1
|
Bayoumy AB, Ansari AR, Mulder CJJ, Schmiegelow K, Florin T, De Boer NKH. Innovating Thiopurine Therapeutic Drug Monitoring: A Systematic Review and Meta-Analysis on DNA-Thioguanine Nucleotides (DNA-TG) as an Inclusive Biomarker in Thiopurine Therapy. Clin Pharmacokinet 2024; 63:1089-1109. [PMID: 39031224 PMCID: PMC11343975 DOI: 10.1007/s40262-024-01393-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND AND OBJECTIVE Thioguanine (TG), azathioprine (AZA), and mercaptopurine (MP) are thiopurine prodrugs commonly used to treat diseases, such as leukemia and inflammatory bowel disease (IBD). 6-thioguanine nucleotides (6-TGNs) have been commonly used for monitoring treatment. High levels of 6-TGNs in red blood cells (RBCs) have been associated with leukopenia, the cutoff levels that predict this side effect remain uncertain. Thiopurines are metabolized and incorporated into leukocyte DNA. Measuring levels of DNA-incorporated thioguanine (DNA-TG) may be a more suitable method for predicting clinical response and toxicities such as leukopenia. Unfortunately, most methodologies to assay 6-TGNs are unable to identify the impact of NUDT15 variants, effecting mostly ethnic populations (e.g., Chinese, Indian, Malay, Japanese, and Hispanics). DNA-TG tackles this problem by directly measuring thioguanine in the DNA, which can be influenced by both TPMT and NUDT15 variants. While RBC 6-TGN concentrations have traditionally been used to optimize thiopurine therapy due to their ease and affordability of measurement, recent developments in liquid chromatography-tandem mass spectrometry (LC-MS/MS) techniques have made measuring DNA-TG concentrations in lymphocytes accurate, reproducible, and affordable. The objective of this systematic review was to assess the current evidence of DNA-TG levels as marker for thiopurine therapy, especially with regards to NUDT15 variants. METHODS A systematic review and meta-analysis were performed on the current evidence for DNA-TG as a marker for monitoring thiopurine therapy, including methods for measurement and the illustrative relationship between DNA-TG and various gene variants (such as TPMT, NUDT15, ITPA, NT5C2, and MRP4). PubMed and Embase were systematically searched up to April 2024 for published studies, using the keyword "DNA-TG" with MeSH terms and synonyms. The electronic search strategy was augmented by a manual examination of references cited in articles, recent reviews, editorials, and meta-analyses. A meta-analysis was performed using R studio 4.1.3. to investigate the difference between the coefficients (Fisher's z-transformed correlation coefficient) of DNA-TG and 6-TGNs levels. A meta-analysis was performed using RevMan version 5.4 to investigate the difference in DNA-TG levels between patients with or without leukopenia using randomized effect size model. The risk of bias was assessed using the Newcastle-Ottowa quality assessment scale. RESULTS In this systematic review, 21 studies were included that measured DNA-TG levels in white blood cells for either patients with ALL (n = 16) or IBD (n = 5). In our meta-analysis, the overall mean difference between patients with leukopenia (ALL + IBD) versus no leukopenia was 134.15 fmol TG/µg DNA [95% confidence interval (CI) (83.78-184.35), P < 0.00001; heterogeneity chi squared of 5.62, I2 of 47%]. There was a significant difference in DNA-TG levels for patients with IBD with and without leukopenia [161.76 fmol TG/µg DNA; 95% CI (126.23-197.29), P < 0.00001; heterogeneity chi squared of 0.20, I2 of 0%]. No significant difference was found in DNA-TG level between patients with ALL with or without leukopenia (57.71 fmol TG/µg DNA [95% CI (- 22.93 to 138.35), P < 0.80]). DNA-TG monitoring was found to be a promising method for predicting relapse rates in patients with ALL, and DNA-TG levels are likely a better predictor for leukopenia in patients with IBD than RBC 6-TGNs levels. DNA-TG levels have been shown to correlate with various gene variants (TPMT, NUDT15, ITPA, and MRP4) in various studies, points to its potential as a more informative marker for guiding thiopurine therapy across diverse genetic backgrounds. CONCLUSIONS This systematic review strongly supports the further investigation of DNA-TG as a marker for monitoring thiopurine therapy. Its correlation with treatment outcomes, such as relapse-free survival in ALL and the risk of leukopenia in IBD, underscores its role in enhancing personalized treatment approaches. DNA-TG effectively identifies NUDT15 variants and predicts late leukopenia in patients with IBD, regardless of their NUDT15 variant status. The recommended threshold for late leukopenia prediction in patients with IBD with DNA-TG is suggested to be between 320 and 340 fmol/µg DNA. More clinical research on DNA-TG implementation is mandatory to improve patient care and to improve inclusivity in thiopurine treatment.
Collapse
Affiliation(s)
- Ahmed B Bayoumy
- Department of Internal Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, The Netherlands.
| | - A R Ansari
- Department of Gastroenterology and Hepatology, London Bridge Hospital, London, UK
| | - C J J Mulder
- Department of Gastroenterology and Hepatology, AGEM Research Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - K Schmiegelow
- Department of Pediatrics and Adolescent Medicine, The Juliane Marie Centre, The University Hospital Rigshospitalet, Copenhagen, Denmark
- Institute of Clinical Medicine, The Faculty of Health Sciences, The University of Copenhagen, Copenhagen, Denmark
| | - Timothy Florin
- Mater Research, University of Queensland, Translational Research Institute, Woolloongabba, QLD, 4102, Australia
| | - N K H De Boer
- Department of Gastroenterology and Hepatology, AGEM Research Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Escalante-Bautista D, Cerecedo D, Jiménez-Hernández E, González-Torres C, Gaytán-Cervantes J, Núñez-Enríquez JC, Sepúlveda-Robles OA, De Ita M, Jiménez-Morales S, Sánchez-López JM, Mata-Rocha M, Torres-Nava JR, Martín-Trejo JA, Flores-Villegas LV, Gutiérrez-Rivera MDL, Merino-Pasaye LE, Solís-Labastida KA, Miranda-Madrazo MR, Hernández-Echáurregui GA, Orozco-Ruíz D, Flores-Lujano J, Pérez-Saldívar ML, Mejía-Aranguré JM, Rosas-Vargas H. Association between genetic variants of membrane transporters and the risk of high-grade hematologic adverse events in a cohort of Mexican children with B-cell acute lymphoblastic leukemia. Front Oncol 2024; 13:1276352. [PMID: 38269022 PMCID: PMC10807790 DOI: 10.3389/fonc.2023.1276352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/28/2023] [Indexed: 01/26/2024] Open
Abstract
Background Advances in the understanding of the pathobiology of childhood B-cell acute lymphoblastic leukemia (B-ALL) have led towards risk-oriented treatment regimens and markedly improved survival rates. However, treatment-related toxicities remain a major cause of mortality in developing countries. One of the most common adverse effects of chemotherapy in B-ALL is the hematologic toxicity, which may be related to genetic variants in membrane transporters that are critical for drug absorption, distribution, and elimination. In this study we detected genetic variants present in a selected group genes of the ABC and SLC families that are associated with the risk of high-grade hematologic adverse events due to chemotherapy treatment in a group of Mexican children with B-ALL. Methods Next generation sequencing (NGS) was used to screen six genes of the ABC and seven genes of the SLC transporter families, in a cohort of 96 children with B-ALL. The grade of hematologic toxicity was classified according to the National Cancer Institute's Common Terminology Criteria for Adverse Events (CTCAE) version 5.0, Subsequently, two groups of patients were formed: the null/low-grade (grades 1 and 2) and the high-grade (grades 3 to 5) adverse events groups. To determine whether there is an association between the genetic variants and high-grade hematologic adverse events, logistic regression analyses were performed using co-dominant, dominant, recessive, overdominant and log-additive inheritance models. Odds ratio (OR) and 95% confidence intervals (95% CI) were calculated. Results We found two types of associations among the genetic variants identified as possible predictor factors of hematologic toxicity. One group of variants associated with high-grade toxicity risk: ABCC1 rs129081; ABCC4 rs227409; ABCC5 rs939338, rs1132776, rs3749442, rs4148575, rs4148579 and rs4148580; and another group of protective variants that includes ABCC1 rs212087 and rs212090; SLC22A6 rs4149170, rs4149171 and rs955434. Conclusion There are genetic variants in the SLC and ABC transporter families present in Mexican children with B-ALL that can be considered as potential risk markers for hematologic toxicity secondary to chemotherapeutic treatment, as well as other protective variants that may be useful in addition to conventional risk stratification for therapeutic decision making in these highly vulnerable patients.
Collapse
Affiliation(s)
- Deyanira Escalante-Bautista
- Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría “Dr. Silvestre Frenk Freund”, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
- Laboratorio de Hematobiología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Doris Cerecedo
- Laboratorio de Hematobiología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Elva Jiménez-Hernández
- Servicio de Oncohematología Pediátrica, Hospital Pediátrico Moctezuma, Secretaría de Salud de la Ciudad de México, Ciudad de México, Mexico
- Universidad Autónoma Metropolitana, Unidad Xochimilco, Ciudad de México, Mexico
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Carolina González-Torres
- Laboratorio de Secuenciación, División de Desarrollo de la Investigación, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Javier Gaytán-Cervantes
- Laboratorio de Secuenciación, División de Desarrollo de la Investigación, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Juan Carlos Núñez-Enríquez
- Unidad de Investigación Médica en Epidemiología Clínica, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Omar Alejandro Sepúlveda-Robles
- Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría “Dr. Silvestre Frenk Freund”, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Marlon De Ita
- Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría “Dr. Silvestre Frenk Freund”, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Silvia Jiménez-Morales
- Laboratorio de Innovación y Medicina de Precisión, Núcleo A, Instituto Nacional de Medicina Genómica, Ciudad de México, Mexico
| | - José Manuel Sánchez-López
- Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría “Dr. Silvestre Frenk Freund”, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Minerva Mata-Rocha
- Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría “Dr. Silvestre Frenk Freund”, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - José Refugio Torres-Nava
- Servicio de Oncología, Hospital Pediátrico de Moctezuma, Secretaría de Salud de la Ciudad de México, Ciudad de México, Mexico
| | - Jorge Alfonso Martín-Trejo
- Servicio de Hematología Pediátrica, Hospital de Pediatría “Dr. Silvestre Frenk Freund”, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Luz Victoria Flores-Villegas
- Servicio de Hematología Pediátrica, Centro Médico Nacional “20 de Noviembre”, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, Mexico
| | - María de Lourdes Gutiérrez-Rivera
- Servicio de Oncología Pediátrica, Hospital de Pediatría “Dr. Silvestre Frenk Freund”, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Laura Elizabeth Merino-Pasaye
- Servicio de Hematología Pediátrica, Centro Médico Nacional “20 de Noviembre”, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, Mexico
| | - Karina Anastacia Solís-Labastida
- Servicio de Hematología Pediátrica, Hospital de Pediatría “Dr. Silvestre Frenk Freund”, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - María Raquel Miranda-Madrazo
- Servicio de Hematología Pediátrica, Centro Médico Nacional “20 de Noviembre”, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, Mexico
| | | | - Darío Orozco-Ruíz
- Servicio de Oncología, Hospital Pediátrico de Moctezuma, Secretaría de Salud de la Ciudad de México, Ciudad de México, Mexico
| | - Janet Flores-Lujano
- Unidad de Investigación Médica en Epidemiología Clínica, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - María Luisa Pérez-Saldívar
- Unidad de Investigación Médica en Epidemiología Clínica, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Juan Manuel Mejía-Aranguré
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Ciudad de México, Mexico
- Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Haydeé Rosas-Vargas
- Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría “Dr. Silvestre Frenk Freund”, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| |
Collapse
|
3
|
Grover P, Thakur K, Bhardwaj M, Mehta L, Raina SN, Rajpal VR. Phytotherapeutics in Cancer: From Potential Drug Candidates to Clinical Translation. Curr Top Med Chem 2024; 24:1050-1074. [PMID: 38279745 DOI: 10.2174/0115680266282518231231075311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 01/28/2024]
Abstract
Annually, a significant number of individuals succumb to cancer, an anomalous cellular condition characterized by uncontrolled cellular proliferation and the emergence of highly perilous tumors. Identifying underlying molecular mechanism(s) driving disease progression has led to various inventive therapeutic approaches, many of which are presently under pre-clinical and/or clinical trials. Over the recent years, numerous alternative strategies for addressing cancer have also been proposed and put into practice. This article delineates the modern therapeutic drugs employed in cancer treatment and their associated toxicity. Due to inherent drug toxicity associated with most modern treatments, demand rises for alternative therapies and phytochemicals with minimal side effects and proven efficacy against cancer. Analogs of taxol, Vinca alkaloids like vincristine and vinblastine, and podophyllotoxin represent a few illustrative examples in this context. The phytochemicals often work by modifying the activity of molecular pathways that are thought to be involved in the onset and progression of cancer. The principal objective of this study is to provide an overview of our current understanding regarding the pharmacologic effects and molecular targets of the active compounds found in natural products for cancer treatment and collate information about the recent advancements in this realm. The authors' interest in advancing the field of phytochemical research stems from both the potential of these compounds for use as drugs as well as their scientific validity. Accordingly, the significance of herbal formulations is underscored, shedding light on anticancer phytochemicals that are sought after at both pre-clinical and clinical levels, with discussion on the opportunities and challenges in pre-clinical and clinical cancer studies.
Collapse
Affiliation(s)
- Parul Grover
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, India
| | | | - Monika Bhardwaj
- Natural Product and Medicinal Chemistry Division, Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, 180001, India
| | - Lovekesh Mehta
- Amity Institute of Pharmacy, Amity University, Noida, 201301, India
| | - Soom Nath Raina
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, Noida, 201301, India
| | - Vijay Rani Rajpal
- Department of Botany, Hansraj College, Delhi University, Delhi, 110007, India
| |
Collapse
|
4
|
Ali AM, Adam H, Hailu D, Coenen MJH, Howe R, Abula T. Incidence and determinants of hematotoxicity in acute lymphoblastic leukemia children who received 6-mercaptopurine based maintenance therapy in Addis Ababa, Ethiopia. PLoS One 2023; 18:e0286544. [PMID: 37267380 DOI: 10.1371/journal.pone.0286544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/18/2023] [Indexed: 06/04/2023] Open
Abstract
INTRODUCTION The maintenance phase of acute lymphoblastic leukemia treatment is the final and longest stage of treatment, mainly focused on antimetabolite therapy. This phase is essential to eliminate residual leukemic clones and prevent relapse. However, dose-limiting hematotoxicity is a major problem during this phase resulting in dose reduction or treatment discontinuation. OBJECTIVE In this cohort study, the clinical features and risk factors of hematological toxicity during the maintenance phase of treatment were analyzed in pediatric patients from Ethiopia. METHODS A total of 160 patients from Tikur Anbessa specialized hospital were included in the study of which 142 had sufficient data available for analysis. Patient characteristics as well as information about the care-givers, sides-effects as reported by the care-givers and clinical factors were collected. Bivariable followed by multivariable analysis was performed to investigate which factors were associated with hematological toxicity during the maintenance phase. RESULTS During the first six months of maintenance phase treatment grade 4 neutropenia was detected in 52.8% of the patients. The risk of developing grade 4 neutropenia was increased by about two fold in children with the age of 6 years and less compared to those with the age of more than 6 years. Similarly, the rate of developing grade 4 neutropenia among children with less than 4,500 maintenance day 1 white blood cell counts was significantly higher than that of children with normal maintenance day 1 white blood cell counts (AHR 2.477, 95% CI = 1.461-4.200, p = 0.001). CONCLUSION In conclusion, child's age and day 1 maintenance white blood cell/absolute neutrophil counts significantly affected the occurrence of grade 4 hematotoxicity. Close monitoring for white blood cell and absolute neutrophil counts during maintenance phase treatment is recommended for early diagnosis of hematotoxicity.
Collapse
Affiliation(s)
- Awol Mekonnen Ali
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Haileyesus Adam
- Department of Pediatrics and Child Health, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Daniel Hailu
- Department of Pediatrics and Child Health, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Marieke J H Coenen
- Department of Human Genetics, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rawleigh Howe
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Teferra Abula
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
5
|
Guo HL, Zhao YT, Wang WJ, Dong N, Hu YH, Zhang YY, Chen F, Zhou L, Li T. Optimizing thiopurine therapy in children with acute lymphoblastic leukemia: A promising “MINT” sequencing strategy and therapeutic “DNA-TG” monitoring. Front Pharmacol 2022; 13:941182. [PMID: 36238550 PMCID: PMC9552076 DOI: 10.3389/fphar.2022.941182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Thiopurines, including thioguanine (TG), 6-mercaptopurine (6-MP), and azathioprine (AZA), are extensively used in clinical practice in children with acute lymphoblastic leukemia (ALL) and inflammatory bowel diseases. However, the common adverse effects caused by myelosuppression and hepatotoxicity limit their application. Metabolizing enzymes such as thiopurine S-methyltransferase (TPMT), nudix hydrolase 15 (NUDT15), inosine triphosphate pyrophosphohydrolase (ITPA), and drug transporters like multidrug resistance-associated protein 4 (MRP4) have been reported to mediate the metabolism and transportation of thiopurine drugs. Hence, the single nucleotide polymorphisms (SNPs) in those genes could theoretically affect the pharmacokinetics and pharmacological effects of these drugs, and might also become one of the determinants of clinical efficacy and adverse effects. Moreover, long-term clinical practices have confirmed that thiopurine-related adverse reactions are associated with the systemic concentrations of their active metabolites. In this review, we mainly summarized the pharmacogenetic studies of thiopurine drugs. We also evaluated the therapeutic drug monitoring (TDM) research studies and focused on those active metabolites, hoping to continuously improve monitoring strategies for thiopurine therapy to maximize therapeutic efficacy and minimize the adverse effects or toxicity. We proposed that tailoring thiopurine dosing based on MRP4, ITPA, NUDT15, and TMPT genotypes, defined as “MINT” panel sequencing strategy, might contribute toward improving the efficacy and safety of thiopurines. Moreover, the DNA-incorporated thioguanine nucleotide (DNA-TG) metabolite level was more suitable for red cell 6-thioguanine nucleotide (6-TGNs) monitoring, which can better predict the efficacy and safety of thiopurines. Integrating the panel “MINT” sequencing strategy with therapeutic “DNA-TG” monitoring would offer a new insight into the precision thiopurine therapy for pediatric acute lymphoblastic leukemia patients.
Collapse
Affiliation(s)
- Hong-Li Guo
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yue-Tao Zhao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Visiting Graduate Student from School of Basic Medicine and Clinical Pharmacy, Pharmaceutical University, Nanjing, China
| | - Wei-Jun Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Visiting Graduate Student from School of Basic Medicine and Clinical Pharmacy, Pharmaceutical University, Nanjing, China
| | - Na Dong
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China
- School of Institute of Pharmaceutical Science, Pharmaceutical University, Nanjing, China
| | - Ya-Hui Hu
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yuan-Yuan Zhang
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Chen
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Feng Chen, ; Li Zhou, ; Tao Li,
| | - Li Zhou
- Hematology and Oncology Department, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Feng Chen, ; Li Zhou, ; Tao Li,
| | - Tao Li
- Department of Solid Oncology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Feng Chen, ; Li Zhou, ; Tao Li,
| |
Collapse
|