1
|
Zhao Y, Zhu XY, Ma W, Zhang Y, Yuan F, Kim SR, Tang H, Jordan K, Lerman A, Tchkonia T, Kirkland JL, Lerman LO. Cellular senescence promotes macrophage-to-myofibroblast transition in chronic ischemic renal disease. Cell Death Dis 2025; 16:372. [PMID: 40348745 PMCID: PMC12065848 DOI: 10.1038/s41419-025-07666-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/07/2025] [Accepted: 04/14/2025] [Indexed: 05/14/2025]
Abstract
Cellular senescence participates in the pathophysiology of post-stenotic kidney damage, but how it regulates tissue remodeling is incompletely understood. Macrophage-myofibroblast transition (MMT) contributes to the development of tissue fibrosis. We hypothesized that cellular senescence contributes to MMT and renal fibrosis in mice with renal artery stenosis (RAS). INK-ATTAC mice expressing p16INK-4a and green fluorescent protein in senescent cells were assigned to control or unilateral RAS, untreated or treated with AP20187 (an apoptosis inducer in p16INK-4a-expressing cells) for 4 weeks. Renal perfusion was studied in vivo using micro-MRI, and kidney morphology, senescence, and MMT ex vivo. Cellular senescence was induced in human renal proximal tubular epithelial cells (HRPTEpiC) in vitro, and interferon-induced transmembrane protein-3 (IFITM3), a cellular senescence vector, was silenced (siRNA) or over-expressed (plasmid). HRPTEpiC were then co-incubated with macrophages with silenced integrin-3 (ITGB3), a regulator of mesenchymal transitions. CD68/p16INK-4a/α-SMA co-expression and senescence markers were studied. Murine RAS kidneys showed increased expression of p16INK-4a and MMT markers (F4/80, α-SMA) vs. controls, which decreased after AP20187, as did renal fibrosis and plasma creatinine, whereas renal perfusion increased. IFITM3 and ITGB3 expression were upregulated in senescent HRPTEpiC or co-cultured macrophages, respectively. MMT markers and TGF-β/Smad3 expression also rose in these macrophages and decreased after IFITM3 or ITGB3 silencing. p16INK-4a-expressing macrophages may regulate interstitial fibrosis in RAS via MMT. This process is associated with elevated expression of ITGB3 and TGF-β/Smad3 pathway activation through neighboring senescent cell-derived IFITM3. These findings may implicate MMT as a therapeutic target in ischemic kidneys.
Collapse
Affiliation(s)
- Yu Zhao
- Institute of Nephrology, Zhong Da Hospital, Southeast University, School of Medicine, Nanjing, Jiangsu, PR China
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Xiang-Yang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Wenqi Ma
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Ying Zhang
- Institute of Nephrology, Zhong Da Hospital, Southeast University, School of Medicine, Nanjing, Jiangsu, PR China
| | - Fei Yuan
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
- Department of Urology, National Children's Medical Center, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Seo Rin Kim
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Hui Tang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Kyra Jordan
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Amir Lerman
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | - Tamara Tchkonia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
2
|
Yang L, Ma L, Fu P, Nie J. Update of cellular senescence in kidney fibrosis: from mechanism to potential interventions. Front Med 2025; 19:250-264. [PMID: 40011387 DOI: 10.1007/s11684-024-1117-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/04/2024] [Indexed: 02/28/2025]
Abstract
Kidney fibrosis is the final common pathway of virtually all chronic kidney disease (CKD). However, despite great progress in recent years, no targeted antifibrotic therapies have been approved. Epidemiologic, clinical, and molecular evidence suggest that aging is a major contributor to the increasing incidence of CKD. Senescent renal tubular cells, fibroblasts, endothelial cells, and podocytes have been detected in the kidneys of patients with CKD and animal models. Nonetheless, although accumulated evidence supports the essential role of cellular senescence in CKD, the mechanisms that promote cell senescence and how senescent cells contribute to CKD remain largely unknown. In this review, we summarize the features of the cellular senescence of the kidney and discuss the possible functions of senescent cells in the pathogenesis of kidney fibrosis. We also address whether pharmacological approaches targeting senescent cells can be used to retard the the progression of kidney fibrosis.
Collapse
Affiliation(s)
- Lina Yang
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Liang Ma
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Ping Fu
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Jing Nie
- Biobank of Peking University First Hospital, Peking University First Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Health Science Center, Peking University, Beijing, 100034, China.
| |
Collapse
|
3
|
Rykova EY, Klimontov VV, Shmakova E, Korbut AI, Merkulova TI, Kzhyshkowska J. Anti-Inflammatory Effects of SGLT2 Inhibitors: Focus on Macrophages. Int J Mol Sci 2025; 26:1670. [PMID: 40004134 PMCID: PMC11854991 DOI: 10.3390/ijms26041670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 02/21/2025] Open
Abstract
A growing body of evidence indicates that nonglycemic effects of sodium-glucose cotransporter 2 (SGLT2) inhibitors play an important role in the protective effects of these drugs in diabetes, chronic kidney disease, and heart failure. In recent years, the anti-inflammatory potential of SGLT2 inhibitors has been actively studied. This review summarizes results of clinical and experimental studies on the anti-inflammatory activity of SGLT2 inhibitors, with a special focus on their effects on macrophages, key drivers of metabolic inflammation. In patients with type 2 diabetes, therapy with SGLT2 inhibitors reduces levels of inflammatory mediators. In diabetic and non-diabetic animal models, SGLT2 inhibitors control low-grade inflammation by suppressing inflammatory activation of tissue macrophages, recruitment of monocytes from the bloodstream, and macrophage polarization towards the M1 phenotype. The molecular mechanisms of the effects of SGLT2 inhibitors on macrophages include an attenuation of inflammasome activity and inhibition of the TLR4/NF-κB pathway, as well as modulation of other signaling pathways (AMPK, PI3K/Akt, ERK 1/2-MAPK, and JAKs/STAT). The review discusses the state-of-the-art concepts and prospects of further investigations that are needed to obtain a deeper insight into the mechanisms underlying the effects of SGLT2 inhibitors on the molecular, cellular, and physiological levels.
Collapse
Affiliation(s)
- Elena Y. Rykova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (IC&G SB RAS), Lavrentjev Prospect 10, 630090 Novosibirsk, Russia; (E.Y.R.); (V.V.K.); (E.S.); (A.I.K.); (T.I.M.)
| | - Vadim V. Klimontov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (IC&G SB RAS), Lavrentjev Prospect 10, 630090 Novosibirsk, Russia; (E.Y.R.); (V.V.K.); (E.S.); (A.I.K.); (T.I.M.)
- Research Institute of Clinical and Experimental Lymphology, Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL—Branch of IC&G SB RAS), Timakov Str. 2, 630060 Novosibirsk, Russia
| | - Elena Shmakova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (IC&G SB RAS), Lavrentjev Prospect 10, 630090 Novosibirsk, Russia; (E.Y.R.); (V.V.K.); (E.S.); (A.I.K.); (T.I.M.)
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia
| | - Anton I. Korbut
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (IC&G SB RAS), Lavrentjev Prospect 10, 630090 Novosibirsk, Russia; (E.Y.R.); (V.V.K.); (E.S.); (A.I.K.); (T.I.M.)
- Research Institute of Clinical and Experimental Lymphology, Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL—Branch of IC&G SB RAS), Timakov Str. 2, 630060 Novosibirsk, Russia
| | - Tatyana I. Merkulova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (IC&G SB RAS), Lavrentjev Prospect 10, 630090 Novosibirsk, Russia; (E.Y.R.); (V.V.K.); (E.S.); (A.I.K.); (T.I.M.)
| | - Julia Kzhyshkowska
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (IC&G SB RAS), Lavrentjev Prospect 10, 630090 Novosibirsk, Russia; (E.Y.R.); (V.V.K.); (E.S.); (A.I.K.); (T.I.M.)
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia
- Institute of Transfusion Medicine and Immunology, Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
4
|
Danish M, Diwan B, Kumar A, Khan MA, Awasthi A, Sharma L, Sharma R. Comparative evaluation of cellular senescence in naturally aged and stress-induced murine macrophages for identifying optimum senescent macrophage study systems. Mol Biol Rep 2025; 52:123. [PMID: 39812869 DOI: 10.1007/s11033-025-10232-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
BACKGROUND The role and relevance of macrophages both as causes and therapeutics of cellular senescence is rapidly emerging. However, current knowledge regarding the extent and depth of senescence in macrophages in vivo is limited and controversial. Further, acute models of stress-induced senescence in transformed/cancerous macrophage cell lines are being used although their efficacy and relevance are not characterized. METHODS AND RESULTS The present study sought to address these aspects by first comparing prevalent senescence in naturally aged murine peritoneal macrophages, and then assessing the effects of two different stressors (LPS and H2O2) in inducing premature senescence in young peritoneal macrophages. Next, RAW264.7 cell line was exposed to respective stressors and their efficiency in recapitulating the effects of natural senescence markers was characterized. We observed strong upregulation of primary markers of senescence such as SA-β-gal activity, p53, p21, p16Inka4a, Rb, ATM, and Lamin B1in naturally aged mice along with increased SASP proteins (IL-6/TNF-α/MCP-1) and redox stress (ROS and NO). Aged macrophages also demonstrated severely reduced phagocytosis. Exposure to both LPS and H2O2 in young macrophages invoked the expression of all primary markers of senescence although SASP protein expression was exaggerated in LPS stimulation. Similarly, ROS and NO expression increased while phagocytosis decreased. Stimulation of RAW264.7 cells generally revealed a similar trend although the depth of all measured parameters was ostensibly stronger in young peritoneal macrophages. Among the two stressors, LPS stimulation appeared to be relatively more potent. CONCLUSION Overall, this study emphasizes that LPS exposure to young peritoneal macrophages more strongly recapitulates in vivo cellular senescence in macrophages.
Collapse
Affiliation(s)
- Md Danish
- Faculty of Applied Sciences & Biotechnology, Shoolini University, Solan, 173229, India
| | - Bhawna Diwan
- Faculty of Applied Sciences & Biotechnology, Shoolini University, Solan, 173229, India
| | - Amit Kumar
- Faculty of Applied Sciences & Biotechnology, Shoolini University, Solan, 173229, India
| | - Mohd Adil Khan
- Faculty of Applied Sciences & Biotechnology, Shoolini University, Solan, 173229, India
| | - Ankita Awasthi
- Faculty of Applied Sciences & Biotechnology, Shoolini University, Solan, 173229, India
| | - Lalit Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, 173229, India
| | - Rohit Sharma
- Faculty of Applied Sciences & Biotechnology, Shoolini University, Solan, 173229, India.
| |
Collapse
|
5
|
Dong R, Ji Z, Wang M, Ma G. Role of macrophages in vascular calcification: From the perspective of homeostasis. Int Immunopharmacol 2025; 144:113635. [PMID: 39566391 DOI: 10.1016/j.intimp.2024.113635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
Vascular calcification (VC) is a crucial risk factor for the high morbidity and mortality associated with cardiovascular and cerebrovascular diseases. With the global population aging, the incidence of VC is escalating annually. However, due to its silent clinical process, VC often results in irreversible clinical outcomes. Inflammation is a core element in the VC process, and macrophages are the major inflammatory cells. Due to their diverse origins, microenvironments, and polarization states, macrophages exhibit significant heterogeneity, exerting strong effects on the occurrence, development, and even the regression of VC. In this review, we summarize the origin, distribution, classification, and surface markers of macrophages. Simultaneously, we explore the mechanisms by which macrophages maintain homeostasis or regulate inflammation, including the macrophage-mediated regulation of VC through the release of inflammatory factors, osteogenic genes, extracellular vesicles, and alterations in efferocytosis. Finally, we discuss research targeting inflammation and macrophages to develop novel therapeutic regimens for preventing and treating VC.
Collapse
Affiliation(s)
- Rong Dong
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao, Nanjing 210009, China; Department of Cardiology, Yancheng No. 1 People's Hospital, No. 66 South Renmin Road, Yancheng 224000, China
| | - Zhenjun Ji
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao, Nanjing 210009, China
| | - Mi Wang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao, Nanjing 210009, China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao, Nanjing 210009, China.
| |
Collapse
|
6
|
Wang YB, Li T, Wang FY, Yao X, Bai QX, Su HW, Liu J, Wang L, Tan RZ. The Dual Role of Cellular Senescence in Macrophages: Unveiling the Hidden Driver of Age-Related Inflammation in Kidney Disease. Int J Biol Sci 2025; 21:632-657. [PMID: 39781471 PMCID: PMC11705649 DOI: 10.7150/ijbs.104404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025] Open
Abstract
Aging is a complex biological process that involves the gradual decline of cellular, tissue, and organ functions. In kidney, aging manifests as tubular atrophy, glomerulosclerosis, and progressive renal function decline. The critical role of senescence-associated macrophage in diseases, particularly kidney diseases, is increasingly recognized. During this process, macrophages exhibit a range of pro-damage response to senescent tissues and cells, while the aging of macrophages themselves also significantly influences disease progression, creating a bidirectional regulatory role between aging and macrophages. To explore this bidirectional mechanism, this review will elucidate the origin, characteristic, phenotype, and function of macrophages in response to the senescence-associated secretory phenotype (SASP), extracellular vesicles from senescent cells, and the senescence cell-engulfment suppression (SCES), particularly in the context of kidney disease. Additionally, it will discuss the characteristics of senescent macrophage, such as common markers, and changes in autophagy, metabolism, gene regulation, phagocytosis, antigen presentation, and exosome secretion, along with their physiological and pathological impacts on renal tissue cells. Furthermore, exploring therapies and drugs that modulate the function of senescent macrophages or eliminate senescent cells may help slow the progression of kidney aging and damage.
Collapse
Affiliation(s)
- Yi-bing Wang
- Department of Radiology, the Affiliated Hospital, Southwest Medical University, 646000 Luzhou, China
- Department of Medical Imaging, Southwest Medical University, 646000 Luzhou, China
| | - Tong Li
- Research Center of Integrated Traditional Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, 646000 Luzhou, China
| | - Feng-yu Wang
- College of Integration of Traditional Chinese and Western Medicine, Southwest Medical University, 646000 Luzhou, China
| | - Xin Yao
- Department of Anesthesiology, Southwest Medical University, 646000 Luzhou, China
| | - Qiu-xiang Bai
- Research Center of Integrated Traditional Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, 646000 Luzhou, China
| | - Hong-wei Su
- Department of Urology, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, 646000 Luzhou, China
| | - Jian Liu
- Department of Nephrology, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, 646000 Luzhou, China
| | - Li Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, 646000 Luzhou, China
| | - Rui-zhi Tan
- Research Center of Integrated Traditional Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, 646000 Luzhou, China
| |
Collapse
|
7
|
Saliev T, Singh PB. From Bench to Bedside: Translating Cellular Rejuvenation Therapies into Clinical Applications. Cells 2024; 13:2052. [PMID: 39768144 PMCID: PMC11674796 DOI: 10.3390/cells13242052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Cellular rejuvenation therapies represent a transformative frontier in addressing age-related decline and extending human health span. By targeting fundamental hallmarks of aging-such as genomic instability, epigenetic alterations, mitochondrial dysfunction, and cellular senescence-these therapies aim to restore youthful functionality to cells and tissues, offering new hope for treating degenerative diseases. Recent advancements have showcased a range of strategies, including epigenetic reprogramming, senolytic interventions, mitochondrial restoration, stem cell-based approaches, and gene-editing technologies like CRISPR. Each modality has demonstrated substantial potential in preclinical models and is now being cautiously explored in early-stage clinical trials. However, translating these therapies from the laboratory to clinical practice presents unique challenges: safety concerns, delivery precision, complex regulatory requirements, ethical considerations, and high costs impede widespread adoption. This review examines the current landscape of cellular rejuvenation, highlighting key advancements, potential risks, and the strategies needed to overcome these hurdles.
Collapse
Affiliation(s)
- Timur Saliev
- S.D. Asfendiyarov Kazakh National Medical University, Tole Bi Street 94, Almaty 050000, Kazakhstan
| | - Prim B. Singh
- School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan;
| |
Collapse
|