1
|
Ming B, Li L, Cai S, Hu Z, Gao R, Umehara H, Zhong J, Zheng F, Dong L. How to focus on autoantigen-specific lymphocytes: a review on diagnosis and treatment of Sjogren's syndrome. J Leukoc Biol 2025; 117:qiae247. [PMID: 39953919 DOI: 10.1093/jleuko/qiae247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/30/2024] [Indexed: 02/17/2025] Open
Abstract
Sjogren's syndrome (SS) is an autoimmune epithelitis characterized by focal lymphocytic infiltration against self-antigens leading to progressive glandular dysfunction, which can develop to multisystem manifestation. The classification criteria for SS emphasizes glandular lymphocyte infiltrates and anti-SSA/SSB seropositivity, which is usually manifested in advanced patients. Therapeutically, apart from symptomatic treatment, treatment of SS is based on glucocorticoids and conventional synthetic disease-modifying antirheumatic drugs with global immunosuppression, but the efficacy of biologic or targeted synthetic therapies is still sparse. Currently, emerging studies focus on autoantigen-specific immunotherapies to treat autoimmune disorders by directly eliminating autoreactive cell subsets and inducing tolerance by increasing the autoreactive regulatory lymphocytes. Herein, we summarize the current state of research on the autoantigen-specific approaches for detecting autoreactive lymphocytes and outline the current autoantigen-specific immunotherapies in other autoimmune disorders and their attempts in treatment of SS. Last, we discuss the potential value of focusing on autoantigen-specific lymphocytes in the early diagnosis, monitoring, and targeted treatment of SS. Potential strategies for targeting autoreactive lymphocytes need to be confirmed in SS.
Collapse
Affiliation(s)
- Bingxia Ming
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ling Li
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shaozhe Cai
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ziwei Hu
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Rongfen Gao
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hisanori Umehara
- Department of Medicine, Nagahama City Hospital, Nagahama 526-0043, Japan
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Fang Zheng
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, Hubei 430030, China
- NHC Key Laboratory of Organ Transplantation, Wuhan, Hubei 430030, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei 430030, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| |
Collapse
|
2
|
Chang K, Luo P, Guo Z, Yang L, Pu J, Han F, Cai F, Tang J, Wang X. Lipid Metabolism: An Emerging Player in Sjögren's Syndrome. Clin Rev Allergy Immunol 2025; 68:15. [PMID: 39934534 DOI: 10.1007/s12016-025-09023-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2025] [Indexed: 02/13/2025]
Abstract
Sjögren's syndrome (SS) is a chronic autoimmune disorder that primarily affects the exocrine glands. Due to the intricate nature of the disease progression, the exact mechanisms underlying SS are not completely understood. Recent research has highlighted the complex interplay between immune dysregulation and metabolic abnormalities in inflammatory diseases. Notably, lipid metabolism has emerged as a crucial factor in the modulation of immune function and the progression of autoimmune diseases, including SS. This review explores the prevalence of dyslipidemia in SS, emphasizing its role in the onset, progression, and prognosis of the disease. We specifically described the impact of altered lipid metabolism in exocrine glands and its association with disease-specific features, including inflammation and glandular dysfunction. Additionally, we discussed the potential clinical implications of lipid metabolism regulation, including the role of polyunsaturated fatty acids (PUFAs) and their deficits in SS pathogenesis. By identifying lipid metabolism as a promising therapeutic target, this review highlights the need for further research into lipid-based interventions for the management of SS.
Collapse
Affiliation(s)
- Keni Chang
- Department of Rheumatology and Immunology, School of Medicine, Tongji Hospital, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China
| | - Peiming Luo
- Department of Rheumatology and Immunology, School of Medicine, Tongji Hospital, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China
| | - Zizhen Guo
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lufei Yang
- Department of Rheumatology and Immunology, School of Medicine, Tongji Hospital, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China
| | - Jincheng Pu
- Department of Rheumatology and Immunology, School of Medicine, Tongji Hospital, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China
| | - Fang Han
- Department of Rheumatology and Immunology, School of Medicine, Tongji Hospital, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China
| | - Feiyang Cai
- Department of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, Québec, Canada
- Gerald Bronfman Department of Oncology, Segal Cancer Centre, Lady Davis Institute and Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Jianping Tang
- Department of Rheumatology and Immunology, School of Medicine, Tongji Hospital, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China.
| | - Xuan Wang
- Department of Rheumatology and Immunology, School of Medicine, Tongji Hospital, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China.
| |
Collapse
|
3
|
Chen Y, Chen G, Qi Y, Zeng J, Ma L, Zhang X, Qie X, Jin Y, Li H, Yuan L. Analysis of Histochemical Characteristics of Submandibular Gland of the Bactrian Camel. Vet Sci 2025; 12:108. [PMID: 40005868 PMCID: PMC11861349 DOI: 10.3390/vetsci12020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/21/2025] [Accepted: 01/26/2025] [Indexed: 02/27/2025] Open
Abstract
The ultrastructure of submandibular gland (SMG) of Bactrian camels was observed by a transmission electron microscope. Routine HE staining, special staining combined with immunohistochemistry, and immunofluorescence techniques were used to study the histochemical characteristics of the submandibular gland and the localisation and distribution characteristics of epidermal growth factor (EGF) and epidermal growth factor receptor (EGFR). HE results showed that the submandibular gland of Bactrian camels was composed of mixed serous and mucinous acini glands. The submandibular striated duct was highly developed and connected with intercalated ducts with larger diameter. Intercalated ducts are shorter and directly connected to acini. In AB-PAS staining, it was observed that the inner wall of striated tube was strongly positive for AB staining. The distribution of the reticular fibres around the follicles and ducts of the submandibular gland is distinct, with collagen fibres distributed mainly in the periphery of the ducts and sparse collagen fibres in the periphery of the acini. Immunohistochemistry and fluorescence show that EGF is strongly positive in striated and intercalated ducts, and EGFR is weakly positive in striated and intercalated ducts. Bactrian camel SMGs secrete more acidic mucins, and EGF and EGFR were mainly secreted and play a role in the pipeline system of SMGs.
Collapse
Affiliation(s)
- Yulu Chen
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Y.C.); (G.C.); (Y.Q.); (J.Z.); (L.M.); (X.Z.); (X.Q.); (Y.J.); (H.L.)
| | - Guojuan Chen
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Y.C.); (G.C.); (Y.Q.); (J.Z.); (L.M.); (X.Z.); (X.Q.); (Y.J.); (H.L.)
- Huangzhong District Animal Disease Prevention and Control Center, Xining 811600, China
| | - Yumei Qi
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Y.C.); (G.C.); (Y.Q.); (J.Z.); (L.M.); (X.Z.); (X.Q.); (Y.J.); (H.L.)
| | - Jianlin Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Y.C.); (G.C.); (Y.Q.); (J.Z.); (L.M.); (X.Z.); (X.Q.); (Y.J.); (H.L.)
| | - Long Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Y.C.); (G.C.); (Y.Q.); (J.Z.); (L.M.); (X.Z.); (X.Q.); (Y.J.); (H.L.)
| | - Xudong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Y.C.); (G.C.); (Y.Q.); (J.Z.); (L.M.); (X.Z.); (X.Q.); (Y.J.); (H.L.)
| | - Xiaolong Qie
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Y.C.); (G.C.); (Y.Q.); (J.Z.); (L.M.); (X.Z.); (X.Q.); (Y.J.); (H.L.)
| | - Yajuan Jin
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Y.C.); (G.C.); (Y.Q.); (J.Z.); (L.M.); (X.Z.); (X.Q.); (Y.J.); (H.L.)
| | - Haijun Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Y.C.); (G.C.); (Y.Q.); (J.Z.); (L.M.); (X.Z.); (X.Q.); (Y.J.); (H.L.)
| | - Ligang Yuan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Y.C.); (G.C.); (Y.Q.); (J.Z.); (L.M.); (X.Z.); (X.Q.); (Y.J.); (H.L.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| |
Collapse
|
4
|
Steinmetz TD, Verstappen GM, Suurmond J, Kroese FGM. Targeting plasma cells in systemic autoimmune rheumatic diseases - Promises and pitfalls. Immunol Lett 2023; 260:44-57. [PMID: 37315847 DOI: 10.1016/j.imlet.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/12/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023]
Abstract
Plasma cells are the antibody secretors of the immune system. Continuous antibody secretion over years can provide long-term immune protection but could also be held responsible for long-lasting autoimmunity in case of self-reactive plasma cells. Systemic autoimmune rheumatic diseases (ARD) affect multiple organ systems and are associated with a plethora of different autoantibodies. Two prototypic systemic ARDs are systemic lupus erythematosus (SLE) and Sjögren's disease (SjD). Both diseases are characterized by B-cell hyperactivity and the production of autoantibodies against nuclear antigens. Analogues to other immune cells, different subsets of plasma cells have been described. Plasma cell subsets are often defined dependent on their current state of maturation, that also depend on the precursor B-cell subset from which they derived. But, a universal definition of plasma cell subsets is not available so far. Furthermore, the ability for long-term survival and effector functions may differ, potentially in a disease-specific manner. Characterization of plasma cell subsets and their specificity in individual patients can help to choose a suitable targeting approach for either a broad or more selective plasma cell depletion. Targeting plasma cells in systemic ARDs is currently challenging because of side effects or varying depletion efficacies in the tissue. Recent developments, however, like antigen-specific targeting and CAR-T-cell therapy might open up major benefits for patients beyond current treatment options.
Collapse
Affiliation(s)
- Tobit D Steinmetz
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Gwenny M Verstappen
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jolien Suurmond
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Frans G M Kroese
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
Galletti JG, Scholand KK, Trujillo-Vargas CM, Yu Z, Mauduit O, Delcroix V, Makarenkova HP, de Paiva CS. Ectopic lymphoid structures in the aged lacrimal glands. Clin Immunol 2023; 248:109251. [PMID: 36740002 PMCID: PMC10323865 DOI: 10.1016/j.clim.2023.109251] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023]
Abstract
Aging is a complex biological process in which many organs are pathologically affected. We previously reported that aged C57BL/6J had increased lacrimal gland (LG) lymphoid infiltrates that suggest ectopic lymphoid structures. However, these ectopic lymphoid structures have not been fully investigated. Using C57BL/6J mice of different ages, we analyzed the transcriptome of aged murine LGs and characterized the B and T cell populations. Age-related changes in the LG include increased differentially expressed genes associated with B and T cell activation, germinal center formation, and infiltration by marginal zone-like B cells. We also identified an age-related increase in B1+ cells and CD19+B220+ cells. B220+CD19+ cells were GL7+ (germinal center-like) and marginal zone-like and progressively increased with age. There was an upregulation of transcripts related to T follicular helper cells, and the number of these cells also increased as mice aged. Compared to a mouse model of Sjögren syndrome, aged LGs have similar transcriptome responses but also unique ones. And lastly, the ectopic lymphoid structures in aged LGs are not exclusive to a specific mouse background as aged diverse outbred mice also have immune infiltration. Altogether, this study identifies a profound change in the immune landscape of aged LGs where B cells become predominant. Further studies are necessary to investigate the specific function of these B cells during the aged LGs.
Collapse
Affiliation(s)
- Jeremias G Galletti
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA; Institute of Experimental Medicine (CONICET), National Academy of Medicine of Buenos Aires, Buenos Aires, Argentina
| | - Kaitlin K Scholand
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA; Biochemistry and Cell Biology Graduate Program, Department of BioSciences, Rice University, Houston, TX, USA.
| | - Claudia M Trujillo-Vargas
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA; Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia, UdeA, Medellín, Colombia.
| | - Zhiyuan Yu
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA.
| | - Olivier Mauduit
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Vanessa Delcroix
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Helen P Makarenkova
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Cintia S de Paiva
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
6
|
Giovannini D, Belbezier A, Baillet A, Bouillet L, Kawano M, Dumestre-Perard C, Clavarino G, Noble J, Pers JO, Sturm N, Huard B. Heterogeneity of antibody-secreting cells infiltrating autoimmune tissues. Front Immunol 2023; 14:1111366. [PMID: 36895558 PMCID: PMC9989216 DOI: 10.3389/fimmu.2023.1111366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/27/2023] [Indexed: 02/23/2023] Open
Abstract
The humoral response is frequently dysfunctioning in autoimmunity with a frequent rise in total serum immunoglobulins, among which are found autoantibodies that may be pathogenic by themselves and/or propagate the inflammatory reaction. The infiltration of autoimmune tissues by antibody-secreting cells (ASCs) constitutes another dysfunction. The known high dependency of ASCs on the microenvironment to survive combined to the high diversity of infiltrated tissues implies that ASCs must adapt. Some tissues even within a single clinical autoimmune entity are devoid of infiltration. The latter means that either the tissue is not permissive or ASCs fail to adapt. The origin of infiltrated ASCs is also variable. Indeed, ASCs may be commonly generated in the secondary lymphoid organ draining the autoimmune tissue, and home at the inflammation site under the guidance of specific chemokines. Alternatively, ASCs may be generated locally, when ectopic germinal centers are formed in the autoimmune tissue. Alloimmune tissues with the example of kidney transplantation will also be discussed own to their high similarity with autoimmune tissues. It should also be noted that antibody production is not the only function of ASCs, since cells with regulatory functions have also been described. This article will review all the phenotypic variations indicative of tissue adaptation described so for at the level of ASC-infiltrating auto/alloimmune tissues. The aim is to potentially define tissue-specific molecular targets in ASCs to improve the specificity of future autoimmune treatments.
Collapse
Affiliation(s)
- Diane Giovannini
- Department of Pathology, Grenoble University Hospital, Grenoble, France.,Translational Research in Autoimmunity and Inflammation Group (TRAIG), Translational Innovation in Medicine and Complexity (TIMC), University Grenoble-Alpes, CNRS Unité mixte de recherche (UMR) 5525, Grenoble, France
| | - Aude Belbezier
- Translational Research in Autoimmunity and Inflammation Group (TRAIG), Translational Innovation in Medicine and Complexity (TIMC), University Grenoble-Alpes, CNRS Unité mixte de recherche (UMR) 5525, Grenoble, France.,Department of Internal Medicine, Grenoble University Hospital, Grenoble, France
| | - Athan Baillet
- Translational Research in Autoimmunity and Inflammation Group (TRAIG), Translational Innovation in Medicine and Complexity (TIMC), University Grenoble-Alpes, CNRS Unité mixte de recherche (UMR) 5525, Grenoble, France.,Department of Rheumatology, Grenoble University Hospital, Grenoble, France
| | - Laurence Bouillet
- Translational Research in Autoimmunity and Inflammation Group (TRAIG), Translational Innovation in Medicine and Complexity (TIMC), University Grenoble-Alpes, CNRS Unité mixte de recherche (UMR) 5525, Grenoble, France.,Department of Internal Medicine, Grenoble University Hospital, Grenoble, France
| | - Mitsuhiro Kawano
- Department of Rheumatology, Kanazawa University Hospital, Kanazawa, Japan
| | | | | | - Johan Noble
- Department of Nephrology, Grenoble University Hospital, Grenoble, France
| | - Jacques-Olivier Pers
- B Lymphocytes, Autoimmunity and Immunotherapies, Brest University, INSERM, UMR1227, Brest, France.,Odontology Unit, Brest University Hospital, Brest, France
| | - Nathalie Sturm
- Department of Pathology, Grenoble University Hospital, Grenoble, France.,Translational Research in Autoimmunity and Inflammation Group (TRAIG), Translational Innovation in Medicine and Complexity (TIMC), University Grenoble-Alpes, CNRS Unité mixte de recherche (UMR) 5525, Grenoble, France
| | - Bertrand Huard
- Translational Research in Autoimmunity and Inflammation Group (TRAIG), Translational Innovation in Medicine and Complexity (TIMC), University Grenoble-Alpes, CNRS Unité mixte de recherche (UMR) 5525, Grenoble, France
| |
Collapse
|
7
|
Tan Z, Wang L, Li X. Composition and regulation of the immune microenvironment of salivary gland in Sjögren’s syndrome. Front Immunol 2022; 13:967304. [PMID: 36177010 PMCID: PMC9513852 DOI: 10.3389/fimmu.2022.967304] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Primary Sjögren’s syndrome (pSS) is a systemic autoimmune disease characterized by exocrine gland dysfunction and inflammation. Patients often have dry mouth and dry eye symptoms, which seriously affect their lives. Improving dry mouth and eye symptoms has become a common demand from patients. For this reason, researchers have conducted many studies on external secretory glands. In this paper, we summarize recent studies on the salivary glands of pSS patients from the perspective of the immune microenvironment. These studies showed that hypoxia, senescence, and chronic inflammation are the essential characteristics of the salivary gland immune microenvironment. In the SG of pSS, genes related to lymphocyte chemotaxis, antigen presentation, and lymphocyte activation are upregulated. Interferon (IFN)-related genes, DNA methylation, sRNA downregulation, and mitochondrial-related differentially expressed genes are also involved in forming the immune microenvironment of pSS, while multiple signaling pathways are involved in regulation. We further elucidated the regulation of the salivary gland immune microenvironment in pSS and relevant, targeted treatments.
Collapse
|
8
|
Skeletal muscle provides the immunological micro-milieu for specific plasma cells in anti-synthetase syndrome-associated myositis. Acta Neuropathol 2022; 144:353-372. [PMID: 35612662 PMCID: PMC9288384 DOI: 10.1007/s00401-022-02438-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/08/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022]
Abstract
Anti-synthetase syndrome (ASyS)-associated myositis is a major subgroup of the idiopathic inflammatory myopathies (IIM) and is characterized by disease chronicity with musculoskeletal, dermatological and pulmonary manifestations. One of eight autoantibodies against the aminoacyl-transferase RNA synthetases (ARS) is detectable in the serum of affected patients. However, disease-specific therapeutic approaches have not yet been established.To obtain a deeper understanding of the underlying pathogenesis and to identify putative therapeutic targets, we comparatively investigated the most common forms of ASyS associated with anti-PL-7, anti-PL-12 and anti-Jo-1. Our cohort consisted of 80 ASyS patients as well as healthy controls (n = 40), diseased controls (n = 40) and non-diseased controls (n = 20). We detected a reduced extent of necrosis and regeneration in muscle biopsies from PL-12+ patients compared to Jo-1+ patients, while PL-7+ patients had higher capillary dropout in biopsies of skeletal muscle. Aside from these subtle alterations, no significant differences between ASyS subgroups were observed. Interestingly, a tissue-specific subpopulation of CD138+ plasma cells and CXCL12+/CXCL13+CD20+ B cells common to ASyS myositis were identified. These cells were localized in the endomysium associated with alkaline phosphatase+ activated mesenchymal fibroblasts and CD68+MHC-II+CD169+ macrophages. An MHC-I+ and MHC-II+ MxA negative type II interferon-driven milieu of myofiber activation, topographically restricted to the perifascicular area and the adjacent perimysium, as well as perimysial clusters of T follicular helper cells defined an extra-medullary immunological niche for plasma cells and activated B cells. Consistent with this, proteomic analyses of muscle tissues from ASyS patients demonstrated alterations in antigen processing and presentation. In-depth immunological analyses of peripheral blood supported a B-cell/plasma-cell-driven pathology with a shift towards immature B cells, an increase of B-cell-related cytokines and chemokines, and activation of the complement system. We hypothesize that a B-cell-driven pathology with the presence and persistence of a specific subtype of plasma cells in the skeletal muscle is crucially involved in the self-perpetuating chronicity of ASyS myositis. This work provides the conceptual framework for the application of plasma-cell-targeting therapies in ASyS myositis.
Collapse
|
9
|
Guimarães JR, Coêlho MDC, de Oliveira NFP. Contribution of DNA methylation to the pathogenesis of Sjögren's syndrome: A review. Autoimmunity 2022; 55:215-222. [DOI: 10.1080/08916934.2022.2062593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Juliana Ramalho Guimarães
- Graduate Program in Dentistry, Centre of Health Sciences, Federal University of Paraíba – UFPB, João Pessoa, PB, Brazil
| | - Marina de Castro Coêlho
- Graduate Program in Dentistry, Centre of Health Sciences, Federal University of Paraíba – UFPB, João Pessoa, PB, Brazil
| | - Naila Francis Paulo de Oliveira
- Graduate Program in Dentistry, Centre of Health Sciences, Federal University of Paraíba – UFPB, João Pessoa, PB, Brazil
- Molecular Biology Department, Centre of Exact and Natural Sciences, Federal University of Paraíba – UFPB, João Pessoa, PB, Brazil
| |
Collapse
|
10
|
Li N, Li Y, Hu J, Wu Y, Yang J, Fan H, Li L, Luo D, Ye Y, Gao Y, Xu H, Hai W, Jiang L. A Link Between Mitochondrial Dysfunction and the Immune Microenvironment of Salivary Glands in Primary Sjogren’s Syndrome. Front Immunol 2022; 13:845209. [PMID: 35359935 PMCID: PMC8964148 DOI: 10.3389/fimmu.2022.845209] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/09/2022] [Indexed: 12/17/2022] Open
Abstract
Background Primary Sjogren’s syndrome (pSS) is a slowly progressive, inflammatory autoimmune disease characterized by lymphocytic infiltration into salivary and lacrimal glands. It becomes more recognized that morphology alterations of epithelial mitochondria are involved in altered cellular bioenergetics in pSS patients. The integrated analysis of the mitochondrial role in the pathogenesis and aberrant immune microenvironment in pSS remains unknown. Methods The mitochondria-related genes and gene expression data were downloaded from the MitoMiner, MitoCarta, and NCBI GEO databases. We performed novel transcriptomic analysis and constructed a network between the mitochondrial function and immune microenvironment in pSS-salivary glands by computer-aided algorithms. Subsequently, real-time PCR was performed in clinical samples in order to validate the bioinformatics results. Histological staining and transmission electron microscopy (TEM) were further studied on labial salivary gland samples of non-pSS and pSS patients characterized for mitochondria-related phenotypic observation in the different stages of the disease. Results The bioinformatic analysis revealed that the expression of several mitochondria-related genes was altered in pSS. Quantitative real-time PCR showed that four hub genes, CD38, CMPK2, TBC1D9, and PYCR1, were differentially expressed in the pSS clinical samples. These hub genes were associated with the degree of immune cell infiltration in salivary glands, the mitochondrial respiratory chain complexes, mitochondrial metabolic pathway in gluconeogenesis, TCA cycle, and pyruvate/ketone/lipid/amino acid metabolism in pSS. Clinical data revealed that the gene expression of fission (Fis1, DRP1, and MFF) and fusion (MFN1, MFN2, and OPA1) was downregulated in pSS samples, consistent with the results from the public validation database. As the disease progressed, cytochrome c and Bcl-2 proteins were regionally distributed in salivary glands from pSS patients. TEM revealed cytoplasmic lipid droplets and progressively swollen mitochondria in salivary epithelial cells. Conclusion Our study revealed cross talk between mitochondrial dysfunction and the immune microenvironment in salivary glands of pSS patients, which may provide important insights into SS clinical management based on modulation of mitochondrial function.
Collapse
Affiliation(s)
- Ning Li
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yusi Li
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiawei Hu
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yicheng Wu
- Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Yang
- Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongmei Fan
- Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Li
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danyang Luo
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yulin Ye
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yiming Gao
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Yiming Gao, ; Haimin Xu, ; Wangxi Hai, ; Liting Jiang,
| | - Haimin Xu
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yiming Gao, ; Haimin Xu, ; Wangxi Hai, ; Liting Jiang,
| | - Wangxi Hai
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yiming Gao, ; Haimin Xu, ; Wangxi Hai, ; Liting Jiang,
| | - Liting Jiang
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Yiming Gao, ; Haimin Xu, ; Wangxi Hai, ; Liting Jiang,
| |
Collapse
|
11
|
Liao R, Yang HT, Li H, Liu LX, Li K, Li JJ, Liang J, Hong XP, Chen YL, Liu DZ. Recent Advances of Salivary Gland Biopsy in Sjögren's Syndrome. Front Med (Lausanne) 2022; 8:792593. [PMID: 35083248 PMCID: PMC8784519 DOI: 10.3389/fmed.2021.792593] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Sjögren's syndrome (SS) is a chronic, systemic, inflammatory autoimmune disease characterized by lymphocyte proliferation and progressive damage to exocrine glands. The diagnosis of SS is challenging due to its complicated clinical manifestations and non-specific signs. Salivary gland biopsy plays an important role in the diagnosis of SS, especially with anti-Sjögren's syndrome antigen A (SSA) and anti-SSB antibody negativity. Histopathology based on biopsy has clinical significance for disease stratification and prognosis evaluation, such as risk assessment for the development of non-Hodgkin's lymphoma. Furthermore, histopathological changes of salivary gland may be implicated in evaluating the efficacy of biological agents in SS. In this review, we summarize the histopathological features of salivary gland, the mechanism of histopathological changes and their clinical significance, as well as non-invasive imaging techniques of salivary glands as a potential alternative to salivary gland biopsy in SS.
Collapse
Affiliation(s)
- Rui Liao
- The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Hai-Tao Yang
- The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Heng Li
- Department of Rheumatology and Immunology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Li-Xiong Liu
- Department of Rheumatology and Immunology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Kai Li
- Department of Rheumatology and Immunology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Jing-Jing Li
- Department of Rheumatology and Immunology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Jie Liang
- The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Xiao-Ping Hong
- Department of Rheumatology and Immunology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Yu-Lan Chen
- Department of Rheumatology and Immunology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Dong-Zhou Liu
- Department of Rheumatology and Immunology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
12
|
Abstract
Based on the PubMed data, we have been performing a yearly evaluation of the publications related to autoimmune diseases and immunology to ascertain the relative weight of the former in the scientific literature. It is particularly intriguing to observe that despite the numerous new avenues of immune-related mechanisms, such as cancer immunotherapy, the proportion of immunology manuscripts related to autoimmunity continues to increase and has been approaching 20% in 2019. As in the previous 13 years, we performed an arbitrary selection of the peer-reviewed articles published by the major dedicated Journals and discussed the common themes which continue to outnumber peculiarites in autoimmune diseases. The investigated areas included systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), psoriatic arthritis (PsA), autoantibodies (autoAbs), and common therapeutic avenues and novel pathogenic mechanisms for autoimmune conditions. Some examples include new pathogenetic evidence which is well represented by IL21 or P2X7 receptor (P2X7R) in SLE or the application of single-cell RNA sequencing (scRNA-seq), mass cytometry, bulk RNA sequencing (RNA-seq), and flow cytometry for the analysis of different cellular populations in RA. Cumulatively and of interest to the clinicians, a large number of findings continue to underline the importance of a strict relationship between basic and clinical science to define new pathogenetic and therapeutic developments. The therapeutic pipeline in autoimmunity continues to grow and maintain a constant flow of new molecules, as well illustrated in RA and PsA, and this is most certainly derived from the new basic evidence and the high-throughput tools applied to autoimmune diseases.
Collapse
|
13
|
B cells as target for immunotherapy in rheumatic diseases - current status. Immunol Lett 2021; 236:12-19. [PMID: 34077805 DOI: 10.1016/j.imlet.2021.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/16/2021] [Accepted: 05/25/2021] [Indexed: 01/16/2023]
Abstract
This mini-review is a short overview of different therapeutical strategies targeting B cells in systemic autoimmune rheumatic diseases, mainly: rheumatoid arthritis (RA), systemic lupus erythematosus (SLE) and primary Sjogren Syndrome (pSS). Many strategies and their rationale are discussed in this review: B cells' depletion (anti-CD20, anti-CD22), long-lived plasma cells depletion (anti-CD19, anti-CD27, anti-CD38 and anti-CD138), changing activation of B cells (anti-BAFF) and inhibiting proteasomes in plasma cells (bortezomib). The past successful therapies and less successful are shown, and the possible reasons for failures are discussed.
Collapse
|
14
|
Trivedi A, Cornejo KM, O'Donnell P, Dresser K, Deng A. Employing immunohistochemical staining to labial minor salivary gland biopsies from patients with Sjogren's syndrome increases diagnostic certainty. J Oral Pathol Med 2020; 50:98-102. [PMID: 33150616 DOI: 10.1111/jop.13119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/27/2020] [Accepted: 10/07/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Sjogren's syndrome (SjS) is an autoimmune disease characterized clinically by dry eyes and dry mouth, and histopathologically by lymphocytic infiltrates in the salivary glands. Labial minor salivary gland biopsy (MSGB) is a major diagnostic test for SjS, deemed positive by a focus score of ≥1, meaning that ≥50 lymphocytes were found in 4 mm2 tissue on hematoxylin and eosin (H&E)-stained slides. The diagnosis can be challenging, and the above diagnostic criteria has low and variable sensitivity. METHODS We performed a retrospective study on MSGBs done for possible SjS. We compared the percent of MSGBs which met the histologic criteria by H&E stain alone and that with the addition of CD45, CD3, and CD20 immunohistochemical (IHC) staining for these patients. A total of 45 cases with complete data were analyzed. RESULTS Thirty-five of the 45 patients had the diagnosis of Sjogren's syndrome (SjS+) based on ACR criteria. However, based on H&E staining alone, only 22/35 cases (63%) met the histologic criteria. After adding IHC staining with CD45, CD3, and CD20 to MSGBs of SjS + patients, 29/35 (83%) cases met the histological criteria for SjS. All MSGBs from patients without SjS had no significant lymphocyte infiltrate on either H&E or IHC stains. CONCLUSIONS Immunohistochemical better identifies lymphocytic infiltrates in MSGB and increases diagnostic certainty. Due to high cost, their use should be restricted to cases where there is high clinical suspicion of SjS and negative H&E evaluation alone, or if the diagnosis is uncertain.
Collapse
Affiliation(s)
- Apoorva Trivedi
- Department of Dermatology, University of Massachusetts Medical School, UMass Memorial Medical Center, Worcester, MA, USA
| | - Kristine M Cornejo
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Patrick O'Donnell
- Department of Pathology, University of Massachusetts Medical School, UMass Memorial Medical Center, Worcester, MA, USA
| | - Karen Dresser
- Department of Pathology, University of Massachusetts Medical School, UMass Memorial Medical Center, Worcester, MA, USA
| | - April Deng
- Department of Pathology, University of Massachusetts Medical School, UMass Memorial Medical Center, Worcester, MA, USA
| |
Collapse
|
15
|
Pulmonary Involvement in a Mouse Model of Sjögren's Syndrome Induced by STING Activation. Int J Mol Sci 2020; 21:ijms21124512. [PMID: 32630417 PMCID: PMC7349948 DOI: 10.3390/ijms21124512] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022] Open
Abstract
Sjögren's Syndrome (SS), a chronic autoimmune disorder affecting multiple organ systems, is characterized by an elevated type I interferon (IFN) response. Activation of Stimulator of Interferon Genes (STING) protein induces type I IFN and in mice, several features of SS, including anti-nuclear antibodies, sialadenitis, and salivary gland dysfunction. Since lung involvement occurs in one-fifth of SS patients, we investigated whether systemic activation of STING also leads to lung inflammation. Lungs from female C57BL/6 mice injected with the STING agonist 5, 6-Dimethylxanthenone-4-acetic acid (DMXAA), were evaluated for acute and chronic inflammatory responses. Within 4h of DMXAA injection, the expression of Ifnb1, Il6, Tnf, Ifng, and Mx1 was significantly upregulated. At 1 and 2 months post-treatment, lungs showed lymphocytic infiltration in the peri-bronchial regions. The lungs from DMXAA treated mice showed an increased expression of multiple chemokines and an increase in lymphatic endothelial cells. Despite STING expression in bronchial epithelium and cells lining the alveolar wall, bone marrow chimeras between STING knockout and wild type mice showed that STING expression in hematopoietic cells was critical for lung inflammation. Our results suggest that activation of the STING pathway might be involved in SS patients with concomitant salivary gland and lung disease.
Collapse
|