRR methylation levels were related to the risk of RA.
Collapse
Affiliation(s)
- Tian-Ping Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Rui Li
- Department of Nosocomial Infection Management, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hong-Miao Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui Provincial Laboratory of Inflammatory and Immune Diseases, Hefei, China
| | - Nan Xiang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhen Tan
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Guo-Sheng Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiao-Mei Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
3
|
Andac-Ozturk S, Koc G, Soyocak A. Association of aryl hydrocarbon receptor (AhR) serum level and gene rs10247158 polymorphism with anthropometric, biochemical parameters and food consumption in overweight/obese patients. Int J Clin Pract 2021; 75:e14436. [PMID: 34091989 DOI: 10.1111/ijcp.14436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/06/2021] [Accepted: 06/02/2021] [Indexed: 11/29/2022] Open
Abstract
AIM Aryl hydrocarbon receptor (AhR) plays a role in xenobiotic metabolism, which can be also activated by dietary patterns and components. AhR ligands in circulation are reported to induce weight gain, glucose intolerance and suggested to contribute to the development of obesity. In this study, we aimed to examine the relationship of the AhR gene and its polymorphisms with obesity and food consumption. METHODS The study was conducted with 117 individuals of whom 52 had a body mass index (BMI) of <25 (normal weight) and 65 had a BMI of ≥25 (overweight/obese). The distribution of the serum level and polymorphism (rs10247158) of the participants were determined in venous blood samples using the ELISA and PCR method. Body composition and skinfold thickness of the individuals were measured and their food consumption records were analysed in the BeBiS program. RESULTS The serum AhR, HOMA-IR, fasting blood glucose and basal insulin levels were found to be significantly higher (P < .001); however, no relationship was found between AhR polymorphisms in the overweight/obese individuals. In the overweight/obese group, the serum AhR level had a negative correlation with potassium, coffee and alcohol consumption and a positive correlation with suprailiac skinfold thickness. Dietary patterns expected to be related with increased serum AhR levels, such as fat and derivatives, were not observed in overweight/obese group; on the other hand, there was a negative correlation in normal group. CONCLUSION In our study, the serum AhR levels of the overweight/obese individuals were found to be significantly higher. Some dietary patterns were determined to be correlated with serum AhR levels in overweight/obese group. However, the results need to be confirmed for ethnic differences and larger samples.
Collapse
Affiliation(s)
- Serap Andac-Ozturk
- Department of Nutrition and Dietetic, Health Science Faculty, Istanbul Aydin University, Istanbul, Turkey
| | - Gulsah Koc
- Department of Medical Biology, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| | - Ahu Soyocak
- Department of Medical Biology, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| |
Collapse
|
4
|
Cai C, Zhu S, Tong J, Wang T, Feng Q, Qiao Y, Shen J. Relating the transcriptome and microbiome by paired terminal ileal Crohn disease. iScience 2021; 24:102516. [PMID: 34113837 PMCID: PMC8170125 DOI: 10.1016/j.isci.2021.102516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/28/2021] [Accepted: 05/03/2021] [Indexed: 12/16/2022] Open
Abstract
Management of terminal ileal Crohn disease (CD) is difficult due to fibrotic prognosis and failure to achieve mucosal healing. A limited number of synchronous analyses have been conducted on the transcriptome and microbiome in unpaired terminal ileum tissues. Therefore, our study focused on the transcriptome and mucosal microbiome in terminal ileal tissues of patients with CD with the aim of determining the role of cross-talk between the microbiome and transcriptome in the pathogenesis of terminal ileal CD. Mucosa-attached microbial communities were significantly associated with segmental inflammation status. Interaction-related transcription factors (TFs) are the panel nodes for cross-talk between the gene patterns and microbiome for terminal ileal CD. The transcriptome and microbiome in terminal ileal CD can be differently related to the local inflammatory status, and specific differentially expressed genes may be targeted for mucosal healing. TFs connect gene patterns with the microbiome by reflecting environmental stimuli and signals from microbiota.
Collapse
Affiliation(s)
- Chenwen Cai
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 160# Pu Jian Avenue, Shanghai 200127, China
- Department of Gastroenterology, Huashan Hospital North, Fudan University, No.108 LuXiang Road, Shanghai 201907, China
| | - Sibo Zhu
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jinlu Tong
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 160# Pu Jian Avenue, Shanghai 200127, China
| | - Tianrong Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 160# Pu Jian Avenue, Shanghai 200127, China
| | - Qi Feng
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pu Jian Road, Shanghai 200127, China
| | - Yuqi Qiao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 160# Pu Jian Avenue, Shanghai 200127, China
| | - Jun Shen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 160# Pu Jian Avenue, Shanghai 200127, China
| |
Collapse
|
5
|
Torti MF, Giovannoni F, Quintana FJ, García CC. The Aryl Hydrocarbon Receptor as a Modulator of Anti-viral Immunity. Front Immunol 2021; 12:624293. [PMID: 33746961 PMCID: PMC7973006 DOI: 10.3389/fimmu.2021.624293] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/03/2021] [Indexed: 12/30/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor, which interacts with a wide range of organic molecules of endogenous and exogenous origin, including environmental pollutants, tryptophan metabolites, and microbial metabolites. The activation of AHR by these agonists drives its translocation into the nucleus where it controls the expression of a large number of target genes that include the AHR repressor (AHRR), detoxifying monooxygenases (CYP1A1 and CYP1B1), and cytokines. Recent advances reveal that AHR signaling modulates aspects of the intrinsic, innate and adaptive immune response to diverse microorganisms. This review will focus on the increasing evidence supporting a role for AHR as a modulator of the host response to viral infection.
Collapse
Affiliation(s)
- Maria Florencia Torti
- Laboratory of Antiviral Strategies, Biochemistry Department, School of Sciences, University of Buenos Aires, IQUIBICEN-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Federico Giovannoni
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Francisco Javier Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Cybele Carina García
- Laboratory of Antiviral Strategies, Biochemistry Department, School of Sciences, University of Buenos Aires, IQUIBICEN-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|